小鼠急性缺血性脑中风后小胶质细胞增生来源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小胶质细胞是中枢神经系统(Central nervous system, CNS)重要的免疫效应细胞,它们通过监测微环境的变化,参与维持中枢神经系统的稳态平衡。缺血性脑中风能引起小胶质细胞的迅速激活,活化小胶质细胞在形态、抗原表达、功能行为等方面发生改变,尤其是他们在损伤区发生细胞增殖和聚集现象,小胶质细胞的这些反应被称为“小胶质细胞增生”。目前对这些增殖的小胶质细胞的来源仍有争议,有研究者认为小胶质细胞增生主要是通过小胶质细胞的自我更新得以维持。而另外一些报道称骨髓来源的一些祖细胞参与了小胶质细胞增生的过程,但这些研究都是基于辐射骨髓移植动物模型,而辐射和骨髓移植可能会带来血脑屏障的破坏等人为的影响,因此这些现象在生理条件下能否发生仍不清楚。
     本论文利用中风这一通常病理条件下既有血脑屏障破坏的的疾病模型,研究了小胶质细胞在缺血后增生的主要来源。为了避免辐射等人为因素对动物正常生理活动的影响,本实验建立了两种血液嵌合模型,并利用双光子成像技术研究了缺血性脑中风后亚急性期内增殖小胶质细胞的起源和动态变化,以及诱导其激活和增殖的影响因素。本论文的研究结果表明,正常健康动物体内血液细胞无法通过完整的血脑屏障。然而脑中风血脑屏障受损后,少量血液来源的Cx3crlGFP/+细胞能迁移进入大脑实质。虽然这些迁入的细胞与脑实质内小胶质细胞一样有荧光标记,但是它们表现出与本地小胶质细胞不同的表型特征和动力学反应。缺血损伤后进入脑实质的血源细胞数量很少,前5天发生迁移的细胞数量增加,随后逐渐减少。由于这些迁移细胞无法进行自我增殖,并且随着损伤时间的推移逐渐发生凋亡,因此血源迁移细胞无法长期存活。与此相反,免疫组织化学染色和双光子活体成像结果显示,缺血激活的本地小胶质细胞持续向损伤区聚集并能进行分裂增殖,而且这些细胞在损伤后一周内保持持续增加的趋势。因此,本地小胶质细胞的自我增殖是小胶质细胞增生的主要来源。另外,研究还发现血源Cx3erlGFP/+细胞的迁移和本地小胶质细胞的激活和增殖与损伤区血脑屏障的开放范围有关。本论文的研究结果揭示了血源Cx3erlGFP/+迁移细胞和本地小胶质细胞代表着两类不同的细胞种群,这两类细胞可能具有不同的功能和治疗潜力。
Microglia are the main immunocompetent cells in the central nervous system (CNS) which continuously monitor the microenvironment to maintain the homeostasis. Ischemic stroke induces rapid activation of microglia. Activated microglia alter their morphology, cell surface antigen expression and functional behaviour, and their numbers increase markedly at the site of ischemia. These responses of microglia are collectively termed "microgliosis". The main source of microgliosis remains controversial. Some studies suggest that microgliosis are maintained through self-expansion, but others suggest that bone marrow-derived progenitors may contribute to microgliosis. However, these reports are based on experiments in which animals suffered lethal irradiation and their bone marrow was artificially replaced with exogenous cells. It is unclear whether a similar phenomenon could be observed under physiological conditions.
     Here we investigated the origin and kinetics of reactive microglia using a photothrombosis stroke model, which is characterized by pathological disruption of blood brain barrier (BBB) permeability without intervention of irradiation or transplantation. To avoid the potential influence of irradiation or transplantation, we established a model of blood chimera using parabiotic animals and examined the source and dynamics of activated microglia in subacute phase after ischemic stroke by using in vivo two-photon microscopy. We found there was no infiltration of blood-derived cells with an intact BBB in healthy mice. However, a small population of blood-derived Cx3crlGFP/+cells were detected in the lesion sites of cerebral parenchyma when the BBB integrity was damaged after ischemia. Although these infiltrating cells also expressed Green fluorescence protein (GFP), they displayed different phenotypes and kinetics from reactive microglia. The number of infiltrating cells increased in the first5days after stroke and then subsequently decreased. We found these Cx3crlGFP/+infiltrating cells did not proliferate and were gradually lost through apoptosis. In contrast, immunohistology and in vivo imaging revealed that activated microglia renewed themselves and were recruited to ischemic area continuously, and their number increased in the first week after stroke. These results indicated that microglial proliferation rather than infiltration of Cx3crlGFP/+circulating cells is the main source of microgliosis after ischemic stroke. In addition, we found that the permeability of BBB was associated with the migration of Cx3crlGFP/+infiltrating cells and the activation and proliferation of resident microglia. Together, our data suggest that the Cx3crlGFP/+infiltrating cells and reactive microglia may represent two distinct populations of cells with different function and therapeutic potential for the treatment of stroke.
引文
[1]Tambuyzer, B.R., Ponsaerts, P.& Nouwen, E.J. Microglia:gatekeepers of central nervous system immunology[J]. J Leukoc Biol 85,352-370 (2009).
    [2]Prinz, M.& Mildner, A. Microglia in the CNS:immigrants from another world[J]. Glia 59, 177-187(2011).
    [3]Lawson, L.J., Perry, V.H., Dri, P.& Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain[J]. Neuroscience 39,151-170 (1990).
    [4]Nimmerjahn, A., Kirchhoff, F.& Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science 308,1314-1318 (2005).
    [5]李丽霞.神经胶质细胞的研究现状[J].陕西师范大学继续教育学报22,4(2005).
    [6]Kim, S.U.& de Vellis, J. Microglia in health and disease[J]. J Neurosci Res 81,302-313 (2005).
    [7]Masuda, T., Croom, D., Hida, H.& Kirov, S.A. Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions[J]. Glia 59,1744-1753 (2011).
    [8]Davoust, N., Vuaillat, C., Androdias, G.& Nataf, S. From bone marrow to microglia:barriers and avenues[J]. Trends in Immunology 29 (2008).
    [9]Bertolotto, A., Agresti, C., Castello, A., Manzardo, E.& Riccio, A.5D4 keratan sulfate epitope identifies a subset of ramified microglia in normal central nervous system parenchyma[J]. J Neuroimmunol 85,69-77 (1998).
    [10]Shimizu, E., Kawahara, K., Kajizono, M., Sawada, M.& Nakayama, H. IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia[J]. J Immunol 181,6503-6513 (2008).
    [11]Lee, Y.B., Nagai, A.& Kim, S.U. Cytokines, chemokines, and cytokine receptors in human microglia[J]. J Neurosci Res 69,94-103 (2002).
    [12]Asheuer, M., Pflumio, F., Benhamida, S., et al. Human CD34+cells differentiate into microglia and express recombinant therapeutic protein[J]. Proc Natl Acad Sci U S A 101, 3557-3562 (2004).
    [13]Ladeby, R., Wirenfeldt, M., Dalmau, I., et al. Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury[J]. Glia 50,121-131 (2005).
    [14]Perry, V.H., Hume, D.A.& Gordon, S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain[J]. Neuroscience 15,313-326 (1985).
    [15]Li, W., Gao, G., Guo, Q., et al. Function and phenotype of microglia are determined by toll-like receptor 2/toll-like receptor 4 activation sequence[J]. DNA and cell biology 28, 493-499 (2009).
    [16]Djukic, M., Mildner, A., Schmidt, H., et al. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice[J]. Brain 129,2394-2403 (2006).
    [17]Schafer, D.P., Lehrman, E.K., Kautzman, A.G., et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner[J]. Neuron 74,691-705 (2012).
    [18]Morgan, J.T., Chana, G., Pardo, C.A., et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism[J]. Biol Psychiatry 68, 368-376 (2010).
    [19]Ohsawa, K., Imai, Y., Sasaki, Y.& Kohsaka, S. Microlia/macrophage-specific protein Iba 1 binds to fimbrin and enhances its actin-bundling activity[J]. Journal of Neurochemistry 88 (2004).
    [20]Graeber, M.B.& Streit, W.J. Microglia:biology and pathology[J]. Acta Neuropathol (2010).
    [21]Butovsky, O., Siddiqui, S., Gabriely, G., et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS[J]. J Clin Invest 122,3063-3087 (2012).
    [22]张光运,曹玉红,许燕,吴中亮&万琪.光化学诱导局灶性脑梗死大鼠小胶质细胞形态变化及环磷酰胺预治疗的作用[J].中国临床康复9,2(2005).
    [23]周杰,章翔,蒋晓帆,et al.大鼠脑创伤后小胶质细胞激活的时程及形态变化研究[J].中国临床神经外科杂志11,4(2006).
    [24]Graeber, M.B. Changing face of microglia[J]. Science 330,783-788 (2010).
    [25]Cameron, B.& Landreth, GE. Inflammation, microglia, and Alzheimer's disease[J]. Neurobiol Dis 37,503-509 (2010).
    [26]Saijo, K.& Glass, C.K. Microglial cell origin and phenotypes in health and disease[J]. Nat Rev Immunol 11,775-787 (2011).
    [27]雷万龙,袁群芳,张怀波&姚志彬.脑缺血性半影区胶质细胞和神经元重组的形态学观察[J].中山医科大学学报23,4(2002).
    [28]Town, T., Nikolic, V.& Tan, J. The microglial "activation" continuum:from innate to adaptive responses[J]. J Neuroinflammation 2,24 (2005).
    [29]Ladeby, R., Wirenfeldt, M., Garcia-Ovejero, D., Fenger, C.& Dissing-Olesen, L. Microglial cell population dynamics in the injured adult central nervous system[J]. Brain research reviews 48 (2005).
    [30]Hanisch, U.K.& Kettenmann, H. Microglia:active sensor and versatile effector cells in the normal and pathologic brain[J]. Nat Neurosci 10,1387-1394 (2007).
    [31]Calvo, M.& Bennett, D.L. The mechanisms of microgliosis and pain following peripheral nerve injury[J]. Exp Neurol 234,271-282 (2012).
    [32]Smith, H.S. Activated microglia in nociception[J]. Pain Physician 13,295-304 (2010).
    [33]Weinstein, J.R., Koerner, I.P.& Moller, T. Microglia in ischemic brain injury[J]. Future Neurol 5,227-246 (2010).
    [34]Davalos, D., Grutzendler, J., Yang, G, et al. ATP mediates rapid microglial response to local brain injury in vivo[J]. Nat Neurosci 8,752-758 (2005).
    [35]刘峰&朱长庚.小胶质细胞激活的分子机制[J].解剖科学进展9,4(2003).
    [36]Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S.& Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals[J]. J Neurosci 29,3974-3980 (2009).
    [37]Roumier, A., Bechade, C., Poncer, J.C., et al. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse[J]. J Neurosci 24,11421-11428 (2004).
    [38]Marin-Teva, J.L., Dusart, I., Colin, C., et al. Microglia promote the death of developing Purkinje cells[J]. Neuron 41,535-547 (2004).
    [39]Ransohoff, R.M.& Perry, V.H. Microglial physiology:unique stimuli, specialized responses[J]. Annu Rev Immunol 27,119-145 (2009).
    [40]Gomez-Nicola, D., Fransen, N.L., Suzzi, S.& Perry, V.H. Regulation of microglial proliferation during chronic neurodegeneration[J]. J Neurosci 33,2481-2493 (2013).
    [41]Vilhardt, F. Microglia:phagocyte and glia cell[J]. Int J Biochem Cell Biol 37,17-21 (2005).
    [42]Neumann, H., Kotter, M.R.& Franklin, R.J. Debris clearance by microglia:an essential link between degeneration and regeneration[J]. Brain 132,288-295 (2009).
    [43]Rabchevsky, A.G.& Streit, W.J. Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth[J]. J Neurosci Res 47,34-48 (1997).
    [44]Block, M.L., Zecca, L.& Hong, J.S. Microglia-mediated neurotoxicity:uncovering the molecular mechanisms[J]. Nat Rev Neurosci 8,57-69 (2007).
    [45]El Khoury, J., Toft, M., Hickman, S.E., et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease[J]. Nat Med 13,432-438 (2007).
    [46]杜景卫.小胶质细胞与缺血性脑损伤[J].中国临床康复9,2(2005).
    [47]宋进&张杰敏.几种分子在胶质瘢痕形成中作用的研究进展[J].国际神经病学神经外科学杂志34,4(2007).
    [48]Mizutani, M., Pino, P.A., Saederup, N., et al. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood[J]. J Immunol 188,29-36 (2012).
    [49]Guillemin, G.J.& Brew, B.J. Microglia, macrophages, perivascular macrophages, and pericytes:a review of function and identification[J]. J Leukoc Biol 75,388-397 (2004).
    [50]袁琼兰,李瑞祥,羊惠君&张光鹏.大鼠脑缺血再灌注时小胶质细胞或巨噬细胞的活化与增殖[J].中国神经免疫学和神经病学杂志10,6(2003).
    [51]Kettenmann, H., Hoppe, D., Gottmann, K., Banati, R.& Kreutzberg, G. Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages[J]. J Neurosci Res 26,278-287 (1990).
    [52]Denes, A., Vidyasagar, R., Feng, J., et al. Proliferating resident microglia after focal cerebral ischaemia in mice[J]. J Cereb Blood Flow Metab 27,1941-1953 (2007).
    [53]Fedoroff, S., Zhai, R.& Novak, J.P. Microglia and astroglia have a common progenitor cell[J]. J Neurosci Res 50,477-486 (1997).
    [54]Hao, C., Richardson, A.& Fedoroff, S. Macrophage-like cells originate from neuroepithelium in culture:characterization and properties of the macrophage-like cells[J]. Int J Dev Neurosci 9,1-14(1991).
    [55]Rezaie, P.& Male, D. Mesoglia & microglia--a historical review of the concept of mononuclear phagocytes within the central nervous system[J]. Journal of the history of the neurosciences 11,325-374 (2002).
    [56]Alliot, F., Godin, I.& Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain[J]. Brain Res Dev Brain Res 117,145-152 (1999).
    [57]Takahashi, K., Naito, M.& Takeya, M. Development and heterogeneity of macrophages and their related cells through their differentiation pathways[J]. Pathol Int 46,473-485 (1996).
    [58]Ginhoux, F., Greter, M., Leboeuf, M., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science 330,841-845 (2010).
    [59]Rezaie, P., Trillo-Pazos, G., Greenwood, J., Everall, I.P.& Male, D.K. Motility and ramification of human fetal microglia in culture:an investigation using time-lapse video microscopy and image analysis[J]. Experimental cell research 274,68-82 (2002).
    [60]Chan, W.Y., Kohsaka, S.& Rezaie, P. The origin and cell lineage of microglia-new concepts[J]. Brain research reviews 53 (2007).
    [61]Rezaie, P., Dean, A., Male, D.& Ulfig, N. Microglia in the cerebral wall of the human telencephalon at second trimester[J]. Cereb Cortex 15,938-949 (2005).
    [62]Navascues, J., Calvente, R., Marin-Teva, J.L.& Cuadros, M.A. Entry, dispersion and differentiation of microglia in the developing central nervous system[J]. An Acad Bras Cienc 72,91-102 (2000).
    [63]Cuadros, M.A.& Navascues, J. The origin and differentiation of microglial cells during development[J]. Prog Neurobiol 56,173-189 (1998).
    [64]Hickey, W.F.& Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo[J]. Science 239,290-292 (1988).
    [65]Unger, E.R., Sung, J.H., Manivel, J.C., et al. Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients:a Y-chromosome specific in situ hybridization study[J]. J Neuropathol Exp Neurol 52,460-470 (1993).
    [66]Lawson, L.J., Perry, V.H.& Gordon, S. Turnover of resident microglia in the normal adult mouse brain[J]. Neuroscience 48,405-415 (1992).
    [67]Ulvestad, E., Williams, K., Vedeler, C, et al. Reactive microglia in multiple sclerosis lesions have an increased expression of receptors for the Fc part of IgG[J]. J Neurol Sci 121,125-131 (1994).
    [68]Brockhaus, J., Moller, T.& Kettenmann, H. Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation[J]. Glia 16,81-90 (1996).
    [69]Kaur, C., Wu, C.H., Wen, C.Y.& Ling, E.A. The effects of subcutaneous injections of glucocorticoids on amoeboid microglia in postnatal rats[J]. Arch Histol Cytol 57,449-459 (1994).
    [70]Kennedy, D.W.& Abkowitz, J.L. Kinetics of central nervous system microglial and macrophage engraftment:analysis using a transgenic bone marrow transplantation model[J]. Blood 90,986-993 (1997).
    [71]Priller, J., Flugel, A., Wehner, T., et al. Targeting gene-modified hematopoietic cells to the central nervous system:use of green fluorescent protein uncovers microglial engraftment[J]. Nat Med 7,1356-1361 (2001).
    [72]Simard, A.R.& Rivest, S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia[J]. FASEB J 18, 998-1000 (2004).
    [73]Flugel, A., Bradl, M., Kreutzberg, G.W.& Graeber, M.B. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy[J]. J Neurosci Res 66,74-82 (2001).
    [74]Tanaka, R., Komine-Kobayashi, M., Mochizuki, H., et al. Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia[J]. Neuroscience 117,531-539 (2003).
    [75]Wirenfeldt, M., Dissing-Olesen, L., Babcock, A.A., Nielsen, M.& Meldgaard, M. Population control of resident and immigrant microgliaby mitosis and apoptosisfJ]. The American Journal of Pathology 171 (2007).
    [76]Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M.& Rossi, F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool[J]. Nat Neurosci 14,1142-1149(2011).
    [77]Jin, R., Yang, G.& Li, G. Inflammatory mechanisms in ischemic stroke:role of inflammatory cells[J]. Journal of Leukocyte Biology 87 (2010).
    [78]周丽华.中风患者的康复护理[J].中外医疗7,2(2012).
    [79]Thrift, A.G, Dewey, H.M., Macdonell, R.A., McNeil, J.J.& Donnan, GA. Incidence of the major stroke subtypes:initial findings from the North East Melbourne stroke incidence study (NEMESIS)[J]. Stroke 32,1732-1738 (2001).
    [80]Dirnagl, U., Iadecola, C.& Moskowitz, M.A. Pathobiology of ischaemic stroke:an integrated view[J]. Trends Neurosci 22,391-397 (1999).
    [81]Levine, S.R. Pathophysiology and therapeutic targets for ischemic stroke[J]. Clin Cardiol 27, 1112-24 (2004).
    [82]田成林&蒲传强.血脑屏障模型的建立于评价[J].国外医学神经病学神经外科学分册29,4(2002).
    [83]Wang, Q., Tang, X.N.& Yenari, M.A. The inflammatory response in stroke[J]. J Neuroimmunol 184,53-68 (2007).
    [84]Ichikawa, K., Tazawa, S., Hamano, S., Kojima, M.& Hiraku, S. Effect of ozagrel on locomotor and motor coordination after transient cerebral ischemia in experimental animal models[J]. Pharmacology 59,257-265 (1999).
    [85]Choi, D.W. Glutamate neurotoxicity and diseases of the nervous system[J]. Neuron 1, 623-634 (1988).
    [86]Huang, Y.C.& Feng, Z.P. The good and bad of microglia/macrophages:new hope in stroke therapeutics[J]. Acta Pharmacol Sin 34,6-7 (2013).
    [87]Yilmaz, G.& Granger, D.N. Cell adhesion molecules and ischemic stroke[J]. Neurol Res 30, 783-793 (2008).
    [88]Amantea, D., Nappi, G., Bernardi, G., Bagetta, G.& Corasaniti, M.T. Post-ischemic brain damage:pathophysiology and role of inflammatory mediators[J]. FEBS J 276,13-26 (2009).
    [89]Patel, H.C., Boutin, H.& Allan, S.M. Interleukin-1 in the brain:mechanisms of action in acute neurodegeneration[J]. Ann N Y Acad Sci 992,39-47 (2003).
    [90]Grilli, M., Barbieri, I., Basudev, H., et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage[J]. Eur J Neurosci 12,2265-2272 (2000).
    [91]Yong, V.W., Power, C., Forsyth, P.& Edwards, D.R. Metalloproteinases in biology and pathology of the nervous system[J]. Nat Rev Neurosci 2,502-511 (2001).
    [92]Zhao, B.Q., Wang, S., Kim, H.Y., et al. Role of matrix metalloproteinases in delayed cortical responses after stroke[J]. Nat Med 12,441-445 (2006).
    [93]Herrmann, O., Tarabin, V., Suzuki, S., et al. Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia[J]. J Cereb Blood Flow Metab 23,406-415 (2003).
    [94]Smith, C.J., Emsley, H.C., Gavin, C.M., et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome[J]. BMC Neurol 4,2 (2004).
    [95]Takamiya, M., Miyamoto, Y., Yamashita, T., et al. Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke-and tissue plasminogen activator-related brain damages in mice[J]. Neuroscience 221,47-55 (2012).
    [96]Kriz, J. Inflammation in ischemic brain injury:timing is important[J]. Crit Rev Neurobiol 18, 145-157(2006).
    [97]Ransohoff, R.M. Microgliosis:the questions shape the answers[J]. Nat Neurosci 10, 1507-1509 (2007).
    [98]Schilling, M., Besselmann, M., Leonhard, C., et al. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia:a study in green fluorescent protein transgenic bone marrow chimeric mice[J]. Exp Neurol 183,25-33 (2003).
    [99]Lai, A.Y.& Todd, K.G. Microglia in cerebral ischemia:molecular actions and interactions[J]. Can J Physiol Pharmacol 84,49-59 (2006).
    [100]Streit, W.J. Microglia and neuroprotection:implications for Alzheimer's disease[J]. Brain Res Brain Res Rev 48,234-239 (2005).
    [101]Iadecola, C., Zhang, F., Casey, R., Clark, H.B.& Ross, M.E. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia[J]. Stroke 27, 1373-1380 (1996).
    [102]余术宜.小胶质细胞与脑缺血[J].神经疾病与精神卫生5,4(2005).
    [103]Sugimoto, K.& Iadecola, C. Delayed effect of administration of COX-2 inhibitor in mice with acute cerebral ischemia[J]. Brain Res 960,273-276 (2003).
    [104]Hou, R.C., Chen, H.L., Tzen, J.T.& Jeng, K.C. Effect of sesame antioxidants on LPS-induced NO production by BV2 microglial cells[J]. Neuroreport 14,1815-1819 (2003).
    [105]Iadecola, C.& Alexander, M. Cerebral ischemia and inflammation[J]. Current opinion in neurology 14,89-94 (2001).
    [106]Acarin, L., Gonzalez, B., Castellano, B.& Castro, A.J. Microglial response to N-methyl-D-aspartate-mediated excitotoxicity in the immature rat brain[J]. J Comp Neurol 367,361-374(1996).
    [107]Yenari, M.A., Xu, L., Tang, X.N., Qiao, Y.& Giffard, R.G Microglia potentiate damage to blood-brain barrier constituents:improvement by minocycline in vivo and in vitro[J]. Stroke 37,1087-1093 (2006).
    [108]陈雪&曹安民.小胶质细胞对肿瘤的免疫监视作用[J].中华实验眼科杂志29,4(2011).
    [109]杨扬&姚志彬.小胶质细胞及其在阿尔兹海默病中的作用[J].解剖学研究34,4(2012).
    [110]Rapic, S., Backes, H., Viel, T., et al. Imaging microglial activation and glucose consumption in a mouse model of Alzheimer's disease[J]. Neurobiol Aging 34,351-354 (2013).
    [111]Jimenez, S., Baglietto-Vargas, D., Caballero, C., et al. Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: age-dependent switch in the microglial phenotype from alternative to classic[J]. J Neurosci 28,11650-11661 (2008).
    [112]Jaworski, T., Lechat, B., Demedts, D., et al. Dendritic degeneration, neurovascular defects, and inflammation precede neuronal loss in a mouse model for tau-mediated neurodegeneration[J]. Am J Pathol 179,2001-2015 (2011).
    [113]Jung, S., Aliberti, J., Graemmel, P., et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion[J]. Mol Cell Biol 20,4106-4114 (2000).
    [114]Cardona, A.E., Pioro, E.P., Sasse, M.E., et al. Control of microglial neurotoxicity by the fractalkine receptor[J]. Nat Neurosci 9,917-924 (2006).
    [115]Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L.& Weissman, I.L. Physiological migration of hematopoietic stem and progenitor cells[J]. Science 294,1933-1936 (2001).
    [116]Rossi, F.M., Corbel, S.Y., Merzaban, J.S., et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1[J]. Nat Immunol 6,626-634 (2005).
    [117]史其新,谢蜀生,俞莉章&郭应禄.成年大鼠联体诱导的移植耐受与嵌合状态相关性的研究[J].中华医学杂志80,4(2000).
    [118]Mezey, E., Chandross, K.J., Harta, G, Maki, R.A.& McKercher, S.R. Turning blood into brain:cells bearing neuronal antigens generated in vivo from bone marrow[J]. Science 290, 1779-1782(2000).
    [119]Watson, B.D., Dietrich, W.D., Busto, R., Wachtel, M.S.& Ginsberg, M.D. Induction of reproducible brain infarction by photochemically initiated thrombosis[J]. Ann Neurol 17, 497-504(1985).
    [120]Zhang, S., Boyd, J., Delaney, K.& Murphy, T.H. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia[J]. J Neurosci 25,5333-5338 (2005).
    [121]郑美婧,段静静,苏丽萍&王艳锋苏文.流式细胞术分选外周血细胞方法的研究[J].白血病·淋巴瘤19,5(2010).
    [122]胡俊,丁仕义&黎海涛.血脑屏障开放的检测方法[J].重庆医学32,3(2003).
    [123]石向群,杨金升,石莉,刘秀峰&包仕尧.伊文思蓝、ZO-1评估血脑屏障损伤的应用研究[J].西北国防医学杂志25,5(2004).
    [124]Lok, J., Leung, W., Zhao, S., et al. Gamma-glutamylcysteine ethyl ester protects cerebral endothelial cells during injury and decreases blood-brain barrier permeability after experimental brain trauma[J]. J Neurochem 118,248-255 (2011).
    [125]Kaya, M., Gulturk, S., Elmas, I., et al. The effects of magnesium sulfate on blood-brain barrier disruption caused by intracarotid injection of hyperosmolar mannitol in rats[J]. Life sciences 76,201-212 (2004).
    [126]聂坤,郑国光,张秀军,etal.血源细胞系中CD39的表达和功能分析[J].生物物理学报21,7(2005).
    [127]Mullen, R.J., Buck, C.R.& Smith, A.M. NeuN, a neuronal specific nuclear protein in vertebrates[J]. Development 116,201-211 (1992).
    [128]Taupin, P. BrdU immunohistochemistry for studying adult neurogenesis:paradigms, pitfalls, limitations, and validation[J]. Brain Res Rev 53,198-214 (2007).
    [129]卢慧,施文博,肖玉芳,et al.温度和Hoechst 33258浓度对人活精子标记效果的影响[J].上海交通大学学报32,4(2012).
    [130]Matsushita, K., Wu, Y., Qiu, J., et al. Fas receptor and neuronal cell death after spinal cord ischemia[J]. J Neurosci 20,6879-6887 (2000).
    [131]Maier, J.K., Lahoua, Z., Gendron, N.H., et al. The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7[J]. J Neurosci 22,2035-2043 (2002).
    [132]伍斌,言敢威&曹爱莲.疟原虫血片吉姆萨染色法的改进[J].湖南医科大学学报20,1(1995).
    [133]Grutzendler, J., Kasthuri, N.& Gan, W.B. Long-term dendritic spine stability in the adult cortex[J]. Nature 420,812-816 (2002).
    [134]Corti, S., Locatelli, F., Donadoni, C., et al. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia[J]. J Neurosci Res 70, 721-733 (2002).
    [135]Hess, D.C., Abe, T., Hill, W.D., et al. Hematopoietic origin of microglial and perivascular cells in brain[J]. Exp Neurol 186,134-144 (2004).
    [136]Kokovay, E.& Cunningham, L.A. Bone marrow-derived microglia contribute to the neuroinflammatory response and express iNOS in the MPTP mouse model of Parkinson's disease[J]. Neurobiol Dis 19,471-478 (2005).
    [137]Priller, J., Prinz, M., Heikenwalder, M., et al. Early and rapid engraftment of bone marrow-derived microglia in scrapie[J]. J Neurosci 26,11753-11762 (2006).
    [138]Brazelton, T.R., Rossi, F.M., Keshet, G.I.& Blau, H.M. From marrow to brain:expression of neuronal phenotypes in adult mice[J]. Science 290,1775-1779 (2000).
    [139]Li, Y.Q., Chen, P., Jain, V., Reilly, R.M.& Wong, C.S. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord[J]. Radiat Res 161, 143-152 (2004).
    [140]Mildner, A., Schmidt, H., Nitsche, M., et al. Microglia in the adult brain arise from Ly-6ChiCCR2+monocytes only under defined host conditions[J]. Nat Neurosci 10, 1544-1553 (2007).
    [141]Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W.& Rossi, F.M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life[J]. Nat Neurosci 10, 1538-1543 (2007).
    [142]Soulet, D.& Rivest, S. Bone-marrow-derived microglia:myth or reality?[J]. Curr Opin Pharmacol 8,508-518 (2008).
    [143]Tanaka, K., Sata, M., Natori, T., Kim-Kaneyama, J.-r.& Nose, K. Circulating progenitor cells contribute to neointimal formation in nonirradiated chimeric mice[J]. The FASEB Journal 22 (2008).
    [144]Harkness, K.A., Adamson, P., Sussman, J.D., et al. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium[J]. Brain 123 (Pt 4),698-709 (2000).
    [145]Hickey, W.F. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation[J]. Brain Pathol 1,97-105 (1991).
    [146]Petry, K.G, Brochet, B., Dousset, V., Vignes, J.R.& Boiziau, C. Inflammation induced neurological handicap processes in multiple sclerosis:new insights from preclinical studies[J]. J Neural Transm 117,907-917 (2010).
    [147]Solomon, J.N., B.Lewis, C.-a., Bahareh, A., Corbel, S.Y.& Rossi, F.M.V. Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis[J]. Glia 53 (2006).
    [148]Beers, D.R., Henkel, J.S., Xiao, Q., et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis[J]. Proc Natl Acad Sci U S A 103, 16021-16026 (2006).
    [149]Pulte, E.D., Broekman, M.J., Olson, K.E., et al CD39/NTPDase-1 activity and expression in normal leukocytes[J]. Thrombosis research 121,309-317 (2007).
    [150]Braun, N., Sevigny, J., Robson, S.C., et al. Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain[J]. Eur J Neurosci 12,4357-4366 (2000).
    [151]Wang, T.F.& Guidotti, G Widespread expression of ecto-apyrase (CD39) in the central nervous system[J]. Brain Res 790,318-322 (1998).
    [152]遇晓&焉传祝.CD39分子和免疫抑制[J].医学综述18,3(2012).
    [153]Burns, T.C., Ortiz-Gonzalez, X.R., Gutierrez-Perez, M., et al. Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation:a word of caution[J]. Stem Cells 24,1121-1127 (2006).
    [154]Malm, T.M., Koistinaho, M., Parepalo, M., et al. Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice[J]. Neurobiol Dis 18,134-142 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700