不同生态区蓝狐常规饲料营养价值评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饲料是蓝狐人工饲养的基础,其营养价值直接影响蓝狐的生产性能及产品质量。目前,我国蓝狐饲料的营养价值评价尚处于初级阶段。本研究使用化学分析法和动物试验法分别评价我国蓝狐常用饲料的营养价值,为充分利用饲料资源、合理配制日粮提供理论依据。
     本研究包括三个试验:
     试验一:化学分析法评价我国蓝狐常规饲料的营养价值。2009年12月至2011年6月期间,到山东省、河北省、天津市、辽宁省、吉林省、黑龙江省、内蒙古自治区等地的几个大型蓝狐饲养基地进行了饲料资源利用情况调查,采集到蓝狐饲料原料样品6类51种96个。测定水分、干物质、粗脂肪、粗蛋白质、粗灰分、钙、总磷的含量,并此为变量,进行主成分分析及聚类分析。结果表明:鸡骨架、鸭骨架、猪骨泥、牙鲆排、大麻哈鱼排、碟鱼排、小黄花鱼头、明太鱼排、虾蛄的营养成分较接近;红娘鱼、安康鱼、牙鲆、大黄花鱼、海杂鱼、虾虎鱼、小黄花鱼、沙蚕的营养成分较相似;狐狸油、羊油、鸡油、鸭油、猪油、大豆油、鸡肠的营养成分较相似;牛肝、鸡肝、鸭肝的营养成分较相似。
     试验二:动物试验法评价不同来源蛋白质、脂肪饲料对育成期蓝狐生产性能及血清生化指标的影响。选择55日龄蓝狐80只(公母各半),随机分为4个处理(P植F植、P植F动、P动F植、P动F动)。各处理组日粮营养水平基本一致,蛋白质、脂肪来源不同(P植为豆粕、玉米蛋白粉、玉米胚芽粉,P动为鱼粉、鸡肉粉、肉骨粉,F植为豆油,F动为猪油)。预饲期16天,试验期58天。结果表明:(1) P植组干物质、粗蛋白质、总能消化率和干物质采食量显著高于P动组(P<0.05),血清尿素氮、料重比极显著高于P动组(P<0.01),蛋白质生物学价值、血清总胆固醇极显著低于P动组(P<0.01);(2)雄性蓝狐F植组干物质消化率极显著高于F动组(P<0.01),粗脂肪、总能消化率和血清总蛋白质显著高于F动组(P<0.05),氮沉积、净蛋白质利用率、蛋白质生物学价值、血清总胆固醇、干物质采食量极显著低于F动组(P<0.01);雌性蓝狐F植组粗蛋白质消化率、血清葡萄糖显著高于F动组(P<0.05),氮沉积、净蛋白质利用率、蛋白质生物学价值极显著低于F动组(P<0.01)。
     试验三:动物试验法评价不同来源蛋白质、脂肪饲料对冬毛期蓝狐生产性能、血清生化指标及毛皮质量的影响。选择129日龄蓝狐80只(公母各半),分为4个处理。试验设计同试验二。预饲期17天,试验期64天。结果表明:(1) P植组干物质、粗蛋白质、总能消化率显著高于P动组(P<0.05),尿氮、血清尿素氮、料重比极显著高于P动组(P<0.01),粪氮、氮沉积、净蛋白质利用率、蛋白质生物学价值、日增重、干皮长、毛皮品质极显著低于P动组(P<0.01),血清总胆固醇、体长显著低于P动组(P<0.05);(2)雄性蓝狐F植组粗蛋白质消化率显著高于F动组(P<0.05),尿氮、血清总蛋白极显著高于F动组(P<0.01),血清总胆固醇显著低于F动组(P<0.05);雌性蓝狐F植组粗蛋白质、粗脂肪消化率显著高于F动组(P<0.05),总能消化率、尿氮、血清葡萄糖、血清总蛋白、料重比极显著高于F动组(P<0.01),蛋白质生物学价值、日增重极显著低于F动组(P<0.01),体长、干皮长显著低于F动组(P<0.05)。
     综上所述,本研究制定了蓝狐常规饲料营养成分表,绘制了我国蓝狐常规饲料营养成分相似性图谱,为蓝狐养殖企业就近低成本选择饲料原料提供理论依据。动物试验的结果显示,育成期和冬毛期蓝狐均表现出动物性蛋白质饲料的饲养效果优于植物性蛋白质饲料,故实际生产中,不能为了追求低成本而过多使用植物性蛋白质饲料。冬毛期雌性蓝狐猪油的饲养效果优于豆油,故建议多使用猪油。冬毛期雄性蓝狐和育成期蓝狐猪油和豆油能够得到相似的饲养效果,故养殖企业可以根据价格等其他因素适当选择。
As the fundamental element of blue fox farming, the feeding, especially its nutrient value, affectsthe productive performance and products quality directly. However, the evaluation of feed for blue foxis still at an early stage in China. In this study, we tried to evaluate the nutrient values of certainfeedings which are commonly used in blue fox farming using methods of chemical analysis andevaluation in vivo, expecting to provide useful advices for feeding selection of blue fox farmingbusiness.
     Three tests were conducted in this study:
     Test1: The nutrient value evaluation of normal feedings for blue foxes in China using methods ofchemical analysis. The test was conducted from December,2009to June,2011, when the utilization offeeding resources in Shandong, Hebei, Tianjin, Liaoning, Heilongjiang, Inner Mongolia et al, whereblue foxes are widely raised.96animal feedstuff samples of51species from6types were collected andanalysed for moisture, DM,EE,CP, crude ash, Ca and TP. Taking the nutrient content as variables, weconducted the principal component analysis and cluster analysis using SAS. The results showed asfollows: The nutrient values of Chicken skeleton, Duck skeleton, Pig bone paste, Soleus bone, Chumsalmon bone, Butterflyfish bone, Head of small yellow croaker, Walleye pollack bone, and Squilla wereclose. Lepidotrigla, Anglerfish, Soleus, Large yellow croaker, Low-value small fish, Gobiidae, Smallyellow croaker, Clamworm had similar nutrient values. Fox oil, Sheep oil, Chicken oil, Duck oil, Lard,Soybean oil had similar nutrient values. Chicken liver, Duck liver, Beef liver had similar nutrient values.
     Test2: Effects of different dietary protein and fat sources on the blue foxes of growing periodusing evaluation in vivo.80blue foxes of55-day-age with similar body weight were selected andrandomly divided into4groups with10males and10females each. The nutrient levels of different dietswere consistent despite different protein and fat resources. Two dietary protein sources were plantprotein(soybean meal, corn protein meal and corn germ meal) and animal protein (fish meal, chickenmeal and bone meat meal), two dietary fat sources were soybean oil and lard, in four kinds ofexperimental diets (P plant+F plant, P plant+F animal, P animal+F plant, P animal+F animal). Theexperiment included preset period for16days and test period for58days. The results showed as follows:(1) Digestibility coefficients of dry mass, protein and energy, dry matter intake(P<0.05)in P plant groupwere significantly higher than P animal group, BUN and feed-weight ratio of P plant group weresignificantly higher than that of P animal group(P<0.01), but biological value of protein, serum albumin,efficiency of feed utilization in P plant group were extremely significantly lower than P animalgroup(P<0.01).(2) Digestibility coefficients of dry matter(P<0.01),digestibility coefficients of fat andenergy and total serum protein(P<0.05) in F plant group (bean oil group) were higher than F animalgroup (lard group), but nitrogen retention, net protein utilization, biological value of protein, totalcholesterol and daily matter intake(P<0.01) in F plant group were lower than F animal group for maleblue fox. Digestibility coefficients of protein and blood glucose(P<0.05) in F plant group were higher than F animal group, but nitrogen retention, net protein utilization and biological value ofprotein(P<0.01) in F plant group were lower than F animal group for female blue fox.
     Test3: Effects of different dietary protein and fat sources on the blue foxes of growing-furringperiod using evaluation in vivo.80blue foxes of129-day-age with similar body weight were selectedand randomly divided into4groups with10males and10females each. The trial design was the sameas test2. The experiment included preset period for17days and test period for64days. The resultsshowed as follows:(1) During the growing-furring period, digestibility coefficients of dry matter, proteinand energy(P<0.05),urine nitrogen, blood glucose, blood total protein and feed-weight ratio(P<0.01) inP plant group were significantly higher than P animal group, while fecal nitrogen, nitrogen retention, netprotein utilization, biological value of protein, gain per day, skin length and fur quality(P<0.01),andblood total cholesterol and final body length(P<0.05) in P plant group was extremely significantly lowerthan P animal group.(2) Digestibility coefficients of protein(P<0.05), urine nitrogen and blood totalprotein(P<0.01) in F plant group were higher than F animal group, but blood total cholesterol (P<0.05)in F plant group were lower than F animal group for male blue fox. Digestibility coefficients of proteinand fat(P<0.05), digestibility coefficients of energy, urine nitrogen, blood glucose, total blood protein,and feed-weight ratio(P<0.01) in F plant group was higher than F animal group, while biological valueof protein and gain per day(P<0.01),and final body length and skin length(P<0.05) in F plant group waslower than F animal group for female blue fox.
     In conclusion, the nutritional contents of common blue feeds were determined. Two mapsdisplaying the similarity among the feeding resources for blue foxes in China were drawn to offer thetheory basis for blue fox farming business to choose their feed resources wisely. Through animalexperiments, we found that animal protein is better than plant protein for blue fox both in growing andgrowing-furring period. Lard is better than soybean oil for female blue fox in growing-furring period.For male blue fox in growing-furring period and blue fox in growing period, lard and soybean oil aresimilar.
引文
1.步长英,孙瑞峰,李同树.丝兰皂甙对肉仔鸡氮代谢的影响[J].江西农业大学学报,2008,30(1):99-103.
    2.蔡健森.蛋白来源对早期断奶羔羊生产性能和器官发育及血清生化指标的影响[D].硕士学位论文.北京:中国农业科学院,2007.
    3.陈文,呙于明,黄艳群.玉米油和猪油对肉鸡生产性能、屠宰性能及血清生化指标的影响[J].动物营养学报,2011,07:1101-1108.
    4.陈代文,吴秀群,张克英,等.不同种类脂肪对早期断奶仔猪生产性能的影响[J].四川畜牧兽医,2003,30(B09):35-37.
    5.陈立敏.饲粮营养水平对育成期蓝狐生产性能和营养物质消化代谢的影响[D].硕士学位论文.北京:中国农科院,2001.
    6.陈萍.日粮脂肪类型和水平对生长肉兔生长发育、营养物质利用及肉质的影响[D].硕士学位论文.泰安:山东农业大学,2004.
    7.陈喜斌.饲料学[M].北京:科学出版社,2003.
    8.崔国印,王兴成,安娟娟,等.豆腐代替动物性饲料饲喂水貂的消化试验[J].经济动物学报,1991,3:2-3.
    9.崔虎,张铁涛,张志强,等.饲粮蛋白质水平对育成期蓝狐生长性能及营养物质消化代谢的影响[J].动物营养学报,2011,23(08):1439-1445.
    10.董国忠,杨育才,彭远义,等.饲粮因素对早期断奶仔猪蛋白质和脂肪消化率、腹泻和生产性能的影响[J].养猪,1999,4:2-5.
    11.董国忠.指示剂法和套算法计算饲料养分消化率公式的推导和应用[J].中国饲料,1996,3:30-31
    12.窦宝艳.华隆牌毛皮动物专用饲料应用及推广研究[D].硕士学位论文.哈尔滨:东北林业大学,2008.
    13.范玉林,朴厚坤,任东波.黄渤海地区水貂海鱼类饲料营养成分分析[J].毛皮动物饲养,1992,3:1-3.
    14.方热军,王康宁,印遇龙等.体外透析法评定饲料磷的透析率及其可透析磷预测模型研究[J].广西农业生物科学,2004,23(4):265-269.
    15.耿业业,李光玉,孙伟丽,等.蓝狐常用干粉蛋白饲料适口性的比较研究[J].畜牧与饲料,2008,2:9-10.
    16.耿业业.育成期蓝狐脂肪消化代谢规律的研究[D].博士学位论文.北京:中国农业科学院,2011.
    17.关紫烽,姜波,白卉.食用动物油与植物油中脂肪酸组成的比较研究[J].中国公共卫生,2002,18(12):1438.
    18.郭冬生,彭小兰,夏维福.日粮蛋白来源与蛋白水平对断奶仔猪生产性能的影响[J].黑龙江畜牧兽医,2009,6:44-45.
    19.郭亮,安秀芳,李淑英等.玉米蛋白粉营养价值评定及其评定技术的研究[J].中国畜牧兽医.2004,31,3:16-18.
    20.郭亮,邢建军.套算法测定玉米干酒糟在生长猪的表观消化能[J].中国饲料,2004,8:19-20.
    21.郭永佳.动物性饲料是养好狐的基础[J].特种经济动植物,2003,9:2.
    22.何瑞国,麻易良,王艳青等,猪消化代谢试验对糙米营养价值的研究[J].华中农业大学学报.1994,13(3):268-273
    23.胡迪先.根据饲料中化学成分推算代谢能值[J].中国饲料,1995,12:23
    24.胡振声,孙震.丹麦的水貂用主要饲料营养成分[J].辽宁畜牧兽医,2003,1:28
    25.靳世厚,杨嘉实.狐的能量、蛋白质需要量及其饲料配制技术的综合研究报告[J].经济动物学报,1998,2:10-13.
    26.李德发主编.中国饲料大全[M].北京:中国农业出版社,2001
    27.李德发主编.猪的营养(第二版)[M].北京:中国农业科学技术出版社,2003
    28.李冬梅,耿忠诚,于亚洲.日粮中添加半胱胺对肉羊血液生化指标及胴体品质的影响[J].黑龙江八一农垦大学学报,2007,19(5):58-61.
    29.李光玉,闫喜军等.高效养狐技术一本通[M].北京:化学工业出版社,2008
    30.李光玉,杨福合.影响毛皮动物毛皮质量的因素[J].特种经济动植物,2011,11:2-3.
    31.李红军.那西肽对肉仔鸡生长性能的影响及其作用机理的探讨[D].硕士学位论文.杭州:浙江大学,2004.
    32.李建国,冯仰廉,莫放,等.粗料型日粮真胃灌注棕榈油对肉牛能量和蛋白质转化效率影响的初步研究[J].畜牧兽医学报,2000,31(5):385-389.
    33.李杰,李凌.家禽饲料代谢能的研究Ⅴ日粮和小麦麸对鸡和水禽代谢能的比较[J].东北农学院学报,1984,3:91-95
    34.李娟娟,佟建明,董晓芳,等.油脂类型和日粮能量对肉仔鸡生长性能和脂肪沉积的影响[J].动物营养学报,2008,(5):501-508.
    35.李娟娟.油脂类型和日粮能量及其互作对肉仔鸡脂肪代谢的影响[D].硕士学位论文.北京:中国农业科学院,2008.
    36.李明元,王康宁.用纤维等饲料成分预测植物性蛋白饲料的猪消化能值[J],西南农业学报,2000,13(增刊):41-50.
    37.李小亭.鸡饲料代谢能值离体测定法的初步研究[J].畜牧与兽医,1989,21(2):57-58.
    38.刘佰阳,李光玉,张海华,等.不同脂肪对育成期蓝狐生产性能及消化代谢的影响[J].经济动物学报,2007,3:125-129.
    39.刘庆生,王加启,卜登攀,等.多不饱和脂肪酸对动物血脂代谢与抗氧化性能影响研究进展[J].中国饲料,2009,8:7-10.
    40.刘源,安星兰,王志红,等.不同蛋白质来源配合饲料对犬饲喂效果及养分消化率研究[J].实验动物科学与管理,2004,21(4):22-24.
    41.罗洪明,陈代文.不同蛋白水平对早期断奶仔猪生产性能、血液生化指标的影响[J].饲料研究,2005,8:3-8.
    42.马永兴,付志新,张军.狐狸养殖与疾病防治技术[M].北京:中国农业大学出版社,2010.
    43.聂大娃,赵养涛,武书庚等.套算法测定玉米代谢能适宜的玉米替代比例研究[J].动物营养学报,2008,5:606-610.
    44.彭椒华.蚯蚓渣饲喂肉鸡的消化代谢试验[J].饲料广角,2008,21:35-37.
    45.朴厚坤,王树志,丁群山.实用养狐技术[M].北京:中国农业出版社,2004.
    46.乔云芳.谷氨酞胺对肉仔鸡生长性能和肉质的影响及其机理研究[D].硕士学位论文.杭州:浙江大学,2006.
    47.宋代军,王康宁,曾静康,等.肉鸭肉鸡常用植物饲料TME的比较研究[J].西南农业大学学报,2000,2:134-136.
    48.宋代军,王康宁,周安国,等.用纤维等饲料成分预测鸭饲料TME的研究[J].四川农业大学学报,2000,18(1):65-67.
    49.苏继影.提高早期断奶仔猪脂肪利用效果的研究[D].硕士学位论文.哈尔滨:东北农业大学,2006.
    50.苏振渝,王光,王利华,等.狐配合饲料的研制与应用[J].经济动物学报,2003,4:4-6.
    51.孙伟丽,耿业业,刘晗璐等.蓝狐对不同来源的蛋白质饲料干物质和粗蛋白质表观消化率的比较研究[J].动物营养学报,2009,21(6):953-959.
    52.孙伟丽,李光玉,刘凤华,等.蓝狐对11种鲜饲料原料中干物质和粗蛋白质表观消化率的研究[J],动物营养学报,2011,23(9):1519-1526.
    53.唐玲,李德发,郑春田等.不同玉米日粮回肠表观代谢能比较[J].中国饲料,2000,5:14-16.
    54.唐茂妍.胃蛋白酶一胰酶两步法体外评定加酶饲料蛋白质消化率的研究[D].硕士学位论文.南京农业大学,2002.
    55.田河山,李伟格.通过鸡饲料中化学成分推算代谢能含量的研究[J].中国饲料,1995,2:17-18.
    56.佟煜人,钱国成等.中国毛皮兽饲养技术大全[M].北京:中国农业科技出版社出版,1990.
    57.王成章,王恬.饲料学[M].北京:中国农业出版社,2003.
    58.王芳,陈胜可,冯国生,等.SAS统计分析与应用[M].北京:电子工业出版社,2011.
    59.王光,王利华,苏振渝,等.黄姑鱼、海鲶鱼和白鱼的营养成分测定[J].经济动物学报,2006,10(2):92-93.
    60.王丽娟,马秋刚,计成.体外消化过程中低分子量寡肽释放量与饲料品质的关系[J].农业生物技术学报,2004,12(4):416-421.
    61.王丽娜.不同蛋白源在早期断奶仔猪饲粮中的应用效果[D].硕士学位论文.哈尔滨:东北农业大学,2006.
    62.王利华,苏振渝,潘庆杰,等.畜禽副产品作为水貂、狐饲料的研究[J].经济动物学报,2002,6(4):14-16.
    63.王利华,苏振渝,潘庆杰,等.作为水貂、狐饲料的禽副产品[J].养殖技术顾问,2003,4:39.
    64.王宁娟.饲用酶制剂生物学价值评价技术研究[D].博士学位论文.北京:中国农业科学院,2009.
    65.王鹏宇.产蛋鸡饲料能量、蛋白质评定方法研究之一[D].硕士学位论文.陕西:西北农林科技大学,2010.
    66.吴克谦,陈雪秀,张子仪.鸡饲料中非营养物质代谢率及其与表观代谢能值的回归分析[J].中国畜牧杂志,1981,2:1-4.
    67.夏丹.低温和能量对育成蛋鸭生产性能及生化指标的影响[D].硕士学位论文.哈尔滨:东北农业大学,2007.
    68.谢国强,何余勇,陈匡辉等.籽粒苋秸杆粉饲喂三元杂交猪效应及消化试验研究初报[J].江西农业大学学报.1999.21(2):198-202.
    69.杨凤主编.动物营养学(第二版)[M].北京:中国农业出版社,2006
    70.杨嘉实,张洪如,靳世厚.狐各生物学时期典型饲粮配方及营养水平推荐值[C].全国首届特产动物营养学术讨论会文集.1990.
    71.要秀兵.不同动物蛋白源在早期断奶仔猪日粮中的应用效果研究[D].硕士学位论文.新疆:新疆农业大学,2009.
    72.尹清强,马振凯.育成期雄性蓝狐适宜蛋白水平研究[J],中国兽医学报,1990,10(4):387-391.
    73.于会民,李德发,管武太,等.不同脂肪对肉鸡营养素沉积、体组成和血清代谢物的影响[J].畜牧兽医学报,1998,4:17-27.
    74.张冠相,卢向东,王维胜.蓝狐育成期干粉配合料的研究[J].林业科技.1996,5:33-35.
    75.张丽英.饲料分析及质量检测技术[M].北京:中国农业大学出版社,2007.
    76.张铁鹰.植酸酶体外消化评定技术的研究[D].博士学位论文.北京:中国农业科学院.2002.
    77.张元跃.利用极大似然估计值评定饲料营养价值[J].畜牧兽医学报,1996,27(3):220-225.
    78.张志强.日粮蛋白质水平对蓝狐繁殖性能和营养物质消化代谢的影响[D].硕士学位论文.北京:中国农业科学院.2011.
    79.张子仪,吴可谦,吴同礼,等.应用回归分析评定鸡饲料表观代谢能值的研究[J].畜牧兽医学报,1981,12(4):223-224.
    80.赵海祥,冯健,宁毅,等.大豆粕替代鱼粉在吉富罗非鱼稚鱼实用饲料中的效果评价[J].动物营养学报,2011,10:1840-1846.
    81.周华英,陈可容,张慎荣.鸭真代谢能测定条件的研究[J].四川农业大学学报,1991,9(3):452-457.
    82.周歧存,麦康森,刘永坚,等.动植物蛋白源替代鱼粉研究进展[J].水产学报,2005,3:404-410.
    83.邹芳,余冰,何军,等.不同脂肪源日粮对大鼠生长及餐后糖脂代谢的影响[J].动物营养学报,2009,21(5):769-776.
    84. Adeola O.,Ragland D.,King D. Feeding and excreta collection techniques in metabolizable energyassays for ducks[J].Poult.Sci,1997,76(5):728-732
    85. Ahlstr m., Skrede A. Feed with divergent fat:carbohydrate ratios for blue foxes (Alopex lagopus) andmink (Mustela vison) in the growing-furring period[J]. Norway Journal of Agricultural Science.1995,9:115-126.
    86. Ahlstr m., Skrede A.. Fish oil as an energy source for blue foxes (Alopex lagopus) and mink(Mustela vison) in the growing-furring period[J]. Journal of Animal Physiology and AnimalNutrition,1995,74(1-5):146-156.
    87. Allison J B.Biological evaluation of proteins[J].Adv Prot Chem,1949,5:194.
    88. Aufrère J, Graviou D, Demarquilly C, et al. Near infrared reflectance spectroscopy to predict energyvalue of compound feeds for swine and ruminant[J]. Animal Feed Science Technology,1996,62(2-4):77-90
    89. Bassett, C. F. Bur. Anim. Ind., Fur Anim. Exp. Stn., Saratoga Springs, N. Y. Unpublished data. U. S.1951.
    90. Boisen S,Fermandez J A.Prediction of the apparent ileal digestibility of protein and amino acids infeedstuffs and feed mixtures for pigs by in vitro analyses[J]. Anim Feed Sci Technol,1995,51:29-43.
    91. Boisen S,Fermandez J A.Prediction of the total tract digestibility of energy in feedstuffs and pig diets byin vitro analyses[J]. Anim Feed Sci Technol,1997,68:277-286.
    92. Bruno-Soares A M, Murray I, Paterson R M, et al. Use of near infrared reflectance spectroscopy(NIRS)for the prediction of the chemical composition and nutritional attributes of green crop cereals[J]. AnimalFeed Science and Technology,1998,75(1):15-25.
    93. Buchanan R A.In vivo and in vitro methods of measuring nutritive value of leaf-proteinpreparations[J].Br J Nutri,1969,23:141-167.
    94. Carré B., Prevotel B., Leclercq B. Cell wall content as a predictor of metabolizable energy value ofpoultry feeding stuffs[J].British Poutry Science,1984,25:561-572.
    95. Cave N. A. Bioavailability of Amino Acids in Plant Feedstuffs Determined by In Vitro Digestion, ChickGrowth Assay, and True Amino Acid Availability Methods[J]. Poultry Science,1988,67(1):78-87.
    96. Dahlman T, Valaja J, Nieml P, Jalava T. Influence of protein level and supplementary L-methionineand lysine on growth performance and fur quality of blue fox (Alopex lagopus)[J]. Acta Agric.Scand.2002,52,174-182.
    97. Dahlman T. Protein and amino acids in the nutrition of the growing-furring blue fox[D]. Ph.D.Thesis.Finland:Department of Animal Science,University of Helsinki,2003.
    98. Dahlman T., Valaja J., Jalava T, Skrede A. Growth and fur characteristics of blue foxes (Alopex lagopus)fed diets with different protein levels and with or without DL-methionine supplementation in thegrowing-furring period [J]. Can. J. Anim. Sci.2003,83,239-245.
    99. Ewan R.C. Predicting the energy utilization of diets and feed ingredients by pigs[J]. Animal physiologyNutrition,1989,29:215-218.
    100. Freeman C P. Properties of fatty acids in dispersions of emulsified1ipid and bile salt and thesignificance of these properties in fat absorption in the pig and the sheep[J]. The British journal ofnutrition,1969,23:10-17.
    101. Gomes E F, Rema P, Kaushik S J. Replacement of fish meal by plant proteins in the diet of rainow troul:digestibility and growth performance[J]. Aquac,1995,130:177-186.
    102. González-Martín I, álvarez-García N, González-Cabrera J M. Near-infrared spectroscopy(NIRS) with afibreoptic probe for the prediction of the amino acid composition in animal feeds[J].Talanta,2006,69(3):706-710.
    103. Gugo ek A., Zab ocki W., Kowalska D., et al. Nutrient digestibility in Arctic fox (Vulpes lagopus) feddiets containing animal meals [J]. Brazilian Journal of Veterinary and Animal Science,2010,62(4):948-953.
    104. Han Y, Parsons C.M. Determination of available amino acid and energy in alfalfa meal, feather mealand poultry by-product meal by various methods[J].Poultry science,1990,69:1544-1552.
    105. Hersteinsson P. Population genetics and ecology of different colour morphs of arctic foxes (Alopexlagopus) in Iceland[J]. Finnisch Game Reserve,1989,46:64-78.
    106. Hewitt D.and Ford J.E. Nutritional availability of methionine,lysine and tryptophan in fish meals,asassessed with biological,microbiological and dye-binding assay procedures[J]. British Journal ofNutrition.1985,53(3):575-586.
    107. Hong-gang TANG, Li-hong CHEN, Chao-geng XIAO, et al. Fatty acid profiles of muscle from largeyellow croaker(Pseudosciaena crocea R.) of different age[J]. Journal of Zhejiang University SCIENCEB,2009,10(2):154-158.
    108. Just A, J rgensen H, Fernández J.A. Prediction of metabolizable energy for pigs on the basis of crudenutrients in the feeds[J]. Livestock Production Science,1984,11(1):105-128.
    109. K kel Reijo, P l nen Ilpo, Miettinen Maija, et al. Effects of Different Fat Supplements on Growth andHepatic Lipids and Fatty Acids in Male Mink[J]. Acta Agriculturae Scandinavica, Section A-AnimalScience,2001,51(4):217-223.
    110. Kaushik S. J., Cravedi J. P., Lalles J. P., et al. Partial or total replacement of fishmeal by soybean proteinon growth, protein utilization, potential estrogenic or antigenic effects, cholesterolaemia and fleshquality in rainbow trout, Onchorhyruhus mykiss[J].Aquaculture,1995,133(3-4):257-274.
    111. Kempen T., Bodin J. C. Near-infrared reflectance spectroscopy(NIRS) appears to be superior tonitrogen-based regression as a rapid tool in predicting the poultry digestible amino acid content ofcommonly used feedstuffs[J]. Animal Feed Science and Technology,1998,76(1,2):139-147.
    112. Kerminen-Hakkio M, Dahlman T, Niemel P, Jalava T, Rekil T, Syrj l-Qvist L. Effect of dietaryprotein level and quality on growth rate and fur parameters in mink. Processing Ⅶth InternationalScience Congress. Scientifur,2000,24:7-12.
    113. Kienzle E,Dobenecker B,Eer S.Effect of cellulose on the digestibility of high starch versus high fat dietsin dogs[J].Animal Physiology and Animal Nutrition,2001,85:174-185.
    114. Kikuchi K. Use of defatted soybean meal as a substitute for fish meal in diets of Japmieseflounder(Paralichthys olivaoeus)[J]. Aquaculture,1999,179:3-11.
    115. King R. H., Taverner M. R. Prediction of the digestible energy in pig diets from analyses of fibrecontents[J]. Animal Production,1975,21:275-284.
    116. Kirsti Rouvinen, Tuomo Kiiskinen. Influence of Dietary Fat Source on the Body Fat Composition ofMink(Mustela vison) and Blue Fox(Alopex lagopus)[J]. Acta AgricultureScandinavica,1989,39(3):279-288.
    117. Koskinen N., Tauson A. H., Sepponen J., et al. Energy metabolism of growing blue foxes [J].Scientifur,2008,32(4):149-150.
    118. Leoschke W. L. Blue Book of Fur Farming[M].USA,1987.
    119. Maga J.A.,Lorenz K.and Onayemi O. Digestive acceptability of proteins as measured by the initial rateof in vitro proteolysis[J].Journal of Food Science,1973.38:173~174.
    120. Miller, W.S. The determination of metabolisable energy. In: Morris, T.R. and Freeman, B.M.(eds)Energy Requirements of Poultry. British Poultry Science Ltd,Edinburgh,1974,91–112.
    121. Morgan C.A, Whittemore C.T., Patricia Phillips, Crooks P. The prediction of the energy value ofcompounded pig foods from chemical analysis[J]. Animal Feed Science andTechnology,1987,17(2):81-107.
    122. Morgan C.A., Whittemore C.T.,Cockburn J.H.S. The effect of level and source of protein, fibre and fatin the diet on the energy value of compounded pig feeds[J]. Animal Feed Science andTechnology,1984,11(1):11-34.
    123. Morgan C.A., Whittemore C.T.. Energy evaluation of feeds and compounded diets for pigs—A review,Animal Feed Science and Technology[J].1982,7(4):387-400.
    124. Noblet J., Perez J. M. Prediction of digestibility of nutrients and energy values of pig diets fromchemical analysis[J]. Journal of Animal Science,1993,71(12):3389-3398.
    125. Noblet J., Fortune H., Shi X S, et al. Prediction of net energy value of feeds for growing pigs[J]. Journalof Animal Science,1994,72(2):344-354.
    126. NRC. Nutrient Requirements of Mink and Foxes[S].Washington D. C.: National Academy Press,1982.
    127. Olli J J, Krogdahl A, Vaheno A. Dehulled solvent extracted soybean meals as protein source in diets forAtlantic salmon[J].Salmo salar L.Aquaculture Res,1995,26:167-177.
    128. Ostlund R E,Jr,Racette S B,Okeke A, et al.Phytosterols that are naturally persent in commercial corn oilsignificantly reduce cholesterol asorption in humans[J]. The American Journal of ClinicalNutrition,2002,75:1000-1004.
    129. Pedersen B. and Eggum B. O. Prediction of protein digestibility by an in vitro enzymatic pH statprocedure[J].Zeitschrift fur tietphysiologie,1983,49(1-5):265-277.
    130. Pfeiffer A, Henkel H, Verstegen M A. The influence of protein intake on water balance, flow rat e andapparent digestibility of nutrition at the distal ileum in growing pigs [J]. Livestock ProductScience,1995,44:179-187.
    131. Qureshia A, Khan S A, Chaudhry Z I, et al. Effects of high dietary fat on serum cholesterol and fattyliver syndrome in broilers[J]. Pakistan Veterinary Journal,2004,24(3):153-154.
    132. Rouvinen K,Kiiskinen T,Makela J.Digestibilityof different fats and fatty acids in the blue fox(Alopexlagopus)[J]. Acta Agricultur Scandinavica.1988,38:405-412.
    133. Rouvinen K. Dietary Effect of Omega-3polyunsaturated fatty acids on body composition and healthstatus of farm raised blue and silver fox[J]. Acta Agriculturae Scandinavica,1991,44:401-414.
    134. Rumsev G. L., Siwicki A. K., Anderson D. P., et al. Effect of soybeau protein on serological response,noirspecific defense mechanisms, growth and protein utilization in rainbow trout[J]. Vet lmmuuollmmuuopathol,1994,41:323-339.
    135. Sales J.,Jansses G.P.J. The use of markers to determine energy metabolisablity and nutrient digestibilityin avain species[J].World’s Poultry Sience Journal.2003,4:1-6.
    136. Sanz M., Flores A., Perez de Ayala. P., Lopez-Bote C.J. Higher lipid accumulation in broilers fed onsaturated fats than in those fed on unsaturated fats [J]. British Poultry science,1999,40:95-101.
    137. Scott,T.A.,and Boldaji,F..Coparison of inert markers chomic oxide or insoluble ash(celite)fordetemining apparent metabolizable energy of wheat–based broiler diets with or without enzymes[J].Poultry Science.1997,76:594-598.
    138. Sheffner A.L.,Eckfeldt G.A., Sspector H. The pepsin digest residue(PDR)amino acid index of netprotein utilization[J]. Journal of Nutrition,1956,60:105-120.
    139. Skrede A. Utilization of fish and animal byproducts in mink nutrition. I. Effect of source and level ofprotein on nitrogen balance, postweaning growth and characteristics of winter fur quality[J]. ActaAgriculturae Scandinavica,1978,28:105-129.
    140. Van Soest, P.J.Use of detergents in the analysis of fibrous feeds.II.A rapid method for the determinationof fiber and lignin[J].Assoc.Offic. Anal.Chem,1963,46:829.
    141. Vhile S G,Skrede A, Ahlstr m., et al. Hove K.Ileal and total tract nutrient digestibility in blue foxes(Alopex lagopus) fed extruded diets containing different protein sources[J]. Archives of AnimalNutrition,2005,59(1):61-72.
    142. Volkers K. C., Wachendorf M., Loges R., et al. Prediction of the quality of forage maize bynear-infrared reflectance spectroscopy [J]. Animal Feed Science and Technology,2003,109(1-4):183-194.
    143. Zyla K,Ledoux D R,Garcia A, et al. An in vitro procedure for studying enzymic dephosphorylation ofphytate in maize-soyabean feeds for turkey poultrs[J].British Journal of Nutrition,1995,74(1):3-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700