生物柴油用固体催化剂制备试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,国际原油价格持续上涨,燃油供应紧张,对我国经济建设产生较大影响,因此,液体代用燃料的研究得到广泛开展。
     生物柴油是以天然植物、动物油脂和短链醇进行酯交换反应得到的环境友好的替代液体燃料,其成分是多种脂肪酸甲酯的混合物,具有可再生、可替代、无毒、可生物降解等优点。许多研究表明,生物柴油的特性非常接近柴油燃料,因此,柴油机无需或稍作改进,就可以直接使用生物柴油作为燃料。
     固体酸(碱)指能够化学吸附碱(酸)的固体,定义为能够给出(接受)质子或接受(给出)电子对的固体,采用固体酸碱催化酯交换反应可以有效避免传统均相酸碱催化酯交换工艺中存在的产品分离困难和废催化剂的二次污染问题,研究非均相固体碱催化剂、酯交换反应过程对生物柴油的生产技术进步和应用推广,尤其是对正在兴起的中国生物柴油产业具有重要的意义。
     固体碱非均相催化生产生物柴油是一种新型的生产工艺,国内未发现规模化生产的报道。本课题首先从制备高活性、高选择性的固体碱催化剂出发,然后分析该催化剂中毒、失活的原因,从而探索提高固体碱稳定性、增加固体碱重复使用次数的新途径。本文对固体碱Cs2O/γ-Al2O3催化剂制备、使用及失活和重复使用性能进行了较深入的研究,并取得了阶段性的结论和成果。主要包括以下几个方面:
     1.本文对四种铯的化合物(Cs2CO3, CsC2H3O2, CsNO3和CsCl)负载制备固体碱催化剂进行了研究,考察了不同载体对催化剂性能的影响,发现以Cs2CO3、CsC2H3O2作为催化剂前躯体,以γ-Al2O3和CaO、MgO作为载体,均能制备出固体超强碱。通过试验研究,选取Cs2CO3作为前躯体,γ-Al2O3作为载体制备固体催化剂最合适。该催化剂制备方法简单,碱强度大。使用水做浸渍溶剂,在N_2气氛下煅烧获得Cs_2O/γ-Al_2O_3催化剂,其碱强度Hammett值大于37,采用相同方法,比使用K、Na、Ca元素制备的催化剂碱强度高。
     2.采用比表面积、X射线衍射、X射线荧光和红外吸收光谱等对Cs_2O/γ-Al_2O_3催化剂进行表征,证明在反应中起着重要作用的催化活性物质是负载在载体上的Cs2O,所制备的固体碱存在三个碱性中心。
     3.使用负载量为2.5mmol/g的Cs_2O/γ- Al_2O_3固体碱催化剂催化菜籽油与甲醇进行酯交换反应,最高酯交换率为95.5%;催化牛油与甲醇进行酯交换反应,最高酯交换率为93.7%;使用纳米γ-Al_2O_3作载体时,负载量可以达到4 mmol/g,在催化菜籽油与甲醇进行酯交换反应时,可以减少甲醇的使用量,缩短反应时间,酯交换率达到98.5%以上,80%以上的转化率可以重复使用10次以上。
     4.对催化剂中毒、失活的原因进行了试验研究,提出在氮气条件下重新煅烧是恢复中毒催化剂活性的有效方法;补充催化剂的活性组分是使失活催化剂恢复活性的有效方法。
Currently, the research on alternative liquid fuel has been carried out extensively as a result of rising price of international crude oil and tension of oil supply, which will bring great effects on our country’s economy construction.
     Biodiesel, a mixture of methyl esters of fatty acids, is an environment-friendly transportation fuel produced by transesterification reaction of vegetable oils or animal fat with a short-chain alcohol in the presence of catalyst. Biodiesel is a renewable, alternative, non-toxic and biodegradable diesel fuel. Many studies have shown that the properties of biodiesel are very close to diesel fuel. Therefore, biodiesel can be used in diesel engines with little or no modification.
     Solid acid (base) refers to solids that can adsorb base (acid), or be defined as solids that give (accept) proton or accept (give) electron. The transesterification reactions catalyzed by solid base may avoid the problems in traditional homogeneous acid/base catalyzing process that the separation of transesterification products with used catalyst is very difficult and discharge of waste catalyst induces environmental problems, it is meaningful for both the production and application of biodiesel, especially for the rising biodiesel industry to study heterogeneous base catalysts and transesterification process.
     Biodiesel production using heterogeneous base catalyst is a new process, which is little reported home and abroad. The purpose of this paper is to prepare highly-activated and highly-selective solid alkali catalyst and explore new methods of increasing stability and reusable times of solid base by analyzing the reason for which catalysts lost activity and got toxic.
     The preparation, application and reutilization of Cs2O/γ-Al2O3 catalyst were investigated in this paper. The main results are as follows:
     1. The preparation of solid base catalysts with four kinds of compounds based on cesium of Cs_2CO_3, CsC_2H_3O_2, CsNO_3 and CsCl and the effects of different kinds of supports on performance of catalysts were studied. The results show that solid super-base catalysts can be prepared with Cs_2CO_3 or CsC_2H_3O_2 loading onγ-Al_2O_3, CaO and MgO. It is the most suitable for preparation of catalysts to select Cs2CO3 as precursor andγ-Al_2O_3 as support due to simplicity of preparation technology and high base strength. Cs_2O/γ-Al_2O_3 catalyst, prepared by immersing Cs_2CO_3 into water, then loading onγ-Al_2O_3, finally calcining in nitrogen atmosphere, whose Hammett value is more than 37, which is higher than those of catalysts prepared with potassium, sodium and calcium under the same conditions.
     2. Cs2O/γ-Al2O3 catalyst was characterized by BET, XRD, XRF and FTIR. The results suggest that significant catalytic activity substance is Cs_2O dispersing over the support and prepared solid base has three alkali centers.
     3.The highest transesterification rate of 95.5% was obtained in ester-exchange reactions of rapeseed oil and methanol catalyzed by Cs_2O/γ- Al_2O_3 solid base whose loading amount was 2.5mmol/g, and the transesterification rate amounted to 93.7% in catalyzing ester-exchange reactions of tallow and methanol with the catalyst. The loading amount of 4 mmol/g could be achieved when using nano-γ-Al2O3 as support and the less methanol dosage, the shorter reaction time and 98.5% transesterification rate could be obtained in catalyzing ester-exchange reactions of rapeseed oil and methanol, and the transesterification rate was over 80% when this catalyst was used more than ten times.
     4. The reasons for toxicosis and loss of activity of catalyst were investigated. It’s suggested that the effective detoxifcation method is to calcine toxic catalyst again in nitrogen atmosphere and the method of resuming activity of catalyst is to supply activated components.
引文
[1]生物柴油[J].天津科技,2004,2:63
    [2] Culshaw F.A..The Potential of Biodiesel from oilseed rape[J].JMmecb E,Part A.Journal of Power and Energy,1993.
    [3] Kevin J Harrington. Chemical and Physical Properties of Vegetable Oil Esters and their Effect on Diesel Fuel Performance.Biomass,1996,9:1
    [4] A lsigisur,etal .Methyl Ester from Safflower 0il of Turkish origin as a Biofuel for Diesel Engine.APPI.Biochem.&Biotech.,1994,45/46(1):103.
    [5] A lsigisur,eta1.Performance and Emission Characteristics of a Diesel Engine Operating on a Safflower Seed 0il Methyl Ester. Apply. Biochem. & Biotech.,1994,45/46〔1〕: 93
    [6]黄忠水,生物柴油的理化特性及其燃烧排放特性研究[D]. 2004,03
    [7] M.P.Dorado,E.Ballesteros,J.M .Amal,et al. Exhauste missions from a Diesel engine fueled with transesterified waste olive oil .Fuel.2003.82:1311-1315
    [8] A. Munack, O.Schroder, J.Krahl, et al. Comparison of relevant exhaust gas emissions form biodiesel and fossil diesel fuel. Proceedings of the XIV MemorialCIGR World Congress.2000
    [9] Axel Munack,J.Krahl,Hendrik Stein,et al .Comparisonof Diferent Fossil Diesel Fuels and Biodiesel with Respect to Gaseous and Particle Emissions. ASAE Annual Meeting.2003
    [10] 2005《国际能源展望----未来国际能源市场分析与预测(至2025年)》,2006
    [11]美国能源署(IEO2005),2005年全球能源资源预测报告[M],2006.6
    [12]张百良,宋华民.生物能源发展及科技创新机遇[J].农业工程学报
    [13]张培栋,王刚,中国农村户用沼气工程建设对减排CO2、SO2的贡献——分析与预测[J].农业工程学报,2005,21(12):147-151.
    [14]安玉彬等.二十一世纪中国能源发展的总趋势.能源工程,1999(1)1
    [15]于凤文等,生物柴油的现状和发展方向,能源环境保护,2003.6
    [16] Yusuf Ali,et al.Alternative Diesel Fue1s from Vegetab1e 0i1.Bioresource Techno.,1994,50:153.
    [17]沈同,王镜岩主编.生物化学,高等教育出版社,1990年第二版
    [18]徐桂转等,生物柴油的研究和进展[J].华中农业大学学报,2005年第24卷第6期
    [19]间歇及连续式固定化酶反应生产生物柴油,谭天伟等,北京化工大学,《生物加工过程》,2005年月
    [20]非水相脂肪酸催化大豆油脂合成生物柴油的研究,徐圆圆,刘德华,《现代化工》2003年
    [21]固定化脂酶催化合成生物柴油的研究,邬国英等,中国油脂》,2004年第29卷第8期
    [22] D.KUSDIANA,S.SAKA.Kinetics of transesterification in rapeseed oil to biodiesel fuel as treaed in supercritical methanol[J]. Fuel,2001,80:693-698.
    [23] Ayhan Demirbas,Biodiesel from vegetable oils via transesterification in supercritical methanol[J],Energy Conversion and Management,2002,43,2349-2356.
    [24] Demirbas A,Biodiesel from vegetable oils via transesterification in supercritical methanol.Energy Convers Manage,2002,43,2349-2356
    [25]肖建华,王存文,吴元欣等.生物柴油的超临界制备工艺研究[J].中国油脂,2005,30(12):57-60
    [26]邵媛,邓宇.离子液体的应用研究进展[J].精细化工中间体,2005,35(6):15-18
    [27]李浩南,钟耕,张彩等.离子液体技术在食品工业中的应用[J].食品科技,2007,6:9-12
    [28]曹宏远,曹维良,张敬畅.固体酸Zr( SO4)2·4H2O催化制备生物柴油[J].北京化工大学学报,2005年第32卷第6期
    [29]陈和,王金福.固体酸催化棉籽油酯交换制备生物柴油[J].过程工程学报,2006年第6卷第4期
    [30] Jaturong Jitputtia,Bonyarach Kitiyanana,Pmmoch Rangsunvigita,Kun-chana Bunyakiata,Lalita Attanathob,Pcesamsi envanitpanjakulb.Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts [J].Chemical Engineering Journal 116 (2006):61-66.
    [31] Sercheli R,Matheus R.Schuchardt U.AIkylguanidine-catalyzed heterogeneous transesterification of soybean oil [J]. JAOCS, l999,76(10):1207一l210.
    [32]徐广辉,曹猛,马俊林等.季铵碱催化剂在合成生物柴油中的应用[J].可再生能源,2007年第23卷第2期
    [33] Peterson G R,Scarrah W P.JAOCS,1984,61(10):1593~1596
    [34]崔士贞,刘纯山.固体碱催化大豆油酯交换反应的研究[J].工业催化,2005,(7):32~35
    [35]曹书勤,钟明,石君辉.负载型固体碱催化制备生物柴油的研究[J].信阳师范学院学报,2007,20(3):331-334
    [36] Xie W enlei,Peng Hong,Chen Ligong.Transesterification of soy—bean oil catalyzed by potassium loaded on alumina as a solid—base catalyst[J].Applied Catalysis A,General,2006,300(1):67-74.
    [37] ak-Joo Kim,Bo- Kang,Min—Ju Kim,et al. Transesterific-ation of vegetable oil to biodiesel using heterogeneous base catalyst[J] Catalysis Today 2004,93:315--320
    [38]王广欣,颜妹丽,周重文等.用于生物柴油的钙镁催化剂的制备及其活性评价[J].中国油脂,2005,(10):66~69
    [39] Wenlei Xie.Xiaoming Huang.Syn thesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst [J].Catalysis Letters,2006,l07(I一2):53—59.
    [40] Jitputti,Jaturong,Kitiyan an,et a1.Transesterification of crude palm kernel oil and crude coconut oil by diferent solid catalysts [J].ChemicalEngineering Journal,2006,Il6(1):61-66.
    [41]孟鑫,辛忠.KF/CaO催化剂催化大豆油酯交换反应制备生物柴油[J].石油化工,2005,34:382-386.
    [42]刘兴泉,贾朝霞,吴玉塘等.负载型碱催化剂的制备及其在酯交换和醇、胺羰化反应中的应用[J].催化学报,2000,21(6):585-583
    [43] Galen Suppes,Mohanprasad A Dasari,Eric J Dosoeil,et al.Transesterification of soybean oil with zeolite and metal catalysts [J]. Applied Catalysis A:General ,2004,257(2):214 - 223
    [44]吕亮,段雪,李峰等.固体碱催化酯交换反应的研究[J].中国皮革,2002,31(170):25-28
    [45]李为民,郑晓林,徐春明等.固体碱法制备生物柴油及其性能[J].化工学报,2005,56(4):71l一7l6.
    [46]吴玉秀,李永丹,张全忠等.用于菜籽油酯交换过程的Mg—Al复合氧化物催化剂[J].石油化工,2003,32(19):800—804
    [47]仲鸣,周金能,肖国民.制备生物柴油的固体催化剂研究进展[J].化工时代,2007,21(1):60-63
    [48]陈文伟,高荫榆,林向阳等.磁性固体催化剂催化制备生物柴油的研究[J].福建农林科技,2006,33(3):10-13
    [49]朱华平,吴宗斌,陈元雄等.固体超强碱氧化钙催化制备生物柴油及其精制工艺[J].催化学报,2006,27(5):391-396
    [40]谢文磊.强碱阴离子交换树脂多相催化油脂的酯交换[J].应用化学,2001,l8(10):846—848.
    [51]阎杰.几种固体催化剂催化油脂与甲醇酯交换反应性能的比较[J].粮油加工,2005,8:47-49.
    [52]徐广辉,曹猛,马俊林等.季铵碱催化剂在合成生物柴油中的应用[J].可再生能源,2007,25(2):34-36
    [53] Sercheli R,Matheus R,Schuchardt U.Alkylguanidine-catalyzed heterogeneous transesterification of soybean oil [J].JAOCS,l999,76(10):1207一l210.
    [54] Schuchardt U,Vargas R.M ,Gelbard G.Transesterification of soybean oil catalyz ed by alkyIguanidines heterogenized on diferent substituted polystyrenes[J]].Journal of Molecular Catalysis,l996,99:37—34.
    [55] Bancquarts, Vanhove C, Pouilloux Y, et al Glycerol transesterification with methyl stearate over solid basic catalysts I.Relationship between activity and basicity[J]. Applied Catalysis A, General, 2001, 218: 1-11.
    [56] Jitputtijj, Kitiyananb, Rangsunvigitp, et al Transesterification ofcrude palm kerneloiland crude coconutoilby differentsolid catalysts [J]. Chemical Engineering Journal 2006, 116: 61-66.
    [57] Karmee SK, Chadha A. Preparation of biodiesel from crude oil of Pongamia pinnata[J]. Bioresource Technology, 2005, 96: 1425-1429.
    [58]服部英,角野由美子.有机合成化学,1984,42(1):21.
    [59]田部浩三.固体酸碱及其催化性质[M].北京:化学工业出版社,1979.
    [60]邹长军,张丽颖,姚伟宁.超强碱催化剂碱强度(H->37)的指示剂测定法[J].分析实验室,2005,24(2): 73-75
    [61]金胜明,董鸿昌.复杂酸碱滴定体系可检验性判别的通用方法[J].浙江工学院学报,1993,2(59):30-43.
    [62]赵雷洪,郑小明,费金华.稀土氧化物固体碱催化剂的表面性质[J].催化学报,1996,17(3):227-231.
    [63]赵雷洪,郑小明.稀土氧化物固体碱催化性质的研究[J].石油化工,199,26(3):147-151.
    [64] H Hattori.Heterogeneous basic catalysis[J].ChemRev,1995,95(3):537-558.
    [65] K mkutu,H Kabashima,T Seki,et al.Nitroaldol re.action over solid base catalysts[J].Appl Catal A:Gener.al,2003,247(1):65-74.
    [66]李向召,江琦.固体碱催化剂研究进展[J].天然气化工,2005,30(1):42-45.
    [67]《实用化学手册编写组》.实用化学手册[M].北京:科学出版社.2003:152
    [68]张霜华.浅谈拓展我国铷铯的应用领域[J].新疆有色金属,1998,2
    [69]耿春雨.重稀碱金属铯化合物的合成_表征及热力学性质研究[D].西安:陕西师范大学.2007
    [70] C. T. Williams Tantalum Mining Carp,铯和铯化合物[J].新疆有色金属,1995,3:57-60.
    [71]段新方,张站斌.铯盐促进的有机反应[J].有机化学,2006,26(4):573-578.
    [72] Federica Prinetto,Giovanna Ghiotti.Investigation of acid-base properties of catalysts obtained from layered double hydroxides[J]. J.Phys.Chem.B,2000,104,11117-11126
    [73]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社.2003,7-36
    [74]张继光.催化剂制备过程技术[M].北京:中国石化出版社,2004:106-107
    [75]刘维桥,孙桂大编著.固体催化剂实用研究方法[M].北京:中国石化出版社.2000.
    [76]黄仲涛,耿建铭.工业催化[M].化学工业出版社,2006.69
    [77]刘预知编著.无机物质理化性质及重要反应方程式手册[M].成都:成都科技大学出版社.1993.
    [78]王广欣.用于生物柴油的非均相催化剂的研究[D].成都:四川大学。2005
    [79]辛勤主编.固体催化剂研究方法[M].北京:科学出版社.2004.
    [80]伊元根.多相催化剂的研究方法[M].北京:化学工业出版社.1988,134-236.
    [81]田碧丹.负载型纳米催化剂KF/Al2O3的制备及其应用研究[D].南京:南京工业大学.2004
    [82] Ando T,Brown S G,Clark G H,et al.Alumina-aupported Fluoride Reagents for Organic Synthesis:Optimisation of Reagent Preparation and Elucidation of the Active Species[J]. J. Chem. Soc. PERKIN Trans.Ⅱ,1986,1133-1139.
    [83]陈洁编著.油脂化学[M].北京:化学工业出版社,2004.
    [84]何东平编著.油脂精炼及加工工艺学.北京:化学工业出版社,2004.
    [85]徐桂转.脂肪酶催化植物油制取生物柴油的研究[D].郑州:河南农业大学,2006
    [86]沈同,王镜岩主编.生物化学,上册高等教育出版社,第二版,1990:232-239
    [87]毕艳兰主编.油脂化学[D].北京:化学工业出版社,2005.
    [88]何东平主编.油脂化学[D].北京:化学工业出版社,2005.
    [89] Eckey,E.W.,Esterification and interesterification[J].JAOCS.1956,33,575-579
    [90]田部浩三,御圜生成,小野嘉夫等,新固体酸和碱及其催化作用[M].北京化学工业出版社1992.32
    [91] Davis R J,Doskoci E J,Bordawekar S. Structure/function relationships for basic zeolite catalysts containing occluded alkali species[J].Catal Today,200,62:241--247
    [92]张继光.催化剂制备过程技术[M].北京:中国石化出版社,2004:106-107
    [93]李承烈,李贤均等.催化剂失活.北京:化学工业出版社,1989:64-71
    [94]黄仲涛,耿建铭.工业催化[M].化学工业出版社. 2006.24-25
    [95]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社. 2003:9
    [96]田碧丹.负载型纳米催化剂KF/Al2O3的制备及其应用研究[D].南京:南京工业大学. 2004
    [97]《实用化学手册编写组》.实用化学手册[M].北京:科学出版社. 2003:152
    [98]张霜华.浅谈拓展我国铷铯的应用领域[J].新疆有色金属,1998,2
    [99]耿春雨.重稀碱金属铯化合物的合成_表征及热力学性质研究[D].西安:陕西师范大学. 2007
    [100]李爽.银、艳、铀在绵阳某地紫色土中的吸附性能及机理研究[D].成都:成都理工大学. 2007
    [101]储尉农.铷铯及其应用[J].新疆有色金属,1985,1
    [102] Sartori H E. Pharmacol. Biochem. Behav, 1984,21(1suppl): 11-13
    [103] BrewerKA. Pharmacol.Biochem.Behav., 1984,21(1suppl):1-5
    [104] Jose A C, Joseph P P, Bennet I O, et al. Biological Trace Element Research, 2003,94:97-104
    [105] DONG Pu (董普), XIAO Rong-Ge (肖荣阁). Zhongguo Kuangye(China Mining Magazine), 2005,14(2):30-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700