1~21日龄艾维茵肉鸡菜粕和棉粕净能预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验旨在利用化学成分及表观代谢能(AME)结合化学成分和傅里叶近红外光谱(FNIRS)建立1~21日龄艾维茵肉鸡菜粕和棉粕的净能(NE)预测模型,并比较菜粕和棉粕两种样品单独建模与合并建模的预测效果。
     测定15个菜粕和15个棉粕样品的NE,NE为维持净能(NEm)与沉积净能(NEp)之和,NEm和NEp均用比较屠宰试验测定,NEm测定结合回归法,设自由采食、限饲30%、50%、70%4个采食梯度;NEp测定结合套算法,每个样品为一个处理;各个采食梯度、基础日粮、菜粕和棉粕样品处理组均设6个重复,每个重复2只鸡,试鸡均选用平均体重为97.3±4.0 g的7日龄健康艾维茵肉公鸡,试验期均为7天。测定各个菜粕和棉粕的常规化学成分含量,并根据测定的化学成分、AME与其NE进行两种样品单独与合并的线性回归分析。将各个菜粕和棉粕样品水分都调整为9~13%的5个水分梯度,并在此水分背景下建立两种样品单独与合并的FNIRS净能预测模型。结果如下:1~21日龄艾维茵肉鸡菜粕和棉粕样品的NE分别为4.72~7.22MJ/kg DM和4.73-7.08MJ/kg DM:AME结合化学成分建立菜粕、棉粕以及两种样品合并的最佳预测方程的R2为0.995、0.998、0.995,RSD为0.052、0.033、0.052 MJ/kg DM,优于只用化学成分建立的最佳预测方程,其R2为0.973、0.985、0.973,RSD为0.123、0.100、0.123 MJ/kg DM;5个水分背景下建立菜粕、棉粕以及两种样品合并的FNIRS净能预测模型,其校正决定系数(Rcal2)分别为0.99、0.99、0.96,校正标准差(RMSEE)分别为0.042、0.068、0.139MJ/kg;交叉验证决定系数(Rcv2)分别为0.98、0.99、0.89,交叉验证标准差(RMSECV)分别为0.089、0.082、0.219MJ/kg;预测标准差(RMSEP)分别为0.091、0.089、0.377MJ/kg。
     说明测定的1~21日龄艾维茵肉鸡菜粕和棉粕的NE值是准确的;化学成分、AME结合化学成分都可建立较好的菜粕和棉粕NE预测模型,但AME结合化学成分建模效果优于只用化学成分建模;用FNIRS可建立较好的菜粕和棉粕NE预测模型,其效果与AME结合化学成分建模相当;利用化学成分、AME结合化学成分建模时,菜粕和棉粕单独及两样品合并建模效果相当,无明显差异,而用FNIRS建模时,两样品单独建模优于其合并建模。
This study was conducted to establish reliable prediction models for net energy (NE) of rapeseed meals(RSM) and cottonseed meals(CSM) based on chemical composition and apparent metabolic energy(AME) combined with chemical composition and Fourier near infrared spectroscopy (FNIRS) for Avian broilers aged from 1 to 21 days, and to compare the predictive models of the two samples separately and together.
     NE value of RSM and CSM was measured as the sum value of NE for maintenance (NEm) and NE for deposition (NEp). The NEm were measured by regression method with four treatments, which were group ad libitum to food, groups restricted feeding by 30%,50%,70%, respectively. The NEp of 15 RSM and 15 CSM were measured by the method of substitution, each of RSM and CSM was assigned as a treatment. Chicks in both trails were 7-d-old, with an average weight of of 97.3±4.0 g and randomly allotted into 36 treatments with six replications of two chicks. The experiments lasted 7 days. Proximate compositions of RSM and CSM were measured. Analyses of linear regression were carried out between NE and AME values, and chemical composition based on the two samples separately and together. Each sample with measured NE value was divided into five parts and the moisture contents of RSM and CSM were adjusted to 9%,10%,11%,12% and 13%, respectively, and the models of FNIRS were established based on the two samples separately and together The results showed as follows:the NE value of RSM and CSM for broilers aged from 1 to 21 days were from 4.72 to 7.22 MJ/kg DM and from 4.73 to 7.08 MJ/kg DM respectively.the R2 of the best regression equations for two samples separately and together based on the AME combined with chemical composition were 0.995,0.998 and 0.995, respectively, and the relative standard deviations (RSD) were were 0.052,0.033 and 0.052 MJ/kg, respectively, the R2 of the best regression equations based on chemical composition were 0.973,0.985 and 0.973, respectively, and the RSD were 0.123,0.100 and 0.123 MJ/kg, respectively, the reliable regression equations based on AME combined with chemical composition were better than the reliable regression equations only based on chemical composition; The coefficient of determination in calibration (R2cal) and root mean square error of calibration (RMSEE) of the predictive models of two samples separately and together were 0.99/0.042, 0.99/0.068,0.96/0.139 MJ/kg; The coefficient of determination in cross validation (R2CV) and root mean square error of cross validation (RMSECV) of the predictive models of two samples separately and togethe were 0.98/0.089,0.99/0.082, 0.89/0.219 MJ/kg; and the root mean square error of prediction (RMSEP) were 0.091, 0.089 and 0.377 MJ/kg respectively.
     The results indicated that the NE value of RSM and CSM were accurate and the reliable prediction models for NE of RSM and CSM were established based on chemical composition and AME combined with chemical composition and FNIRS, the reliable regression equations based on AME combined with chemical composition were better than the reliable regression equations only based on chemical composition, The accuracy of the predictive NE model by NIRS is similar to the best equation from AME combined with chemical composition,the prediction models for NE of the two samples separately and together established based on chemical composition and AME combined with chemical composition both were reliable,but the prediction models for NE of the two samples separately were better than their together established based on FNIRS.
引文
[1]Soenke M, Atakora J, Ball RO. Using Net Energy for Diet Formulation:Potential for the Canadian Pig Industry [J]. Advances in Pork Production.2005(16): 119-129
    [2]桓宗锦.肉鸡玉米和豆粕净能的测定及其预测模型的建立[D].硕士学位论文.雅安:四川农业大学,2009.
    [3]张正帆.1-21日龄黄羽肉鸡豆粕净能预测模型[J].动物营养学报,2011,23(2):250-257.
    [4]申攀.建立0-3周龄黄羽肉鸡玉米净能近红外预测模型以及用常规化学成分建立净能的回归预测模型[D].硕士学位论文.雅安:四川农业大学,2010.
    [5]王骁.回归法测定维持净能及蛋白饲料沉积净能测定中适宜替代比例的研究[D].硕士学位论文.雅安:四川农业大学,2009.
    [6]高亚俐.1-21日龄艾维茵肉鸡净能需要量研究[J].动物营养学报,2011,23(1):147-153
    [7]高月华.样品水分含量分布状态对傅立叶近红外预测模型的影响[J].中国畜牧杂志,2010,46(5):60-64
    [8]顾云飞,顾玉平,李彬等.白羽和黄羽肉鸡生产形势分析及前景展望[J].农产品加工,2007,8:6-9.
    [9]Just A. The net energy value of balanced diets for growing pigs. [J].Livestock Production Science.1982,8(6):541-555
    [10]Lofgreen G P,Garrett W N. A system for expressing net energy requirements and feed values for growing and finishing beef cattle [J]. J Anim Sci.1968,19:392.
    [11]Noblet J, Fortune H, Shi X S, et al. Prediction of net energy value of feeds for growing pigs[J]. Anim Sci,1994,72:344-354
    [12]Sakomura, N. K., Silva R. Couto H P., et al. Modeling metabolizable energy utilization in broiler breeder pullets [J].Poultry science.2003,82:419-427.
    [13]Sibbald I R. A bioassay for true metabolizable energy in feedingstuffs[Chickens] [J]Poultry Science.1976a,55(1):303-308
    [14]Ewan R C, De Goey L W. Energy value of corn and oats for young swine[J]. Journal of Animal Science,1975,40:1052-1057.
    [15]聂大娃.不同地区玉米肉仔鸡代谢能研究[D].硕士学位论文.北京:中国农业科学院,2008.
    [16]杨嘉实,冯仰廉.畜禽能量代谢[M].北京:中国农业出版社,2004
    [17]Pirgozliev, V and Rose, S P. Net energy systems for poultry feeds:a quantitative review [J]. Word's Poultry Science Journal.1999,55(3):23-36
    [18]张子仪,吴克谦,吴同礼,等.应用回归分析评定鸡饲料表观代谢能值的研究.畜牧兽医学报,1981,12(4):223-229
    [19]Carre B, Prevotel B,Leclercp B. Cell wall content as a predictor of metabolisable energy value of poultry feedingstuffs. [J] British Poultry Science.1984,25(4):561-572
    [20]Longe OG,Ogedegbe N.E. Influence of fibre on the metabolizable energy of diet and performance of growing pullets in the tropics. [J] British Poultry Science.1989,30:141-144
    [21]宋代军.鸡与鸭对饲料能量氨基酸纤维利用及其用纤维指标评定饲料TME的比较研究[D].博士学位论文.雅安:四川农业大学,2000.
    [22]张欣欣.糠麸糟渣、饼粕类饲料鸭有效能的预测模型研究[D].硕士学位论文.雅安:四川农业大学,2004.
    [23]Batterham E S,Lewis C E,Mcmillan C J,et al. Digestible energy content of cereals and wheat by-products for growing pigs. [J] Animal. Production. 1980,31(3):259-271
    [24]Morgan C A,Whittermore C T,Phillips P,et al. The prediction of the energy value of compounded pig feeds from chemical analysis. [J] Anim. Feed Sci Technol. 1987,17:81-93
    [25]Noblet T,. Perez J M. Prediction of digedtibility of nutrients and energy values of pig diets from chemical analysis. [J] J. Anim. Sci.1993,71:3389-3398
    [26]Morgan D J,Cole D J,lemis D. Energy values in pig nutrition. The prediction of energy values from dietary chemical analysis[J] Agri. Sci.1975,84:19-27
    [27]Just A, Jorgensen H,Fernandez J.A. Prediction of metablizable energy for pigs on the basis of crude nutrients in the feeds. [J] Livest.Prod.Sci.1984,11:105-109
    [28]何英.糠麸糟渣、饼粕类饲料猪有效能的预测模型研究[D].硕士学位论文.雅安:四川农业大学,2004
    [29]李瑞.蛋鸡棉籽蛋白饲料代谢能估测模型的研究[D].硕士学位论文.广州:华南农业大学,2007
    [30]Villamide M J,Fuente P,Perez D E, et al. Energy Evaluation of Eight Barley Cultivars for Poultry:Effect of Dietary Enzyme Addition. [J]. Poultry Science.1997,76:834-840
    [31]王永伟.肉仔鸡小麦表观有效能值测定[D].硕士学位论文.北京:中国农业科学院,2009.
    [32]Dale N. The metabolizable energy of wheat by-products. [J].Appl.Poult.Res. 1996,5:105-108
    [33]严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005
    [34]Xiccato G., Angela T, Carazolo A., et al. Nutritive evaluation and ingredient prediction of compound feeds for rabbits by near infrared reflectance spectroscopy[J]. Animal Feed Science and Technology,1999,77:201-212.
    [35]Valdes E V, Leeson S. Use of NIRS to measure ME in poultry feed ingredients [J]. Poultry Science,1992,71:1559-1563.
    [36]Van Barneveld R.J. Prospects for predicting feed quality for monogastrics by near infrared spectroscopy pre-delivery.Barneveld Nutrition Pty Ltd and the BECAN Consulting Group, South Maclean, QLD,4280, Australia.2002
    [37]De Boever J L, Cottyn B G, VanackerJ M., et al. The use of NIRS to predict the chemical composition and the energy value of compound feeds for cattle[J] Animal Feed Science and Technology,1995,5:243-253
    [38]Lesson S. Potential for real-time ingredient quality control procedure [J]. J Appl Poultry Res.1997,(6):501-506
    [39]Williams P C, Thompson B N. Influence of Whole meal granularity on analysis of HRS wheat for protein and moisture by near infrared reflectance spectroscopy [J]. Cereal Chemistry,1978,55 (6):1014-1037
    [40]Delwiche S R, Ditt R E, Norris K H. Sensitivity of near infrared absorption to moisture content versus water activity in starch and cellulose[J]. Cereal Chemistry,1992,69(1):107-109
    [41]陆婉珍,袁洪福,徐广通,等..现代近红外光谱分析技术[M].北京:中国石化出版社,2000
    [42]段焰青,周红.粒度对烟末总糖、总氮和烟碱含量NIRS预测值的影响[J].烟草科技.2005,7:22-24
    [43]李鑫.水分、粒度对玉米和小麦傅立叶近红外预测模型准确性响的研究[D].硕士学位论文.雅安:四川农业大学,2006.
    [44]韩冉.傅立叶近红外测定豆粕、菜籽粕的常规化学成分以及粒度模型的影响[D].硕士学位论文.雅安:四川农业大学,2007.
    [45]Williams P C, K H Norris, D C Sobering.Determination of protein and moisture in wheat and barley by NIR transmission[J].Agric.Food chem,1985;33:239-244
    [46]李静.傅立叶近红外测定麦麸、棉粕常规化学成分及样品水分对模型预测效的影响[D].硕士学位论文.雅安:四川农业大学,2007.
    [47]李勇.近红外分析模型稳健性研究[D].硕士学位论文.杨陵:西北农林科技大学,2005
    [48]张丽英.饲料分析及饲料质量检测技术[M].北京:中国农业出版社,2003.
    [49]Balnave D. General principles and assumptions of calorimetry.1974, pages 1-23 in Energy Requirements of Poultry. Morris, T R and Freeman, B M, ed. British Poultry Science, Edinburgh
    [50]Sakomura. N.K., Resende K. T.,Fernandes, J. B.Net Energy Requirement Models for Broiler Breeders, Laying Hens and Broilers. [M].Proceedings of the 15th European Symposium on poultry nutrition, Balatonfured, Hungary,25-29 September,2005,p459-461
    [51]王和民,霍启光等.肉用雏鸡在绝食条件下的卵黄囊营养和维持需要[J].畜牧兽医学报,1994,25(1):15-19
    [52]邓雪娟.肉仔鸡饲料原料可消化氨基酸和代谢能的生物学评定及可加性研究[D].博士学位论文.北京:中国农业科学院,2008
    [53]杨英,刘金华,许昌明,等.爱拔益加父母代肉种鸡对几种蛋白饲料能量和氨基酸的利用率[J].饲料工业,2001,22(7):28-30
    [54]蒋守群,林映才,丁发源,等.黄羽肉鸡饲料代谢能的研究[J].中国畜牧杂志.2002,38(5):26-27
    [55]De Groote, G. A comparison of a new net energy system with the metabolisable energy system in broiler diet formulation, performance and profitability[J]. British Poultry Science,1974,15:75-95.
    [56]Sarmiento F L, MacLeod M G. True metaboliable energy, heat increment and net energy valuesof two high fibre foodstuffs in cockerels [J] British Poultry Science,2000,41:625-629
    [57]陈玉娟.应用傅里叶近红外及化学成分建立0~3周龄黄羽肉鸡棉粕净能预测模型的研究[D].硕士学位论文.雅安:四川农业大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700