碱性加压氧化处理铅铜铳的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文根据目前铅铜锍污染大、能耗高的处理现状,开发研究了碱性体系加压氧化处理铅铜锍的工艺,有效回收了铜、硒、铅、银,同时不产生废气、废渣,基本实现清洁冶金,为铅铜锍的处理开辟了新途径。
     研究初期,在多种碱性体系进行了加压氧化的探索实验,最终选取氢氧化钠作为碱性浸出介质。在加压氧化的单因素条件实验中,主要考察反应起始温度、氢氧化钠浓度、氧气分压、搅拌速度、反应时间、液固比六大因素,对过程中铅、砷、硫、硒浸出率的影响,得出反应的最佳条件为起始温度125℃,碱过量系数0.08,氧气分压0.3-0.8MPa,搅拌速度1000r/min,液固比4:1,时间1.5h。在此条件下,硫、硒、铅、砷的浸出率分别为98.03%、96.96%、4.15%、0.45%。
     对氢氧化钠体系加压氧化最佳条件下得到的碱性浸出渣,进行了硫酸浸出的单因素条件实验,主要考察了硫酸浓度、反应终点pH,反应温度的影响。得出通过控制浸出终点pH值的方法,取得了较好的效果。硫酸浸出实验的最佳条件为控制浸出终点pH为2.5,温度60℃,此时铜的浸出率可达98.52%,铁、银的浸出率仅为1.66%、0.72%,浸出渣中Cu、Pb、Ag、Fe的含量分别为1.44%、64.57%、11.28%、0.4136%,铅、银被富集2倍以上。
     对酸性浸出得到的硫酸铜溶液直接进行了电积实验,考察了电流密度、温度、起始硫酸浓度、铁离子浓度对电流效率的影响,得出铜电积的最佳条件为电流密度320A/m2,温度50℃,当槽电压开始明显上涨时即为电积终点,为保证阴极铜的质量,通常控制电积终点铜离子浓度约15g/L,得到的阴极铜纯度大于99%。
     据1L高压釜试验的结果,开展了铅铜锍碱性加压氧化、碱性浸出渣的硫酸浸出、硫酸铜溶液的电积及电积残液返回浸出的工业试验,试验结果与小实验基本一致。
In view of the existing lead-copper matte process which is high power consumption and serious pollution, this paper developed and studied on alkaline pressure oxidative processing of lead-copper matte. It succeeded in the recovery of copper, selenium, lead, silver, and no waste gases and slags, opening up a new channel for the treatment of lead-copper matte, at the same time, the clean production have been achieved.
     In the early studies, we proceeded to a conclusion through pressure oxidative experiment in several different alkaline systems, and chose the sodium hydroxide system as the alkaline system.The influence of Six factors, which are beginning temperature, excess ratio of sodium hydroxide, pressure of oxygen, Stirring Speed, time and V/W, was investigated in the single factor experiment of sodium hydroxide pressure oxidative processing. It was concluded that the optimized condition was beginning temperature 125℃, excess ratio of sodium hydroxide 0.08, pressure of oxygen 0.3-0.8MPa, Stirring Speed 1000r/min, V/W 4:1 and time 1.5h. In this condition, the leaching ratio was S98.03%, Se96.96%, Pb4.15%, As0.45%, respectively.
     Carried on the single factor experiment of sulphuric acid leaching into alkaline slag which was obtained from pressure oxidative processing under the optimized conditions, the influence of the concentration of sulphuric acid, the ending pH of leaching and the temperature was investigated. It was concluded that the concentration of sulphuric acid was an important factor, which determining the trend of the main metallic element and impurities. The method of controlling ending pH of sulphuric acid solution acquired remarkable achievement. The optimized condition of sulphuric acid leaching was ending pH 2.5, temperature 60℃, at this time, the leaching ratio of copper was almost 98.52%, the leaching ratio of iron and silver was just 1.66%,0.72%,in the slag, the content was Cu 1.44%, Pb 54.57%,Ag 11.28%, Fe 0.4136%,lead and silver were enriched by two times.
     The influence of the current density, temperature, the beginning concentration of acid and the concentration of ferri ion for current efficiency was investigated by the electrolytic deposition of copper sulphate solution. The optimized condition was current density 320A/m2,temperature 50℃, when the electrolytic voltage rised smartly, it was the end of electrolytic deposition.Generally, the ending concentration of copper ion is 15g/L, the purity of cathode copper is more than 99%.
     According to the result of 1L autoclave experiment, the plant test was developed, it contained the alkaline pressure oxidative processing of lead-copper matte, the sulphuric acid leaching of the alkaline leached slag, the electrolytic deposition of copper sulphate solution and the returning leaching of the residuary electrolytic solution. The result of the plant test was basically consistent to which of laboratory.
引文
[1]文剑锋,杨天足,王安,等.铅冰铜控制电位选择性氯化浸出[J].湖南有色金属,2011,27(1):24-29.
    [2]吴连平.氯化溶浸法处理铅冰铜[J].有色金属:冶炼部分,1995,(2):7-8.
    [3]杨显万,沈庆峰,金炳界.从铅冰铜中回收铜的工艺[P].CN101225476A.2008.7.23.
    [4]彭容秋.重金属冶金学[M](第二版).长沙:中南大学出版社,2004.
    [5]彭容秋.铜冶金[M].长沙:中南大学出版社,2005:17-21.
    [6]彭容秋.镍冶金[M].长沙:中南大学出版社,2005:12-173.
    [7]彭容秋.铅冶金[M].长沙:中南大学出版社,2005:12-189.
    [8]东北工学院有色金属冶炼教研室.铅冶金学[M].北京:冶金工业出版社,1960:157-260.
    [9]Jin BJ, Yang XW. Kinetics of copper dissolution during pressure oxidative leaching of lead-containing copper matte [J]. Hydrometallurgy,2009, 99:119-123.
    [10]宋复伦,宁模功摘译,张丽霞校.加压湿法冶金的过去一现在和未来[J].湿法冶金,2001,20(3):165-166.
    [11]Parker,EG. Oxidative Pressure Leaching of Zinc Concentrates[J]. Canadian Mining and Metallurgical Bulletin.1981,74(829):145-150.
    [12]廖德华,刘汉钊.加压湿法冶金[J].国外金属矿选矿,2006,(11):10-15.
    [13]Derry,R.Pressure Hydrometallurgy-a Review[J].Miner.Sci.Eng.1972, 4(1):3-24.
    [14]Habashi,F.Pressure Hydrometallurgy—key to better and nonpolluting processes[J].Eng Mining J.1972,172(2):96-100.
    [15]Fugleberg. Method for leaching nickel-copper matte employing substantially neutral leaching solutions[P].United States,US Patent.US 5628817.1995-11-13.
    [16]马育新.阜康冶炼厂铜渣加压酸浸研究[J].新疆有色金属,1999,(2):27-32.
    [17]Peters E, Loewen F. Pressure leaching of copper minerals in perchloric acid solutions [J]. Metallurgical and Materials Transactions.2003, B4(1):5-14.
    [18]Anand S, Sarveswara RK, Jena PK. Pressure leaching of copper converter slag using dilute sulphuric acid for the extraction of cobalt, nickel and copper values [J]. Hydrometallurgy.1983,10(3):305-312.
    [19]张训鹏.冶金工程概论[M].长沙:中南大学出版社,1998:133-147.
    [20]许树新,王桂英.碱煮法熟料加压碳酸化浸出制取碳酸锂[J].新疆有色金属,1980.(1):43-46.
    [21]李洪桂.稀有金属冶金学[M].北京:冶金工业出版社,2001:21-48
    [22]肖超,肖连生.石煤钒矿焙砂加压碱浸试验[J].钢铁钒钛,2010,31(3):6-9.
    [23]杨天足.贵金属冶金及产品深加工[M].长沙:中南大学出版社,2005:384-390.
    [24]Alcock CB, Hooper GW. Thermodynamics of the Gaseous Oxides of the Platinum-Group Metals[J]. Proc.R.Soc. Lond. A,1960,254(1279):551-561.
    [25]Huang K, Chen J. Advances in Pressure Cyanidation for Extraction of Precious Metals[J]. Chinese Journal of Rare Metals.2005,29(4):386-389.
    [26]陈景.加压氰化处理铂钯硫化浮选精矿全湿法新工艺[J].中国有色金属学报,2004,(F01):41-46.
    [27]湖南郴州宇腾有色金属股份有限公司质检部.分析报告单.2010(内部资料).
    [28]万雯.粗硒的真空蒸馏提纯工艺研究[硕士学位论文].昆明:昆明理工大学.2006.
    [29]朱瑛昕,钱宏光,李新.从铜阳极泥中回收粗硒的生产实践[C].中国首届熔池熔炼技术及装备专题研讨会论文集.北京:中国有色金属学会.2007.
    [30]夏星,杨天足,刘伟锋,等.贵锑选择性氯化浸出富集金过程中铅的行为研究[J].贵金属,2008,29(1):5-10.
    [31]彭容秋.锌冶金[M].长沙:中南大学出版社,2005:36-52.
    [32]朱屯.现代铜湿冶金[M].北京:冶金工业出版社,2002:156-163.
    [33]韩翠芳.利用多次回归拟合水的饱和蒸气压与温度的关系表达式.[J].环境科学与管理.2005,(5):43-45.
    [34]杨倩志,蒋安仁.有色冶金物理化学[M].上海科学技术出版社,1963:22-25.
    [35]Dresher WH, Wadsworth ME.A Kinetic Study of the Leaching of Molybdenite[J]. Journal of metals,1956,6:794-800.
    [36]Fassell WM.Hyper-atmospheric extractive metallurgy, its past, present and future[J]. Pure and applied chemistry:special lectures,1962:683-689.
    [37]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1986:102-194.
    [38]李洪桂.冶金原理[M].北京:科学出版社,2004:128-189.
    [39]何清鉴Cu-Fe-S-O-H,Fe-S-O-H等体系Eh-p图(150℃)及其在热液矿床中的应用[J].中南矿冶学院学报.1984,(1):54-64.
    [40]肖峰,杨天足.碱性高压处理铅冰铜过程中铜的行为研究[J].金属材料与冶金工程.2011.39(2):7-11.
    [41]朱元保,沈子琛,张传福,等.电化学数据手册[M].长沙:中南大学出版社,1985.135-164.
    [42]杨显万.高温水溶液热力学计算手册[M].北京:冶金工业出版社.1983.10.
    [43]李琼娥.从炼铜烟尘中提取三盐基硫酸铅的生产实践[J].有色冶炼.1991,(4):37-40.
    [44]曹学增.三盐基硫酸铅的生产工艺条件研究[J].山东化工.2003,(4):12-13.
    [45]Wang YY, Chai LY,Chang H, et al. Equilibrium of hydroxyl complex ions in Pb2+-H2O system[J].TransactiOns of Nonferrous Metals.2009,(19):458-462.
    [46]符斌.重金属冶金分析[M].北京:冶金工业出版社.1994.
    [47]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出版社.1990.
    [48]姜放,饶威.酸性环境中压力容器用钢及腐蚀防护新发展[J].天然气工业.1999,(1):94-97.
    [49]杨新生,许秀莲,唐冠中.碱性氨浸法从低品位铜锌渣中回收铜锌[J].有色金属(冶炼部分),1993,(2):11-13.
    [50]迪安.兰氏化学手册[M].北京:科学出版社,2003.
    [51]杨明.催化氧化法生产硫代硫酸钠[J].化学世界.2000,41(3):62-64.
    [52]刘欣萍.碱性无机粉体材料的研究—氢氧化钙的表面改性及其在塑料中阻燃性能的初步研究[硕士学位论文].福建师范大学.2006:9-24.
    [53]费文丽,王珩.硫酸钙晶须的制备及应用评述[J].化工矿物与加工.2002.(9):31-32.
    [54]谢福标.氧化铜矿搅拌浸出—萃取—电积的生产实践[J].矿冶.2001,(2):45-49.
    [55]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社.1987.9:4-19.
    [56]聂国林.砷酸铁化合物的溶解度和稳定性[J].湿法冶金.1990,(2):21-35.
    [57]郭慧.氢氧化铁和羟基氧化铁的催化相转化机理研究[硕士学位论文].河北师范大学.2006:12-22.[58]王丽华.舒永.氯化钙生产中硫酸银的去除方法[J].海湖盐与化工.2003,(1):13-15.
    [59]高慧妹.重金属废水处理后沉渣选择性浸锌工艺研究[硕士学位论文].中南大学冶金学院.2008:12-26.
    [60]鲁道荣,何建波.高电流密度脉冲电解制备纯铜的研究[J].有色金属:冶炼部分.2002,(5):11-14.
    [61]王云燕,彭文杰.锌酸盐镀锌阴极电流效率的研究[J].电镀与环保.2003,(6):12-16.
    [62]罗凯,徐洁.膜技术处理铜电解液最佳条件试验[J].矿冶工程.2006,26(1):65-68.
    [63]许克昌.提高锌电解过程的电流效率的系统研究[D].昆明理工大学.2007.
    [64]孙家寿,刘国平.低品位铜矿生产饲料级硫酸铜[J].无机盐工业.1996,(3):11-13.
    [65]史有高.铜电积和电解精炼添加剂的连续检测.[J].有色冶炼.1996,(2):40-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700