不同杉木无性系对磷胁迫的适应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷素不足是限制目前世界农林业生产的重要因素,传统的农林业生产主要通过施肥和土壤改良来满足植物对磷的需求,很少从提高植物对土壤的磷素利用效率考虑,因此发掘磷高效利用植物来替代传统方法提高磷的利用效率成为当前林业生产中急需解决的重大课题。
     针对目前杉木连栽生产力下降防治研究主要是从改良土壤条件来适应杉木生长、而不是通过选择养分高效利用杉木来适应土壤条件的现实,本研究在对从全国收集到125个杉木无性系及其子代林速生性、耐肥性调查基础上,初选14个不同的杉木无性系,通过土培和水培的磷素胁迫试验,分析测定磷胁迫条件下不同杉木无性系的形态学和生理学指标,比较各指标间的相关性和不同杉木无性系对养分胁迫的生理生态学反应差异,研究不同杉木无性系对磷素胁迫的形态学和生理学响应,寻求杉木无性系通过形态学及生理生化过程适应性改变来调节自身养分吸收的机制,并选择磷高效特异性指标,为高磷素利用效率的杉木无性系的筛选提供科学依据。主要研究结果如下:
     1、对磷素胁迫条件下不同杉木无性系地径、苗高和根冠比等形态学指标的研究结果表明:在磷素胁迫条件下不同杉木无性系的地径和苗高明显下降,但杉木地下部分根冠比变化规律不明显。在磷素胁迫条件下不同杉木无性系形态学指标存在明显差异,其中37、8、24号无性系的形态学指标对磷胁迫不敏感性,在胁迫条件下仍能保持一定的高生长,能够适应缺磷环境下的生长:而3、5、23、34号无性系的形态学指标对磷胁迫比较敏感,在磷素充足时生长良好,但在胁迫条件下生长明显受阻:9号无性系的形态学指标对磷胁迫的敏感性则介于以上两类无性系之间。
     2、对磷素胁迫条件下不同杉木无性系的生理生态学指标的研究结果表明:磷胁迫条件下不同杉木无性系的酸性磷酸酶活性、根系质子分泌量、根系磷离子动力学参数、光合特性等生理生态指标发生了一定变化。磷胁迫引起了杉木无性系根系质子分泌量增加、根际PH值的下降、叶片和根系的酸性磷酸酶活性增强、根系吸收动力学参数中的I_(max)增加、K_m和C_(min)下降、叶片叶绿索含量下降、光合速率降低、呼吸速率增加、CO_2补偿点增高。
    
     否网誉本无丝圣塑塑些鲤垫鲤哩鱼__
    3、对磷素胁迫条件下不同杉木无性系的形态和生理生态学指标的相关性研究结果表明:
     磷素胁迫条件下不同杉木无性系形态和生理生.态指标之间存在一定的相关关系,但除
     了根冠比与根际PH下降值之间呈负相关性,苗高与叶绿素之间有显著正相关关系外,
     其它均不明显。生理生态指标中的根际PH下降值与叶片和根际酸性磷酸酶活性呈极
     显著正相关,且相关系数较大,叶片与根际酸性磷酸酶活性之间也存在显著的正相关
     性。说明胁迫条件下,杉木无性系会通过根系酸性物质的分泌和植株酸性磷酸酶活性
     的提高而增强对环境磷素的吸收和再利用能力。
    4、土培磷胁迫的研究结果表明:在磷胁迫条件下不同杉木无性系的生理生态指标变化存
     在明显差异。8、9、24、37号杉木无性系在磷胁迫条件下表现出较强的根际酸化能
     力,随磷胁迫加剧,其叶片与根系的酸性磷酸酶活性显著增强,叶绿素含量下降程度
     变小,这4种无性系对环境缺磷胁迫的适应能力较强,在中低磷的林地上可通过生理
     生态过程的适应性改变来维持杉木对磷的利用;23号和34号无性系在磷胁迫条件下
     根际的PH和APA活性对磷胁迫不敏感,变化较小,随磷胁迫的加剧,其叶绿素含
     量下降明显,这2种无性系对环境缺磷胁迫的适应性较差;而3号、5号无性系生理
     生态指标对磷胁迫的敏感性介于以上两类无性系之间。
    5、对土培条件下杉木无性系干物质积累量、磷索吸收和利用效率之间的相关关系以及影
     响这三项指标的形态、生理学指标进行筛选。研究表明,磷素吸收效率在各处理水平
     与千物质积累量始终呈极显著正相关,植株磷素利用效率在胁迫条件下与根际PH一卜
     降值呈极显著正相关,_巨相关系数较大。因此,干物质积累量能够表明植株磷吸收能
     力的大小,而根际PH下降值则可表征植株磷素利用能力,这两项指标可作为严格而
     可靠的综合评价筛选生理指标。除此之外的其它指标与植株干物质积累量、磷素吸收
     效率和利用效率在某一胁迫阶段呈极显著或显著相关,可作为该胁迫条件下的间接筛
     选指标,但不能作为综合评价筛选因素。
    6、营养液培养磷胁迫的研究结果表明:在磷胁迫条件下不同杉木无性系的生理生态指标
     变化存在明显差异。随磷胁迫程度和胁迫时间的增加,2、8、12、24号无性系的根
     际质子分泌量‘△PH=PH。一PH)迅速增加,酸性磷酸酶活性增强,叶绿素含量下降
     程度变小,这四种无性系对磷胁迫的反应灵敏。而在磷胁迫条件下11、21号无性系
     的根际分泌质子量较低,随胁迫时间的延长.和胁迫程度的加重,其酸性磷酸酶活性表
    
    福建农林大学2004届硕士研究生论文
     现出缓慢增长趋势,叶绿素含量则迅速降低,根系吸磷能力变弱,这两种无性系对环
     境磷胁迫的适应能力较差。13和44号无系性对磷胁迫的反应能力介于以上两类无性
At present, phosphorus has played an important role in agricultural and forestry production limits in all worlds. The traditional agricultural and forestry productions have met plants' phosphorus demands mainly by fertilizing and soil improvement, and have paid less considering in the improvement of plants phosphorus-utilize efficiency. So discover high phosphorus-utilize efficiency plants to substitute the traditional ways to improve the phosphorus-utilize efficiency has become an important task to be settled in currently forestry production.
    For the present status of buffering the soil declining caused by successive planting mainly by the improvement of soil condition to adapting Chinese fir growth, but not by selecting high fertilizer- utilize efficiency Chinese fir to adapting soil condition, this research primary collecting 14different nutritional efficiency genotypes, base on the investigating of fast-growing, fertilizer response of 125 Chinese firs clones and their filial clones, which are collected from whole country. The index of morphological and physiological was studied by pot test and solution culture under low phosphorus stress and compare the physiological response difference of different Chinese fir clones for fertilizer stress. Study the morphological and physiological response of different Chinese fir clones under phosphorus stress, seek the morphological and physiological adaptation mechanisms by which plant regulate the fertilizer absorbing and provide science foundation to the selecting of high phosphorus-utilize efficiency Ch
    inese fir clones. The main results as follows:
    1. The morphological index of DBH , seeding height and dry matter distributing of different Chinese fir clones were studied under phosphorus deficiency stress. The results showed that the aggravation of phosphorus deficiency would lead to the decline of the DBH, seeding height, and the allocation of dry matter to roots have non-obviously increase. The morphological index showed distinct differences between different Chinese fir clones under phosphorus stress. It
    
    
    was found that 37, 8, 24 with the highest productivity under low phosphorus was excellent clones with the least sensitivity to phosphorus supply, which may be adapted in low phosphorus environments, while clones 3 , 5, 23 , 34 were sensed to phosphorus stress, which may grow well under the phosphorus abundant environment and the growth would be obviously affected under stress condition. The morphologic index of No.9 clones showed a medium character between the two types clones.
    2. Compare the physiology-ecological responses of different Chinese fir clones, the results showed that the intensity of activities of acid phosphatase, rhizosphere acidification, P kinetic parameters and the photosynthesis-respiration rate are all changed by phosphorus stress. In stress environment, the intensity of rhizosphere acidification was stronger and PH in rhizosphere was decreased obviously, the activities of acid phosphatase were higher than those under normal P treatment. With the amelioration of phosphorus, the Imax, decreased while Km and Cmm increased in all clones, the chlorophyll contents and photosynthesis rate decreased considerably, and the respiration rate and CO2 compensation points were enhanced responsibly.
    3. The correlation of morphology and physiological ecology indexes of different Chinese fir clones under phosphorus stress were studied. The results showed that the morphology and physiology7 ecological indexes of different Chinese fir clones have certain correlations. Besides the negative correlations of root-hat radio and decline data in rhizosphere PH, the remarkable positive correlation of seedling high and chlorophyll, other indexes didn't show obvious correlations. The physiological ecology indexes of decline data in rhizosphere PH and the activities of acid phosphatase in leaves and in rhizosphere submitted remarkable positive correlation, and the correlation coefficient were higher; there were also remarkable positive correlation in the activities
引文
[1] Lu R·K (鲁如坤). 2003.The phosphorus level of soil and environmental protection of water body. Phosphate Compound Fertil (磷肥与氮肥), 18 (2): 4~6. (in Chinese)
    [2] Kou C·L (寇长林), Wang Q·J (王秋杰), Ren L·X (任丽轩). 1999.The research of morphology differences in phosphorus utilize between wheat and peanut. Chin J Soil Sci (土壤通报). 30(4): 181~184. (in Chinese)
    [3] Buso GS, Bliss FA. 1988. Variability among lettuce cultivars grown at two levels of available phosphorus. Plant and Soil, 111:67-73
    [4] Fist AJ, Smith FW, Edwards DG. 1987. External phosphorus requirements of five tropical grain legumes grown in flowing solution culture. Plant Soil, 99:75~84
    [5] Johnson J. F.,Allan D. L. and Vance C.P, 1994. Phosphorus stress—induced proteiod roots show altered metabolism in white lupine (Lupinus albus L.). Plant Physiology, 104: 657~665
    [6] Lin C·L (林翠兰). 1992. The Characteristic and Utilization of Soil Resources. Beijing: China Agricultural Press, 337~378 (in Chinese)
    [7] Liu Z·W,(刘增文)Li Y·S(李雅素),Lu Y·L(吕月玲). 1997. Preliminary study on the trunk of nutrients inter-cycling of tree. Fore Sci tec (林业科技), 22 (3): 1~4. (in Chinese)
    [8] Barber SA, Mackay. 1986. Root growth and potassium uptake by two corn genotypes in the field. Fertil Res, 10:217~231
    [9] Li C·J (李春俭). 2001. The Newest Development of the Research of Soil and Plant Nutrition 4. Beijing: China Agricultural University Press. 13~23 (in Chinese)
    [10] Yan X·L (严小龙), Lu Y·G (卢永根). 1994. Origin, evolution and genetic resources of the common bean. J South China Agric Univ (华南农业大学学报), 15 (4): 111~116 (in Chinese)
    [11] Li Q·K (李庆控). 1986. The modern research of phosphatic fertilizes. Chin J Soil Sci (土壤通报), 2:1~7 (in Chinese)
    [12] Foehse D. 1991. Phosphorus efficiency of plants Ⅱ. Significance of root radius, root hairs and cation-anion balance for phosphorus, influx in seven plant species.Plant Soil, 12: 261~272
    [13] Wang Q·R (王庆仁), Li J·Y (李继云). 1998. Dynamics and prospect on studies of high acquisition of soil unavailable phosphorus by plants. Plant Nutrit Fertili Sci (植物营养与肥料学报), 4 (2): 107~116 (in Chinese)
    [14] Li Z·H (李志洪) et al. 1995. Effect of phosphorus level on root morphological and the kinetics of phosphorus uptake by different genotype of maize. J Jilin Agric Univ (吉林农业大学学报), 17 (4): 40~43 (in Chinese)
    [15] Liu H (刘慧), Liu J·F (刘景福), Liu B·J (刘必进). 1999. Differences of root morphology and physiological characteristics between two rape genotypes with different P-efficiency. Plant Nutrit Fertil Sci(植物营养与肥料学报),5(1):40~45(in Chinese)
    [16] Shen H(沈宏),Shi W·M(施卫明),Wang X·C(王校常).2001.Study on adaptation
    
    mechanisms of different crops to low phosphorus stress. Plant Nutrit Fertili Sci (植物营养与肥料学报), 7 (2): 172~177 (in Chinese)
    [17] Yang X·L (严小龙). 1992. Genetic improvement of plant nutritional characters: advances and perspectives. J South China Agric Univ (华南农业大学学报), 13 (4): 121~128 (in Chinese)
    [18] Yong M (杨茂), Yon X·L(严小龙). 1998 Prelimiuary studies on morphological and physiological mechanisms of stylosanthes for P efficiency on acid soil. Acta Agrestla Sinca (草地学报), 6 (3): 212~220 (in Chinese)
    [19] Ma J (马敬). 1994. Root-exuded Organic Acids in Mobilization of Soil Unavailable Phosphorus under Low-phosphorus Stress. Beijing: Beijing Agricultural University Press (in Chinese)
    [20] Bonser A, Lynch JP and Snapp S. 1996. Effect of phosphorus deficiency on growth angle of basal roots in phaseolus rulgari. New Phytol, 132:281~288
    [21] Yan X·L (严小龙), Zhang F·S (张福锁). 1997. Genetics of Plant Nutrition. Beijing: China Agricultural Press, 1~30 (in Chinese)
    [22] Liao H (廖红),Yang X·L (严小龙). 2000. Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Bot Sin (植物学报), 42 (2): 158~163 (in Chinese)
    [23] Helal HM, Sauerbeck DR. 1994. Influence of plant roots on C and P metabolism in soil. Plant Soil,76: 175~182
    [24] Raghothama KG. 1999. Phosphate acquisition. Annul Rev Plant Phosiol Plant Molbol, 50: 665~693
    [25] Lynch JP and Ran Beem J. 1993. Growth and architecture of seeding roots of corumon bean genotypes. Crop Soil, 133: 1253~1257
    [26] Subbarao GV, Ae and Otani T. 1997 Genotypic variation in Iron and aluminum-phosphate solubilizing activity of pigenonpea root exudates under different conditions. Soil Sci Plant Nutr, 43 (2): 295~305
    [27] Clark RB. 1983. Plant genotype differences in the uptake, translocation, accumulation and use of mineral Clements required for plant growth. In: Saric MR and Loughmn BC (cds). Genetic aspect of plant nutrient. Martinus Ni jhoff/ Dr. W. Junk Publishers.49~70
    [28] Sun H·G (孙海国). Zhang F·S (张福锁) 2002. Morphology of wheat roots under low-phosphorus stress. Chin J Appl Ecol (应用生态学报), 13 (3): 295~299 (in Chinese)
    [29] Sun H·G (孙海国), Zhang F·S (张福锁) 2000. Growth response of wheat roots to phosphorus deficiency. Acta Bot Sin (植物学报), 42 (9): 913~9199 (in Chinese)
    [30] Yah X·L (阎秀兰), Duan H·Y (段海燕), Wang Y·H (王运华). 2002. Phosphorus efficiency of different rape (Brassica napus L) genotypes. Chin J Oil Crops Sci (油料作物学报), 24 (2): 47~49 (in Chinese)
    [31] Guo Y·C (郭玉春), Lin W·X (林文雄),Shi Q·M(石秋梅). 2003 Physiological adaptability of seeding rice genotypes with different P uptake efficiency, under low P-deficient stress. Chin J Appl Ecol (应用生态学报). 14(1): 61~65 (in Chinese)
    
    
    [32] Li C·J (李春俭). 2001. The Newest Development of the Research of Soil and Plant Nutrition. Beijing: China Agricultural University Press. 198~210 (in Chinese)
    [33] Gardner, WK., Barber, DA. and Parbery, DG. 1983. The acquisition of phosphorus by pines albus: The probable mechanism by which phosphorus movement In the soil/root interface is enhanced. Plant Soil, 70:107~124
    [34] Wang M·L (王美丽), Yan X·L (严小龙), 2001. Characteristics on root morphology and root exudation of soybean in relation to phosphorus efficiency. J South China Agric Univ (华南农业大学学报), 7 (3): 1~4 (in Chinese)
    [35] Li J·Y (李继云), Liu X·D (刘秀娣), Li Z·S (李振声). 1995. New breeding technology of crop with high acquisition to soil nutrition. China Sci B (中国科学 B), 25 (1): 41~48 (in Chinese)
    [36] Zhang H·C (张焕朝), Xu C·K (徐成凯), Wang G·P (王改萍). 2001. Interclonal differences in phosphorus efficiency of poplar. J Nanjing Fore Univ (南京林业大学学报), 25 (2): 15~18(inChinese)
    [37] Sun G·H (孙国海), Zhang F·S (张福锁). 2002. Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots. Chin J Appl Ecol (应用生态学报), 13 (3):379~381 (in Chinese)
    [38] Caradus JR. 1992. Inheritance of phosphorus in whire dover (trifkthin repear L.). Plant and Soil. 146:199~208
    [39] Lin C·L (林翠兰). 1992. The Newest Development of the Research of Soil and Plant Nutrition 1. Beijing: China Agricultural University Press, 121~124 (in Chinese)
    [40] Fang M·S (樊明寿), Zhang F·S (张福锁). 2001.The variation in plant phosphorus acquisition efficiency and its physiological mechanism. Chin Bul Life Sci (生命科学), 13 (3): 129~131 (inChinese)
    [41] Feruandes B and Aacencio J. 1994. Acid phosphates activity in bean and cowpea plants grown trader phosphorus stress. J. Plant Nutr, 17:229~241
    [42] Feng F(冯锋), Zhang F·S (张福锁), Yang X·Q (杨新泉). 2000. Advanced in Study on the Nutrition of Plant. Beijing: China Agricultural Press. 25~41(in Chinese)
    [43] Simon MZ, Suffa L, Burgess D. 1990. Variation in N, P and K status and N efficiency in some North American of Forest Research, 20 (12): 1888~1893
    [44] Gillespie AR, Pope P E. 1991. Rhizosphere acidification increases phosphorus recovery of locust Ⅱ. Model predictions and measured recovery. Soil Sci Amer J, 54:537~541
    [45] Fox T R. 1991. Rhizosphere phosphorus activity and phosphatase hydrozable organic phosphorus in two forested spodosls. Soil Biol Biochem,24 (6): 579~583
    [46] Driessche R van den, El-Kassaby Y A. 1988. Proceedings 10th North American Forest Biology Workshop, Physiology and Genetics of Reforestation. Vancouver, British Columbia, 85~92
    [47] Zhang F·S (张福锁). 1993. Circumstance Stress and Plant Nutrition. Beijing: China Agricultural Press. (in Chinese)
    [48] Zhang F·S (张福锁). 1992. The Newest Development of the Research of Soil and Plant
    
    Nutrition. Beijing: China Agricultural Press. (in Chinese)
    [49] Huang Z·Q(黄志群), Liao L·P(廖利平), Gao H(高洪).2000. Decomposition process of Chinese fir stump roots and changes of nutrient concentration. Chin J Appl Ecol (应用生态学报). 11(1): 40~42(in Chinese)
    [50] Shen S·M(沈善敏), Yu W·Y(宇万太), Zhang L(张璐). 1992. Internal and external nutrient cyclings of poplar tree Ⅰ. Changes of nutrient storage in different parts of poplar tree betbre and after leaf fallen. Chin J Appl Ecol (应用生态学报). 3(4): 296~301 (in Chinese)
    [51] Shen S·M(沈善敏), Yu W·Y(宇万太), Zhang L(张璐). 1992. Internal and external nutrient cyclings of poplar tree Ⅱ. Transferring and cycling of nutrients in and out of the tree before and after leaf fallen. Chin J Appl Ecol (应用生态学报). 4(1): 27~31 (in Chinese)
    [52] 上海植物生理学会.1985.植物生理学实验手册.上海:上海科学技术出版社.
    [53] Guan, S. Y. (关松荫). 1987. The Research Methods in Soil Enzyme. Beijing: China Agricultural Press 309~313. (in Chinese)
    [54] Lin, Q. M. (林启美)&D. M. Huang (黄德明). 1991.Evaluation of an acid phosphatase assay for detection of phosphorus deficiency in tomato leaves. Acta Agriculture Boreali-Sinica (华北农学报), 6: 78~83. (in Chinese with English abstract)
    [55] 张宪政.1986.植物组织中叶绿素含量的测定.辽宁农业科技.3:19~21
    [56] 上海植物生理学会.1985.植物生理学实验手册.上海:上海科学技术出版社.57~59
    [57] [英]J·库姆斯,D.O.霍尔,S.P.朗等.1986.生物生产力和光合作用测定技术.北京:科学技术出版社.1~60
    [58] Jiang, T. H.(蒋延惠) et al. 1995, Several considerations in kinetic research on nutrients uptake by plants. Plant nutrition and fertilizer sciences (植物营养与肥料学报), 1 (2): 11~17. (in Chinese with English abstract)
    [59] Fan, M. S. (樊明寿), B. Xu (徐冰)&Y. Wang (王艳).2001. Acid phosphatase activities of intact roots and ground root tissues of maize grown in high P or low P nutrient solution. Rcview of China Agricultural Science Technology(中国农业科技导报), 3:33~36. (in Chinese with English abstract)
    [60] Wei, Z Q. (魏志强), Y. X. Shi(史衍玺) & F. M. kong (孔凡美). 2002.The effect of phosphorus deficiency stress on acid phosphatase in peanut. Chinese Journal of Oil Crop Sciences (油料作物学报), 24: 44~46. (in.Chinese with English abstract)
    [61] Epstein E.& C.E.Hagen.1952.A kinetics study of absorption of alkali cations by burley roots. Plant physiology. 27:457~474
    [62] Claassen N. Barber S A. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiology. 1974,54:564~568
    [63] Edwards J H. Aluminum toxicity symptoms in peach seedling. J. Hort. 1976,101:139~142
    [64] Crafts-brandner S. J. 1992. Phosphorus nutrition influence on leaf senescence in soybean. Plant Physiol.
    
    a) 98(3):1128~1132
    [65] Rap M.& N. Terry. 1989. Leaf phosphate status: photosynthesis, and carbon partitioning in sugar beet. I. Changes in growth, gas exchange and Calvin cycle enzymes. Plant Physiol. 90(3): 814~819
    [66] Usuda H.& K. Shimogawara. 1992. Phosphate deficienc.y in maize Ⅲ. Change in enzyme activities during the course of phosphate deprivation. Plant Physiol. 99(4): 1680~1685
    [67] 周志春,黄光霖,陈跃等.1999.林木营养遗传和改良研究进展.世界林业研究.5:6~9
    [68] 李玉京,刘建中,李滨等.1999.高等植物对磷饥饿自我拯救的分子生物学机制.生物技术通报,3:1~8
    [69] 周志春等.2003.马尾松不同种源磷素吸收动力学特征.林业科学研究16(5):
    [70] 严小龙,张福锁.1997.植物营养遗传学.北京:中国农业出版社,106~113
    [71] Qu W·Z(曲文章),Geng L·Q(耿立清)et al.2001.Affection of phosphorus level to sugarbeet photosynthesis. China beet &sugar(中国甜菜糖业) 3:8~11, (in Chinese)
    [72] Jacob J& D. W. Lawlor. 1993. In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate-deficient sunflower and maize leaves. Plant,Cell and Environment, 16:785~195
    [73] Fredeen A. J, T, K.Raab& I. M. Rap et al. 1990.Effects of phosphorus nutrition on photosynthesis in Glycine max(L.)Merr. Planta, 181:399~40
    [74] Li X.N. & H. Ashihara. 1990. Effects of inorganic phosphate sugar catabolism by suspension- cultured Catkarantkus Roseus. Phytochemistry, 29(2):497-500
    [75] M.E. Theodorou, I. R. Elrifi & D. J, Turpin, et al. 1991.Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrurn minutum. Plant Physiol. 85:1089~1095
    [76] Fohse D. 1991.Phosphorus efficiency of plant Ⅱ. Significant of root radius, toot hairs and cation-anion balance for phosphorus influx in seven plant species. Plant and soil, (132):261~272
    [77] 李继云等.1995.有效利用土壤营养元素的作物育种新技术研究.中国科学B辑,25(1):41~48
    [78] 高守疆,陈升枢,李明启.1989.不同磷营养水平对烟草叶片光合作用和光呼吸作用的影响。植物生理学报,15(3):281~287
    [79] 严小龙,黄志斌,卢仁骏,等.1997.关于作物磷效率的遗传学研究.土壤学报.25(2)102~105
    [80] Gerloff G.C. 1987.Intact-plant screening for tolerance of nutrient-deficiency stress. Plant and Soil, 99:33~37
    [81] 曹靖,张福锁.2000.低磷条件下不同基因型小麦幼苗对磷的吸收和利用效率及水分的影响.植物生态学报.24(6):731~735
    [82] 童学军,卢永根,严小龙.2000.广东大豆地方种质磷效率特性研究.中国油料作物学报.22(4):49~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700