钾肥和密度对桔梗产量和品质及氮磷钾吸收利用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桔梗是一种常用重要中草药。随着桔梗临床需求量的增加,全国各地已开始进行大面积人工栽培。但有关桔梗栽培技术的理论研究还很薄弱,其人工栽培的技术尚未形成完整的理论体系。本实验以桔梗为材料,通过调节钾肥和密度两个因素,对桔梗的生长发育规律进行研究,以期找出最佳栽培模式,为桔梗的规范化栽培提供理论依据。主要试验结果如下:
     1钾肥对桔梗产量和品质的影响
     施钾显著提高了桔梗的产量,提高了整株生物量,降低了花果中的干物质积累量,促进了干物质向根部的运输和分配。当施钾量为225 kg/hm2(K3)时,产量最高,比CK提高了32.73%。但过高的供钾水平并不利于桔梗高产,当施钾量超过225 kg/hm2时,产量开始降低。
     桔梗根部含糖量远高于地上部各器官,生育前期(8月份前)施钾有利于地上部糖分向地下部运输,生育后期施钾不利根部可溶性糖含量的提高,但有利于可溶性糖的积累量的提高。桔梗皂苷D含量在10月份达最大值,各处理桔梗皂苷D含量在8月份前变化规律复杂,此后施钾量150 kg/hm2(K2)处理下桔梗皂苷D含量最高,而施钾量高于150 kg/hm2时桔梗皂苷D含量低于CK。收获时K2处理下桔梗皂苷D产量最高,达4.29kg/hm2,施钾量300 kg/hm2(K5)时桔梗皂苷D产量低于CK。
     2钾肥影响桔梗氮磷钾吸收与分配
     桔梗植株对氮、磷、钾的吸收量随桔梗生长而增加,从整个生育期看施钾不利于对氮素的吸收,有利于对磷、钾素的吸收,但过高则不利。从氮素吸收看,茎和花果中的氮素的含量随施钾量增加而显著降低;7月下旬前叶片中氮素含量在低钾处理下较高,结果盛期随施钾量增加而显著增加,生育后期则在K3处理下最低;收获前根部氮素含量随施钾量增加而降低,收获时,各施钾处理氮素含量均高于CK,当施钾量300 kg/hm2时氮素含量低于CK。从磷素吸收看,生育初期施钾对桔梗根、茎、叶中磷素含量影响不显著;开花结果期根部磷含量随施钾量增加而增加,茎部磷素含量随施钾量变化复杂,其中K2处理一直高于CK,K3处理下叶片中磷素含量显著高于其他处理,花果中磷素含量随施钾量增加而降低,CK最低;生育后期根和茎中磷素含量随施钾量增加而降低, K3处理下叶片中磷素含量显著高于其他处理, K1和K2处理下花果中的磷素含量显著低于CK;收获时根部磷素含量在K1处理下含量最高,K2处理下最低。从钾素吸收看,生育初期施钾对桔梗根部钾素含量影响不显著,开花盛期根部钾素含量随施钾量增加而显著增加,结果盛期后各施钾处理根部钾素含量均高于CK,K4处理下最高,其他三个施钾处理随施钾量增加而降低,收获时根部钾素含量随施钾量增加而显著增加;茎、叶、花果中钾素含量随施钾量增加而显著增加,其中在开花结果期各施钾处理花果中钾素含量均低于CK。
     3密度对桔梗产量和品质的影响
     单株根产量在株行距为6 cm×25 cm(M2)处理时最高,其次是株行距4 cm×25 cm(M1)处理,群体根产量则随密度增加而显著增加, M1处理下产量是M2处理的1.33倍,是M5处理的3.27倍。密度过高或过低都显著降低根长而增加根的分叉数,对桔梗根粗影响差异不显著,在株行距为6 cm×25 cm(M2)处理下桔梗根最长、分杈数最少。
     根部和茎部可溶性糖含量随密度增加而显著增加,9月份前叶片和花果中可溶性糖含量随密度增加而显著增加,之后则随密度增加而显著降低。密度对桔梗根部桔梗皂苷D含量影响显著。桔梗皂苷D含量在10月份达最大值,8月中旬前桔梗皂苷D含量随密度处理变化不明显,之后桔梗皂苷D含量随密度增加而显著增加,其中M2处理高于M1处理。收获时,每公顷桔梗皂苷D的产量随密度增加而显著增加。
     4密度影响桔梗氮磷钾的吸收和分配
     桔梗单株对氮、磷、钾的吸收量随密度增加而降低,其中M2处理下氮、磷、钾的吸收量高于M3处理。从氮素吸收看,生育前期,密度对氮素在桔梗各器官中的分配比例的影响不显著,生育后期,在根部的分配比例随密度增加而增加,其中M2处理略高于M1处理,在地上部各器官中的分配比例则随密度增加而降低,其中在花果中的比例则在最高和最低密度下最高,处理间差异显著。从磷素吸收看,磷素在根部分配比例随密度增加而增加,地上部各器官则随密度增加而降低,处理间差异显著。从钾素吸收看,钾素在根部和叶片中的比例随密度增加而显著增加,其中M2处理下叶片中的比例高于M1处理,在茎部和花果中的比例则随密度增加而显著降低。
Platycodon grangdiflorum (Jacp.)A.DC is an important herbal medicine in common use. Because of more requirements needed in clinic, Platycodon grangdiflorum (Jacp.)A.DC is planted more and more widely in many areas. But the studies of planting techniques are poor, its planting techniques have not been studied systematically. Platycodon grangdiflorum (Jacp.)A.DC is selected in this experiment. In order to find the best cultivation mode, we studied the effect of density and potassium fertilizer on yield and quality. And the physiological mechanism how density, potassium fertilizer affected yield and quality were analyzed in this experiment. The main results were as followed:
     1 Effect of potassium fertilizer on yield and quality of Platycodon grangdiflorum (Jacp.)A.DC
     Potassium appling increased the yield, the Colony biomass of per plant, and decreased the dry material accumulation of fruits, stimulated the transportation and distribution of dry matter to root. The yield is the highest when the amount of potassium applied is 225 K2O kg/hm~2. The increased production of yield is 32.73% compared to CK. But it does not avail to reforming yield for platycodon grangdiflorum (Jacp.)A.DC by improving potassium application. The addition of potassium amount has no effect on yield when the amount is beyond 225 K2O kg/hm~2.
     The platycodon grandiflorum root sugar content is higher than the various organs over ground. In growth prophase (before August), fertilizing potassium stimulated the transportation and distribution of the soluble sugar to root, In growth anaphase, fertilizing potassium decreased the root soluble sugar content, but increased the soluble sugar accumulation. The platycodin D content reaches the maximum in October, the rule of each processing platycodin D content is complex before August, hereafter the platycodin D content is the highest when the amount of potassium applied is 150 kg/hm2 (K2), but when it is higher than 150 kg/hm~2 the platycodin D content is lower than CK. When harvest under the K2 processing the platycodin D output is the highest, reaches 4.29kg/hm~2, when the amount of potassium applied is 300 kg/hm~2 (K5) the platycodin D output is lower than CK.
     2 Effect of potassium fertilizer on mineral element absorption and distribution in Platycodon grangdiflorum (Jacp.)A.DC
     The absorbing of nitrogen, phosphorus, potassium increased along with the platycodon grandiflorum growing.Seeing from the whole growth period ,potassium application does not favor to the nitrogen absorption, and potassium application is advantageous to the absorption of phosphorus, potassium element. Seeing from the nitrogen absorption, the nitrogen content in the stem and fruit increases along with improving potassium application obviously reduces; Before the last ten-day of July, the nitrogen content in the leaf is high under low potassium application, the nitrogen content in the leaf obviously increases along with improving potassium application in the fructification period, in growth anaphase, the nitrogen content is the lowest under the K3 processing; Before the harvest, the root nitrogen content decreases along with improving potassium application, when harvest, the root nitrogen content under different treatment was higher than CK, when the amount of potassium applied is 300 kg/hm2 the nitrogen content is lower than CK. Seeing from the phosphorus absorption, in growth prophase, the content of nitrogen in root, stem and leaf has no significant different in different treatment; In the blossoms and fructification period, the root phosphorus content increased along with improving potassium application, the stem phosphorus content changes complex along with improving potassium application, the K2 treatment has been higher than CK, under the K3 treatment the leaf phosphorus content is obviously higher than other treatment, the phosphorus content in the fruit decreases along with improving potassium application, the CK is the lowest; In growth anaphase, the phosphorus content in the root and stem decreases along with improving potassium application, under the K3 treatment the phosphorus content in the leaf is obviously higher than other treatment, under the K1 and K2 treatment the phosphorus content in fruit is obviously lower than CK; When harvest the root phosphorus content is the highest under the K1 treatment, under the K2 treatment is the lowest. Seeing from the potassium absorption, in growth prophase, the content of nitrogen in root has no significant different in different treatment. In the peak flowering period the root potassium content increased obviously along with improving potassium application; After the fructification period, the root potassium content under different treatment is higher than CK, the K4 treatment is the highest, the root potassium content under other three treatments decreased along with improving potassium application; When harvest the root potassium content increased obviously along with improving potassium application; The potassium element content in the stem, leaf and fruit increased obviously along with improving potassium application, thereinto in blossoms and fruiting period , the potassium content in the fruit under each potassium application treatment was lower than CK.
     3 Effect of plant density on mineral element absorption and distribution in Platycodon grangdiflorum (Jacp.)A.DC
     The output of root per plant is the highest when the plant spacing×row spacing is 6 cm×25 cm (M2), the next is the M1 treatment when the plant spacing×row spacing is 4 cm×25 cm. The colony root output increased obviously along with the density increasing, under the M1 treatment the output is 1.33 times than M2 treatment, and is 3.27 times than M5 treatment. The length of root increased obviously and the furcation number of root decreased obviously under the highest density and the lowest density. The diameter of root has no significant different in different density. The root is longest and the furcation number of root is the least when the plant spacing×row spacing is 6 cm×25 cm (M2).
     The soluble sugar content in the root and stem increased obviously along with the increasing density. Before September the soluble sugar content in the leaf and the fruit increased obviously along with the increasing density, afterward the content decreased obviously along with the increasing density. The platycodin D content in root has significant different in different density. The platycodin D content reaches the maximum in October. Before the mid-August, the platycodin D content has no significant different along with different density, afterward the platycodin D content increased obviously along with the increasing density, thereinto the M2 treatment is higher than the M1 treatment. When harvest, the platycodin D output per hectare increased obviously along with the increasing density.
     4 Effect of density on mechanisms of physiology of forming yield and quality in Platycodon grangdiflorum (Jacp.)A.DC
     The absorbing of the nitrogen, phosphorus, potassium in Platycodon grandiflorum individual plant decreased along with the increasing density, the absorbing under the M2 treatment is higher than the M3 treatment. Seeing from the nitrogen absorption, in growth prophase, the distribution of nitrogen in various organs of Platycodon grangdiflorum has no significant different in different density. In growth anaphase, the distribution of nitrogen in root increased along with the increasing density, thereinto the distribution under the M2 treatment is slightly higher than the M1 treatment; The distribution of nitrogen in each over ground organ decreased along with the increasing density, thereinto, the distribution of nitrogen in fruit is highest under the lowest and the highest density, the difference in different density is remarkable. Seeing from the phosphorus absorption, the distribution of phosphorus in the root increased along with the increasing density. The distribution of phosphorus in the various over ground organs decreased along with the increasing density, the difference in different density is remarkable. Seeing from the potassium element absorption, the distribution of the potassium in the root and leaf increased obviously along with the increasing density, thereinto, the distribution in the leaf under the M2 treatment is higher than M1 treatment. And the distribution in the stem and fruit decreased obviously along with the increasing density.
引文
[1]陈际型.钾素营养对水稻根系生长和养分吸收的影响[J].土壤学报,1992(2):14-18
    [2]陈兴福.栽培技术研究是中药材规范化生产的关键.中药研究与信息,2001, 3(1): 18-21
    [3]陈震,张丽萍.桔梗扦插繁殖试验[J].时珍国药研究,1997,8(6):549-550
    [4]程惠珍.中药现代化与药用植物栽培[J].世界科学技术,1999,01:28-29
    [5]方加龙,郭雪冰,陈雄鹰.栽培密度和施氮水平对萝卜产量的影响试验[J].福建农业科学,2003,(4):29-30
    [6]傅大煦等.中药材GAP与上海医药产业发展[J].上海医药,2004,25(5):201-202
    [7]高文远等.略论21世纪的药用植物栽培研究[J].中国中药杂志,2003,25(3):133-135
    [8]高郁芳,孙立晨,魏书琴,等.不同除草剂在桔梗直播田的除草效果[J].特产研究,2002,24(2):31-32
    [9]高郁芳,孙立晨.几种除草剂防除桔梗田杂草[J].植物保护,2002,28(3):56-57
    [10]郭巧生,赵荣梅,董其亭,等.不同贮藏方法对桔梗种子生命力影响的初步研究[J].中国中药杂志,2007,23(14):1465-1467
    [11]郭巧生,赵荣梅,刘丽,等.桔梗种子发芽特性的研究[J].中国中药杂志, 2006,31(11):879-881
    [12]国家药典委员会.中华人民共和国药典:一部[Z].北京:化学工业出版社,2005.196
    [13]胡笃敬,董伍之,葛旦之.植物钾营养的理论与实践[M] .长沙:湖南科学出版社,1993,10-20
    [14]黄家总,邱明珠,傅家瑞,等.贮藏条件对益母草、桔梗和白术种子发芽率的影响[J].热带亚热带植物学报,2000,8(4):365-368
    [15]黄璐琦等.当前我国药用植物资源开发利用研究中几个问题的探讨[J].中国中药杂志,1999,24(2):70-73
    [16]黄祥童,杨野,胡学友,等.桔梗切根快速繁殖研究初报[J].吉林林业科技,1997,(1):13-15
    [17]纪田胜子.强制土壤通气对生长的影响[J].生药学杂志,1990,44(2):88-94
    [18]贾树帜,贾淑华,桔梗最佳采收期实验研究[J].中医药学报,1997,25(4):35-35
    [19]江苏新医学院.中药大辞典[M].上海:上海科技出版社,1977:1775
    [20]蒋德安等.低钾条件对水稻源叶同化物输出的障碍[J].植物生理学报,1994,20(2):137-141
    [21]矫艳春.桔梗资源的开发利用[J].人参研究,2000,12(2):21- 23
    [22]李洪刚,杜秉祥,梁效渊,等.桔梗种子催芽方法试验结果[J].农业与科技,1996(1):10
    [23]李洪刚,杜秉祥,沈国繁,等.桔梗种子不同播种日期试验结果[J].农业与技术,1996(1):11
    [24]李见云,介晓磊,谭金芳,等.施钾对不同小麦品种氮素、磷素吸收利用的影响[J].土壤通报,2004,35(2):191-194
    [25]李莲花,李虎林,李云善,等.桔梗营养生长期N、P、K含量的变化[J].延边大学农学学报,2003,25(3):159-162
    [26]刘昌林.痰咳净喷雾剂质量标准的研究[J].中成药,1999, 21(9):455-457
    [27]刘文婷,梁宗锁.栽植密度对丹参产量和有效成分含量的影响[J].现代中药研究与实践,2003,17(4):14-17
    [28]刘芸,朱利泉,龙云,等.钾对番红花球茎膨大的促进效应[J]植物营养与肥料学报,2004,10(1):96-100
    [29]马小军等.我国药用植物栽培研究的发展与展望[J].中国中药杂志,1999,19(7):398-399
    [30]马宗斌,李伶俐,谢德意,等.盛铃期施钾对棉花光合特性及产量的影响[J].河南农业大学学报,2006,40(1):22-26
    [31]毛忠良,姚悦梅,潘耀平,等.桔梗的采种栽培技术[J].西南园艺,2001,29(3):38
    [32]任德权,周荣汉.中药材生产质量管理规范(GAP)实施指南.北京:中国农业出版社,2003
    [33]史春余,王振林,赵秉强,等.钾营养对甘薯某些生理特性和产量形成的影响[J].植物营养与肥料学报,2002,8(1):81-85
    [34]宋春凤,徐坤.氮钾配施对芋头产量和品质的影响[J].植物营养与肥料学报,2004,10(2):167-170
    [35]宋春凤,徐坤.芋对氮磷钾吸收分配规律的研究[J] .植物营养与肥料学报,2004,10(4):403-406
    [36]孙立晨,高郁芳,刘萍,等.移栽桔梗田除草剂筛选试验[J].特产研究,2001,23(2):38-39
    [37]孙志蓉,翟明普,王文全,等.密度对甘草苗生长及甘草酸含量的影响[J].中国中药杂志,2007,32(21):2222-2226
    [38]王进旗,张艾,刘阳林,登.实施GAP中药材规范化种植的对策和建议.世界科学技术—中医药现代化,2005 7(4): 73-77
    [39]王俊杰等.内蒙古药用植物栽培生产中存在的问题与对策[J].内蒙古农业科技,1998,增刊:129-131
    [40]王文颇,李彦生,周印富.牛膝在不同种植密度下的生长动态规律[J].中国中药杂志,2005,30(14):1069-1072
    [41]王旭东,于振文.钾对小麦旗叶蔗糖和子粒淀粉积累的影响[J].植物生态学报,2003,27(2):196-201
    [42]王岳峰,胡国宣,王艳秋,等.桔梗种子发芽率的研究[J].中国野生植物资源,1995(2):61-62
    [43]王振林,贺明荣,尹燕杆,等.晚播小麦灌浆期光合物质同化、分配及群体调节的效应[J].作物学报,1997,23(3):257-262
    [44]魏尚洲.桔梗资源利用的综合开发利用[J].陕西科技大学学报,2005,23(5):141-143
    [45]徐宝军,郑毅男,王永奇.桔梗的酪氨酸酶抑制活性成分研究[J].药学实践杂志,2000, 18(5):356
    [46]杨继祥主编.药用植物栽培学[M].北京:农业出版社,1993
    [47]杨美全,曾维群,罗建,等.桔梗种子生物学特性研究[J].基层中药杂志,1994,8(1):16-17
    [48]杨明宏,卢进,向赤忠,等.土壤环境质量与中药材GAP.中国中药杂志,2001, 26(8):514-516
    [49]易思荣,黄娅,肖中,等.中药材研究现状与发展对策.中国现代中药,2006 8(5):4-7
    [50]于漱琦.桔梗早春烂根原因与预防的研究[J].农业与技术,1998,18(2):22-24
    [51]于振文,岳寿松,沈成国,等.不同密度对冬小麦开花后叶片衰老和粒重的影响[J].作物学报,1995,21(4)412-418
    [52]于振文,张炜等.钾营养对小麦光合作用和衰老的影响[J].作物学报,1996,22(3):305-312
    [53]俞旭平,盛束军,王志安,等.种衣剂处理对桔梗种子田间发芽率的影响[J].中国中药杂志,2001,26 (7):495-496
    [54]张吉旺,胡昌浩,王空军,等.种植密度对全株玉米饲用营养价值的影响[J].中国农业科学,2005,38(6):1126-1131
    [55]张吉旺,王空军,胡昌浩,等.种植密度对玉米饲用营养价值的影响[J].杂粮作物,2000,20(5):29-31
    [56]张玲,王德群.安徽省枯梗科药用植物资源调查[J].安徽中医学院学报,2003, 22(6): 48
    [57]张树臣,杨晓静.白花桔梗皂苷与紫花桔梗的药理作用的比较[J].中成药研究,1984, (2) : 37
    [58]张旺锋,王振林,余松烈,等.种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响[J].植物生态字报,2004,28(2):164-171
    [59]张永丽,于振文,工东,等.不同密度对冬小麦品质和产量的影响[J].山东农业科学,2004,(5):29-30
    [60]张忠民,谢柏龄,张远义,等.桔梗田杂草化学防除试验研[J].陕西农业科学,2002,(10):7-9
    [61]赵会杰,邹琦,郭大财,等.密度和追肥时期对大穗型小麦14C-同化作用及其分配的调控效应[J].核农学报,17(1):67-72
    [62]赵会杰,邹琦,郭天财,等.密度和追肥时期对重穗型冬小麦品种L906群体辐射和光合特性的调控效应[J].作物学报,2002,28(2):270-277
    [63]赵兴,贺福根.桔梗施肥量及叶枯病防治研究[J].中国林业特产,2004,(4):37-38
    [64]赵玉臣,严红.钾营养对大豆氮钾代谢与优质高产效应的研究[J].东北农学院学报,1991,22(1):1-7
    [65]赵玉伦.草幕及桔梗田药剂除草试验[J].新农业,2000,(6):43-44
    [66]郑红丽,召金旺,樊明寿,等.种植密度对甜菜同化物质分配的影响[J].中国甜菜糖业,2003(2):1-3
    [67]中国21世纪议程管理中心.中药材规范化种植研究进展情况.中药材规范化种植研究研讨会论文集,杭州,2004, 1-9
    [68]中国农业科学院土壤肥料研究所主编.《中国肥料》.上海科学技术出版社,1994,266-268
    [69]周春玲,赵九洲,陈洁敏,等.种植密度与施肥水平对日本黄菊产量的影响.中南林学院学报,2003,23(5):101-102
    [70]周可金,马成泽,许承保,等.施钾对花生养分吸收、产量与效益的影响[J].应用生态学报,2003,14(11):1917-1920
    [71]朱丹妮,舒娈,郅慧,等.HPLC- ELSD法测定桔梗中桔梗皂苷D的含量[J].植物资源与环境学报2001, 10(4): 11- 13
    [72]朱广慧,万开军.稀土对桔梗种子发芽率的影响[J].信阳农专学报,1996,6(4):1-4
    [73] Ahn J C, Hwang B, Tada H, et al. Polyacetylenes in hairy roots of Platycodon grandiflorum[J] . Phytochemistry, 1996, 42(1):69-72
    [74] Ajayi O., Maynard D. N. and Barker A.V. The effect of potassium on ammonium nutrition of tomato [Lycopersicon esculentum Mill.]. Agron.J.1970,62:818-821
    [75] Amstrong M J,Kirkby E A,Estimation of potassium recirculation in tomato plants by comparison of the rates of potassium and calcium accumulation in the tops with their fluxes in the xylem stream[J],Plant Physoil ,1979,63:1143-1148
    [76] Arai I, Komatsu Y, Hirai Y, et al. Stimulative effects of saponin from kikyo-to, a Japanese herbal medicine, on pancreatic exocrine secretion of conscious rats[J]. Planta Med, 1997, 63: 5419- 5424
    [77] Choi C Y, Kim J Y, Kim Y S, et al. Augmentation of macrophage functions by an aqueous extract isolated from Platycodon grandiflorum[J].Cancer Lett, 2001, 166(1):17-25
    [78] Choi S S, Han E J, Lee T H, et al. Antinociceptive profiles of platycodin D in the mouse[J] . Am J Chin Med, 2004, 32(2):257-268
    [79] Dijkshooorn W. Nitrate accumulation,nitrogen balance and cation-anion ratio duringthe regrowth of perennial ryegrass[J] Neth. J . Agric.Sci.,1958,(6):211-221
    [80] Ding C J, Wei Y C, An Z Y. Analysis on essital oils of Platycodon grandiflorum[J] . Acta Baiqiuen Med Univ, 1996, 22(5):471-477
    [81] Gao Y F, Chen C, Zhang H X, et al. Effects of Platycodon grandiflorum feeding on rats with diet-induced hyperlipidemia[J] . Trad Chin Med Materials, 2000,(10):46- 47
    [82] Geiger D R,ContiT R.Relation of increasing Potassinum nutrition to photosynthesis and translocation of carbon[J] .Plant Plysiol,1983,71:141-144
    [83] Inada A, Murata H, Somekawa M,et al. Phytochemical studies of seeds of medicinal plants 11. A new dihydroflavonol glycoside and a new 3-methyl-1-butanol glycoside from seeds of Platycodon grandiflorum A DECANDOLLE[J]. Chem Pharm Bull, 1992, 40(11):3081-3083
    [84] Keles Y,Oncel I. Response of antioxidative defence system to temperateure and water stress combination in wheat seedling[J].Plant Science,2002,163(4):783-790
    [85] Kim K S, Seo E K, Lee Y C, et al. Effect of dietary Platycodon grandiflorum on the improvement of insulin resistance in obese Zucker rats [J] . The Journal of Nutritional Biochemistry, 2000, 11(9):420- 424
    [86] Kim Y P, Lee E B, Kim S Y, et al. Ohuchi K Inhibition of prostaglandin E2 produc;tion by platycodin D isolated from the root of Plactycodon grandiflorum[J]. Planta M ed, 2001, 67(4):362-364
    [87] Lee J H, Choi Y H, Kang H S, et al. An aqueous extract of platycodi radix inhibits LPS-induced NF-kappa B nuclear translocation in human cultured airway epithelial cells[J] . Int J Mol Med, 2004, 13(6):843-847
    [88] Lee JY, Yoon JW,K ini C T,et al. Antioxidant activity of phenylpropanoid esters isolated and identified from Platycodon grandiflorum A. DC.[J] . Phytochem, 2004, 65(22):3033-3039
    [89] Lee JY,Hwang WI, Lim ST. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A.De candolle roots[J].J Ethnopharmacol,2004, 93( 2- 3):409
    [90] Lee JY,Yoon JW, Kim CT,et al. Antioxidant activity of phenylpropanoid estersisolated and identified from Platyeodon grandiflorum A.DC [J]. Phytochemistry,2004, 65( 22):3 033.
    [91] Lee K J, Jeong H G. Protective effect of platycodi radix on carbon tetrachloride-indrced hepaatotoxicity[J].Food Chem Toxicol,2002, 40( 4):517
    [92] Lee KJ, Choi CY, Chung YC, et al. Protective effect of saponins derived from roots of Platycodon grandiflorum ontert-butyl hydroperoxide-induced oxidative hepatotoxicity[J]. Toxicol Lett,2004, 147( 3):271
    [93] Lee KJ, Kim JY, Jung KS, et al. Suppressive effects of Platycodon grandiflorum on the progress of carbon tetrachloride-induced hepatic fibrosis[J]. Arch Pharm Res,2004, 27(12):1 238
    [94] Lee KJ, You HJ, Park SJ, et al. Hepatoprotectivefects of Platycodon grandiflorum on acetaminophen-inducedliver damage in mice[J]. Cancer Lett, 2001, 174(1):73
    [95] M azol I, Glensk M,Cisowski W. Polyphenolic compounds from Platycodon grandiflorum A. DC[J]. Acta Pol Pharm, 2004, 61(3):203-208
    [96] Park D I, Lee J H, Moon S K, et al. Induction of apoptosis and inhibition of telomerase activity by aqueous extract from Platycodon grandiflorum in human lung carcinoma cells[J] . Pharmacological Research, 2005,(51):437-443
    [97] Qi S Y. Studies on the mineral component of Platycodon grandiflorum and Panadix ginseng[J] . Overseas Special Economic Animal and Plant, 1992,(4):40-45
    [98] Shin C Y, Lee W J, Lee E B, et al. Platycodin D and D3 increase airway mucin release in vivo and in vitro in rats and hamsters[J]. Planta Med, 2002, 68(3):221-225
    [99] Tada H, Shimomura K, Ishimaru K. Polyacetylenes in Platycodon grandiflorum hairy root and campanulaceons plants[J] . Journal of Plant Physiology, 1995,145 (1-2):7- 10
    [100] Toshio G, Tadao K, Hirotoshi T,et al. Structure of platyconin, a diacylated anthocyanin isolated from the chinese bell-flower Platycodon grandiflorum[J].Tetrahedron Letters, 1983, 24(21):2181-2184
    [101] Wang C, Schuller Levis G B, Lee E B, et al. Platycodin D and D3 isolated from the root of Platycodon grandiflorum modulate the production of nitric oxide andsecretion of TNF-αin activated RAW 264.7 cells[J]. International Immunopharmacology, 2004, 4(8):1039-1049
    [102] Zhao S C, Fu L, Liu M L, et al. Determination on the nutrition component of Platycodon grandiflorum etc tree kinds of Plants[J] . Food Sci, 1994,(4):47-49
    [103] Zheng Y N, Liu K Y, Xu J B, et al. Studies on the anti-adiposity mechanism of Platycodon grandiflorum [J] . Acta Jiling Agri Univ, 2002,(6):46- 50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700