蜂胶中抑制人白细胞弹性蛋白酶活性成分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜂胶是蜜蜂从植物的芽和叶子中采集的树脂,混入花粉、蜂蜡和其他分泌物而形成的强粘性的天然物质。蜂胶的成分复杂,鉴定出的化合物超过300多种。蜂胶中含有大量的黄酮、酚酸及其酯类,因而具有广泛的药理活性。近年来,蜂胶抗炎活性受到广泛关注。本实验采用体外抑制人白细胞弹性蛋白酶(HLE)的筛选模型,对蜂胶不同组分以及从中分离得到的化合物的人白细胞弹性蛋白酶抑制活性进行评价,为蜂胶抗炎活性的开发提供参考。
     (1)以蜂胶中存在的14种化合物为样品,研究了蜂胶样品的薄层色谱展开条件和显色方法。确定了较好的展开条件为氯仿:甲醇:甲酸92:4:9,较好的显色条件为1%~2%的三氯化铁乙醇溶液。
     (2)对活性筛选方法的有效性进行了验证。以高效液相色谱法测定酶反应产物,以熊果酸作为阳性对照,证明了HLE活性筛选方法是有效的。
     (3)通过不同浓度乙醇分级提取蜂胶得到4个提取物,比较了分级提取物的薄层色谱显色差异和HLE抑制活性差异。在质量浓度为100μg/mL时,40%乙醇水溶部分HLE抑制活性较低,为48.77%。而40%乙醇醇溶部分、70%乙醇提取物和95%乙醇提取物的薄层色谱显色斑点特征相似,HLE抑制活性较为接近,分别为75.68%、84.33%和79.90%,高于阳性对照品熊果酸(66.24%),统计学上存在极显著差异(p<0.01)。说明蜂胶醇溶组分具有很好的HLE抑制活性,是蜂胶中HLE抑制活性的物质基础所在。
     (4)将40%乙醇醇溶部分、70%乙醇提取物和95%乙醇提取物合并后,采用溶剂分级萃取得到3种萃取物,比较了萃取物的薄层色谱显色差异和HLE抑制活性差异。石油醚萃取物的HLE抑制活性只有7.35%,远低于氯仿萃取物和乙酸乙酯萃取物。其薄层色谱显色与氯仿萃取物和乙酸乙酯萃取物差异极大。乙酸乙酯萃取物的HLE抑制活性(85.09%)高于氯仿萃取物(64.53%),是蜂胶中抑制HLE的主要活性组分。
     (5)乙酸乙酯萃取物经硅胶柱层析分离,用石油醚-乙酸乙酯体系梯度洗脱,得到的3个洗脱组分。在质量浓度为100μg/mL时,三者的洗脱组分的活性分别介于44.77%~60.37%、21.38%~56.02%和85.85%~93.68%之间,HLE抑制活性存在极显著差异(p<0.01)。A9~A13的HLE抑制活性高于熊果酸(63.19%),是乙酸乙酯萃取物中对HLE具有高抑制活性的组分。A1~A4组分亦为活性组分,可从中分离得到活性化合物。
     (6)活性组分A1~A4和A9~A13通过柱层析分离,结合薄层层析制备和液相色谱制备,共得到6个化合物,其中5个化合物经鉴定为球松素、高良姜素、白杨素、异鼠李素、槲皮素-5,7-二甲基醚,化合物VI尚未鉴定。在质量浓度为100μg/mL时,异鼠李素无HLE抑制活性,球松素、白杨素、槲皮素-5,7-二甲基醚和未知化合物VI的HLE抑制活性分别为26.22%、4.96%、50.63%和24.39%,具有一定的HLE抑制活性,但低于阳性对照熊果酸(70.85%)。高良姜素对HLE的抑制活性强于阳性药物熊果酸,其IC50为6.88μmol/L,是HLE的强抑制剂。
Propolis is a resinous, strongly adhesive natural substance, collected byhoneybees from buds and leaves of trees and plants, mixed with pollen, beeswax andother bee secretions. Propolis is a complex mixtrue of more than300constituents. Theactive components, flavonoids, phenolic acids, and their esters contribute to the widespectrum of its biological activities. Propolis has attracted much attention in recentyears for its anti-inflammatory properties. In order to offer some reference to thedevelopment of propolis with its anti-inflammatory properties, the in vitro model wasused to evaluate the human leukocyte elastase (HLE) inhibitory activity by differentfractions and compounds of propolis.
     (1) The analitical TLC mobile phases and methods for visualisation of spots wereinvestigated using14chemical compounds of propolis as TLC sample. The mobilephase with chloroform-methnol-formic acid92:4:9and the1%~2%ferrictrichloride-ethanol solution for visualisation were selected as optimal TLC condition.
     (2) The effectiveness of the sceening method of HLE inhibition was confirmed.High performance liquid chromatography was used to detect the product of theenzymatic reaction. Ursolic acid was used as positive control, and the HLE sceeningmethod was confirmed to be valid.
     (3) Propolis was extracted by different concentrations of ethanol, and fourextracts were obtained. The differences of the thin layer chromatograph between thesefour extracts and their inhibition on HLE were compared. When the concentrationswere100μg/mL, the inhibition of the40%ethanol water fraction on HLE was48.77%,lower than that of the other three extracts. The thin layer chromatography spots andthe inhibition of the40%ethanol fraction,70%ethanol extract and95%ethanolextract were approximate. Their HLE inhibitory activity were75.68%,84.33%and79.90%, respectively, higer than that of ursolic acid (66.24%) with a statisticallysignificant difference (p<0.01). These facts demonstrated that the ethanol extracts ofpropolis were the material basis for the high HLE inhibitory activity they exerted.
     (4) The active extracts were merged and then extracted by solvents with differentpolarities, and three extracts were abtained. The differences of the thin layerchromatograph between these three extracts and their inhibition on HLE werecompared. When the concentrations of the three ethanol extracts were100μg/mL, theinhibion of petroleum ether extract on HLE was only7.35%, much lower than that ofchloroform extract and ethyl acetate extract. Its TLC spots were quite different from that of the latter two. The inhibion of ethyl acetate extract on HLE was85.09%,higher than that of the chloroform extract (64.53%). The ethyl acetate extract was themain active extract of propolis.
     (5) The ethyl acetate extract was separated by column chromatography method,with petroleum ether-ethyl acetate as mobile phase, and three fractions were obtained.When the concentrations of the three ethanol extracts were100μg/mL, the range ofinhibition of these eluents were44.77%~60.37%,21.38%~56.02%and85.85%~93.68%, repectively, with a statistically significant difference (p<0.01). The fractionA9~A13were highly active eluents of the ethyl acetate extract, their inhibion werehigher than that of ursolic acid (63.19%). The eluent A1~A4was also active eluentand can be separated and purified to obtain some active components.
     (6)Active eluents were separated by the column chromatography methodcombined with preparative TLC and preparative HPLC methods. And six compoundswere isolated, and five of them were identified to be pinostrobin, galangin, chrysin,isorhamnetin, quercetin-5,7-dimethyl-ether and the compound VI hasn’t beenidentified. Isorhamnetin had no inhibition on HLE when its concentration was100μg/mL. Pinostrobin, chrysin, quercetin-5,7-dimethyl-ether and the unknowncompound VI were somehow active, their inhibion were26.22%,4.96%,50.63%and24.39%, respectively. The inhibitory activity of galangin was stronger thanpositive drug ursolic acid. Galangin was a strong inhibitor of HLE with an IC50of6.88μmol/mL.
引文
[1]Bankova V. Recent trends and important developments in propolis research[J]. Evidence-BasedComplementary and Alternative Medicine,2005,2(1):29-32.
    [2]Ramos A F N, Miranda J L. Propolis: a review of its anti-inflammatory and healing actions[J].Journal of Venomous Animals and Toxins including Tropical Diseases,2007,13(4):697-710.
    [3]蒋春红,吕武清,胡棠洪.蜂胶的化学成分和临床研究概况[J].实用中西医结合临床,2011,11(1):88-90.
    [4]张翠平,胡福良.蜂胶中的黄酮类化合物[J].天然产物研究与开发,2009,21(6):1084-1090.
    [5]徐元君,罗丽萍,丽艳. HPLC测定两种中国蜂胶醇提物化学组成[J].林产化学与工业,2010,30(2):61-66.
    [6]周静,王飞飞,俞美香,等.巴西蜂胶化学成分的研究及安全性评价[J].食品科学,2005,26(10):236-239.
    [7]蔡君,谭群,晏家瑛,等.不同提取工艺下蜂胶醇提物的GC-MS分析[J].现代食品科技,2010,26(5):544-553.
    [8]陈雨春.蜂胶中微量元素的构成[J].蜜蜂杂志,1981,(03):38.
    [9]庞海岩,刘晨湘,朱茜,等. ICP-AES测定蜂胶中12种元素[J].广东微量元素科学,2002,9(4):44-46.
    [10]杨理,闫清华,邓月娥,等.微波消解ICP-AES检测蜂胶中常微量元素[J].广东化工,2009,37(2):162-166.
    [11]Cantarelli M á, Cami a J M, Pettenati E M, et al. Trace mineral content of Argentinean rawpropolis by neutron activation analysis(NAA): Assessment of geographical provenance bychemometrics[J]. LWT-Food Science and Technology,2011,44(1):256-260.
    [12]董捷,张红城,尹策.蜂胶研究的最新进展[J].食品科学,2007,28(9):637-642.
    [13]聂坚,楚更五,张建英.近5年蜂胶在医学领域的实验研究进展[J].云南中医中药杂志,2011,32(3):70-72.
    [14]孟晓英,王玉华,魏春琴.蜂胶药理作用研究概述[J].中国现代药物应用,2010,4(18):245.
    [15]娄爱华,李宗军,刘焱.蜂胶、CMC、山梨酸钾在冷却肉保鲜中的交互效应研究[J].食品工业,2010,(2):55-57.
    [16]乞永艳,骆尚骅,刘富海,等.蜂胶抗氧化作用研究[J].中国粮油学报,2001,16(4):18-21.
    [17]郭冬生,丁松林.基础日粮添加蜂胶对断奶仔猪生产性能的影响[J].畜牧与饲料科学,2010,31(9):18-19.
    [18]许合金,张军民,王修启,等.蜂胶对蛋鸡生产性能、蛋品质和血液生化特性的影响[J].中国兽医学报,2010,30(5):704-708.
    [19]李毅苹.蜂胶的抑菌性能及其在牙膏中的应用研究[J].日用化学品科学,2010,33(7):25-29.
    [20]常亮,张利,曾里,等.蜂胶口腔保健喷剂的工艺[J].食品研究与开发,2010,31(11):118-121.
    [21]Medzhitov R. Inflammation2010: New Adventures of an Old Flame[J]. Cell,2010,140(6):771-776.
    [22]Porta C, Larghi P, Rimoldi M, et al.Cellular and molecular pathways linking inflammation andcancer[J]. Immunobiology,2009,214(9-10):761-777.
    [23]Bankova V. Chemical diversity of propolis makes it a valuable source of new biologicallyactive compounds[J]. Journal of ApiProduct and ApiMedical Science,2009,1(2):23-28.
    [24]Lotfy M. Biological Activity of Bee Propolis in Health and Disease[J]. Asian Pacific Journalof Cancer Prevention,2006,7(1):22-31.
    [25]Girgin G, Baydar T, Ledochowski M, et al. Immunomodulatory effects of Turkish propolis:Changes in neopterin release and tryptophan degradation[J]. Immunobiology,2009,214(2):129-134.
    [26]潘小玲,竹剑平.蜂胶治疗慢性咽炎57例临床观察[J].中国医药导报,2006,3(14):200-201.
    [27]胡福良,李英华,朱威,等.蜂胶提取液对大鼠急性胸膜炎的作用及其机制的研究[J].营养学报,2007,29(2):189-191.
    [28]Samet N, Laurent C, Susarla S M, et al. The effect of bee propolis on recurrent aphthousstomatitis: a pilot study[J]. Clinical oral investigations,2007,11(2):143-147.
    [29]Büyükberber M, Sava M C, Ba ci C, et al. The beneficial effect of propolis oncerulein-induced experimental acute pancreatitis in rats[J]. The Turkish journal ofgastroenterology,2009,20(2):122-128.
    [30]Schmitz M L, Bacher S, Kracht M. IκB-independent control of NF-κB activity by modulatoryphosphorylations[J].Trends in Biochemical Sciences,2001,26(3):186-190.
    [31]Coleman J W. Nitric oxide in immunity and inflammation[J]. InternationalImmunopharmacology,2001,1(8):1397-1406.
    [32]Song Y S, Park E H, Hur G M, et al. Caffeic acid phenethyl ester inhibits nitric oxide synthasegene expression and enzyme activity[J]. Cancer Letters,2002,175(1):53-61.
    [33]Jung W K, Choi I, Lee D Y, et al. Caffeic acid phenethyl ester protects mice from lethalendotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2and inducible nitricoxide synthase expression in RAW264.7macrophages via the p38/ERK and NF-κB pathways[J].The International Journal of Biochemistry&Cell Biology,2008,40(11):2572-2582.
    [34]Lee Y T, Don M J, Liao C H, et al. Effects of phenolic acid esters and amides onstimulus-induced reactive oxygen species production in human neutrophils[J]. Clinica ChimicaActa,2005,352(1-2):135-141.
    [35]Drexler S K., Foxwell B M. The role of Toll-like receptors in chronic inflammation[J]. TheInternational Journal of Biochemistry&Cell Biology,2010,42(4):506–518.
    [36]Pagliarone A C, Orsatti C L, Búfalo M C, et al. Propolis effects on pro-inflammatory cytokineproduction and Toll-like receptor2and4expression in stressed mice[J]. InternationalImmunopharmacology,2009,9(11):1352-1356.
    [37]Girgin G, Baydar T, Ledochowski M, et al. Immunomodulatory effects of Turkish propolis:Changes in neopterin release and tryptophan degradation[J]. Immunobiology,2009,214(2):129-134.
    [38]徐元君,罗丽萍,丽艳,等. HPLC测定两种中国蜂胶醇提物化学组成[J].林产化学与工业,2010,30(2):61-66.
    [39]Paulino N, Abreu S R L, Uto Y, et al. Anti-inflammatory effects of a bioavailable compound,Artepillin C, in Brazilian propolis[J]. European Journal of Pharma cology2008,587(1-3):296-301.
    [40]Park E K, Kim S H, Park S S. Anti-inflammatory Activity of Propolis[J]. Archives ofPharmacal Research,1996,19(5):337-341.
    [41]Onlen Y, Tamer C, Oksuz H, et al. Comparative trial of different anti-bacterial combinationswith propolis and ciprofloxacin on Pseudomonas keratitis in rabbits[J]. Microbiological Research,2007,162(1):62-68.
    [42]Korkmaz B, Horwitz M S, Jenne D E, et al. Neutrophil Elastase, Proteinase3and Cathepsin Gas Therapeutic Targets in Human Diseases[J]. Pharmacological Review,2010,62(4):726-759.
    [43]Segal A W. How neutrophils kill microbes[J]. Annual Review of Immunology,2005,23:197-233.
    [44]Korkmaz B, Moreau T, Gauthier F. Neutrophil elastase, proteinase3, and cathepsin G:Physicochemical properties, activity and physiopathological functions[J]. Biochimie,2008,90(2):227-242.
    [45]Ai S, Cheng X W, Inoue A, et al. Angiogenic activity of bFGF and VEGF suppressed byproteolytic cleavage by neutrophil elastase[J]. Biochemical and Biophysical ResearchCommunications,2007,364(2):395-401.
    [46]Reddy A V N, Fiakpui C Y, Czajkowski D P, et al.7α-methoxy-2-[(substituted)methylene]cephem sulfones as inhibitors of human leukocyte elastaseand thrombin[J]. Chemistry of Heterocyclic Compounds,1998,34(11):1282-1288.
    [47]Wei L Q, Lai Z, Gan X D, et al. Mechanism-based inactivation of human leukocyte elastasevia an enzyme-induced sulfonamide fragmentation process[J]. Archives of Biochemistry andBiophysics,2004,429(1):60-70.
    [48]Li Y, Yang Q L, Dou D F, et al. Inactivation of human neutrophil elastase by1,2,5-thiadiazolidin-3-one1,1dioxide-based sulfonamides[J]. Bioorganic and MedicinalChemistry,2008,16(2):692-698.
    [49]Pochet L, Doucet C, Dive G, et al. Coumarinic Derivatives as Mechanism-Based Inhibitors ofChymotrypsin and Human Leukocyte Elastase[J]. Bioorganic and Medicinal Chemistry,2000,8(6):1489-1501.
    [50]Bernard E, Vanderesse R. Efficient and direct solid phase synthesis of ketomethylenimino andketomethylenamino peptides[J]. Tetrahedron Letters,2004,45(17):8603-8606.
    [51]Sieńczyk M, Podgórski D, B a ejewska A, et al. Phosphonic pseudopeptides as humanneutrophil elastase inhibitors—a combinatorial approach[J]. Bioorganic and Medicinal Chemistry,2011,19(3):1277-1284.
    [52]Inoue Y, Omodani T, Shiratake R, et al. Development of a highly water-soluble peptide-basedhuman neutrophil elastase inhibitor; AE-3763for treatment of acute organ injury[J]. Bioorganicand Medicinal Chemistry,2009,17(21):7477-7486.
    [53]Xu G H, Kim Y H, Choo S J, et al. Chemical Constituents from the Leaves of Ilexparaguariensis Inhibit Human Neutrophil Elastase[J]. Archives of Pharmacal Research,2009,32(9):1215-1220.
    [54]Xu G H, Kim Y H, Chi S W, et al. Evaluation of human neutrophil elastase inhibitory effect ofiridoid glycosides from Hedyotis diffusa[J]. Bioorganic and Medicinal Chemistry Letters,2010,20(2):513-515.
    [55]马瑛,郑智慧,路新华,等.微生物来源的白细胞弹性蛋白酶抑制剂F01-221A[J].中国抗生素杂志,2006,31(8):458-461.
    [56]郑智慧,任晓,司书毅,等.白细胞弹性蛋白酶抑制剂筛选模型的建立及抑制剂F02ZA-2554A的研究[J].中国抗生素杂志,2007,32(5):273-276.
    [57]González Y, Tanaka A S, Hirata I Y, et al. Purification and partial characterization of humanneutrophil elastase inhibitors from the marine snail Cenchritis muricatus (Mollusca)[J].Comparative biochemistry and physiology. Part A, Molecular integrative physiology,2007,146(4):506-513.
    [58]Hsieh P W, Yu H P, Chang Y J, et al. Synthesis and evaluation of benzoxazinone derivativeson activity of human neutrophil elastase and on hemorrhagic shock-induced lung injury in rats[J].European Journal of Medicinal Chemistry,2010,45(7):3111-3115.
    [59]牛荣丽,范晓,韩丽君.海藻提取物抗炎活性的筛选[J].海洋与湖沼,2003,34(2):150-154.
    [60]Safayhi H, Rall B, Sailer E R, et al. Inhibition by boswellic acids of human leukocyteelastase[J]. The Journal of Pharmacology and Experimental Therapeutics,1997,281(1):460-463.
    [61]Ying Q L, Rinehart A R, Simon S R, et al. Inhibition of human leucocyte elastase by ursolicacid. Evidence for a binding site for pentacyclic triterpenes[J]. The Biochemical journal,1991,277(Pt2):521-526.
    [62]Jang S M, Yee S T, Choi J, et al. Ursolic acid enhances the cellular immune system andpancreatic β-cell function in streptozotocin-induced diabetic mice fed a high-fat diet[J].International Immunopharmacology,2009,9(1):113-119.
    [63]Somova L O, Nadar A, Rammanan P, et al. Cardiovascular, antihyperlipidemic and antioxidanteffects of oleanolic and ursolic acids in experimental hypertension[J]. Phytomedicine,2003,10(2-3):115-121.
    [64]Huang C Y, Lin C Y, Tsai C W, et al. Inhibition of cell proliferation, invasion and migration byursolic acid in human lung cancer cell lines[J]. Toxicology in Vitro,2011,25(7):1274-1280.
    [65]Tsai S J, Yin M C. Antioxidative and anti-inflammatory protection of oleanolic acid andursolic acid in PC12cells[J]. Journal of Food Science,2008,73(7): H174-178.
    [66]刘成梅,游海.天然产物有效成分的分离与应用[M].北京:化学工业出版社,2003:41-44.
    [67]汪茂田,谢培山,王忠东,等.天然有机化合物提取分离与结构鉴定[M].北京:化学工业出版社,2004:69-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700