无人机隐身技术若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论分析和实际应用两方面入手,深入研究了无人机雷达散射截面缩减的若干关键问题。主要包括电磁散射模型的计算方法、复杂结构的电大尺寸无人机散射特性分析及计算、无人机散射特性的测量及二维成像诊断、无人机功能隐身材料设计与应用等。论文的理论分析和预估数据与研制出的实际无人机隐身测试结果基本一致,采用的隐身功能材料等综合隐身设计措施使无人机的整机RCS缩减约6dB。论文对无人机的RCS缩减具有较高的理论价值和工程设计参考价值。。
     论文作者的主要研究成果可概括为以下几个方面:
     1.结合工程应用中的实际情况讨论了目标电磁散射计算的原理和方法,包括数值计算方法(矩量法(MOM)和时域有限差分(FDTD)算法),高频算法中的物理光学法(PO)。文中对各种散射计算方法进行了分析计算,通过对同一目标各算法计算的结果,总结分析了各种算法的优缺点。根据工程实践中的经验,提出了一种无人机RCS快速预估的混合高频算法(PO+IMEC)。重点讨论了混合高频算法对凸体和凹体目标计算时的情况,为后续无人机整机的快速计算分析打下基础。
     2.从散射体电磁散射机理出发,根据无人机隐身设计工程中重点散射部位及其散射贡献,分析了无人机整机的强散射源结构分布特点,采取相应技术措施,如对机翼前缘及翼型结构散射,前缘尖劈及涂覆结构散射设计进行了重点讨论,分析得出了不同形状的机翼前缘及翼型对入射波的散射影响。论述了无人机整机RCS预估的方法和流程,最后对两种不同类型的整机模型进行了仿真计算,计算和测试结果的对比,验证了高频一体化预估算法的有效性。
     3.从微波暗室散射测量的原理和方法出发,采用时域、频域对消降噪处理措施,提高了RCS测量精度。为了充分利用暗室测量数据信息,根据转台成像原理和相关算法,完成了两种飞行器二维转台散射成像,诊断分析了飞行器的强散射源及其空间分布。完善了对散射目标的认识,有利于进一步提高对目标的赋形优化设计。
     4.从吸波功能材料的吸波机理出发讨论了现有吸波材料的应用状况及对电磁波的吸收原理。根据纳米超薄金属薄膜对电磁波的透射效应设计了一种超薄金属膜结构复合吸波功能材料,对单层复合材料和多层(双层)复合材料的谐振(干涉)吸波原理进行了分析和大量的实验测试。在暗室中将设计的三种无人机机体板材进行对比测试,测试结果与标准的金属板材相比对不同测试频段的入射电磁波均具有良好的吸收作用,吸收效能达10dB。最后通过在某型无人机上使用综合隐身措施,使整机RCS数值有明显的缩减,特别是机头峰值缩减在8dB,侧向及后向缩减了5dB,全方向RCS平均缩减约6dB。
From the theoretical analysis and practical application, the key issues of radar crosssection reduction of the UAV are detailedly studied. This dissertation is mainly involved in ofthe basic models scattering computation, the scattering analysis of the electric large modelsfor UAV, the testing of scattering targets, two-dimensional imaging models and the stealthmaterial design and using for the UAV. The analysis conclusion and results are identical facetesting results. By using the synthesis method for the UAV radar cross section reduction, itcan reduce6dB.
     The main contribution the dissertation can be summarized as follows:
     1. According to our experience in engineering applications, the electromagnetic scatteringtheory and the computing methods of calculation are discussed, which include numericalmethods (the method of moments (MOM) and the finite difference time domain (FDTD)algorithm), high-frequency algorithms such as physical optics (PO). According to ourpractices, a hybrid high-frequency algorithm (PO+IMEC) for rapid prediction estimates isprovided. In this dissertion, the real testing is finished for various scattering methods. Theadvantages and disadvantages of various algorithms for the same simulation targets aresummarized and analyzed. By Using the high-frequency hybrid algorithm the RCS predictionof the convex and concave bodies is discussed. It will become the fundation for the rapidcalculation of the UAV.
     2. From the scattering source and the scattering theory of the UAV, body parts of theUAV, such as the wing leading edge and the wing leading edge wedge structure, coated coverwing leading edge wedge andwing airfoil structure design, are analyzed. The process ofsimulation caculation for UAV is discussed. Finally, two different types of whole planemodels are simulated.
     3. The far-field test conditions, step-scan test method and the measurement data of timedomain and frequency domain noise cancellation processing are discussed. We focused on thelow frequency measurement techniques and measurement of all polarization information andprocessing technology. In order to improve the measurement data of the chamber and the usemade of information, the turntable laboratory imaging theory are discussed and analyzed. Inour anechoic chamber, two-dimensional imaging of the relevant algorithms and processes arefinished for two UAV targets. By imaging of the target will be converted intoone-dimensional scattering from two-dimensional image information. It can improve ourunderstanding of the scattering target and help to further improve the target shapingoptimization.
     4. From the absorbing mechanism of the absorbing function materials, the application ofexisting conditions and absorbing materials on the principle of electromagnetic waveabsorption are discussed. Nano-thin metal films under the transmission effect ofelectromagnetic waves are presented. A thin metal film with the structural compositeabsorbing function materials is designed. Resonance (interference) absorbing principle ofmonolayer and multi-layer (double layer) are analyzed and tested. Finally, three patterns arecompared. The absorbing rate of three patterns is10dB. By using the synthesis reductionmethods, the numerical value reduction results of UAV achieve6dB.
引文
[1]余雄庆,杨景佐.飞行器隐身设计基础讲义[M].南京:南京航空学院,1992.
    [2]童创明.计算电磁学快速方法[M].西安:西北工业大学出版社,2010.
    [3] Crispin J W, Jr., Maffett, A L. Radar cross section estimation for simple shapes[J].IEEE Proc.,53(8):833-848,1965.
    [4] Ross R A.RCS of rectangular flat planes as a function of aspect angle [J]. IEEETrans.AP,14(3):329-335,1966.
    [5] J.W.Crispin,K.M.Siegel. Method of Radar Cross Section Analysis [M]. New York,1968.
    [6] Bowman JJ, et al, ed. Electromagnetci and Acoustic Scattering by Simple Shapes[M].Asterdam, North-Holland,1969.
    [7] G. T. Ruck, D. E. Barrick, W. D. Stuart, C. K. Krichbaum.Radar Cross SectionHandbook[M]. New York: Vol.1and2, Plenum Press,1970.
    [8] Harrington R F. Field computation by moment methods[M]. The Mac MillanCompany,1968.
    [9] Yee K S. Numerical solution of initial boundary value problems involving Maxwell’sequations in isotropic media[J]. IEEE Trans. Antennas Propagat,14(3):302-307,1966.
    [10]庄钊文,袁乃昌等.军用目标雷达散射截面预估与测量[M].北京:科学出版社,2007.
    [11]U.Jakobus,F.J.C.Meyer. A hybrid physical optics method of moments numericaltechnique theory investigation and application[J]. IEEE Transactions on Antennas andPropagation,1996,45(2):282-287.
    [12]Knott E F.The thickness criterion for single layer radar absorbents [J].IEEETrans.AP,27:698-701,1979.
    [13]Gauss A.A new type of EM absorbing coating. Ballistic Res.Lab., AD A117472,1972.
    [14]何国瑜,卢才成,洪家才,邓晖.电磁散射的计算和测量[M].北京:北京航空航天大学出版社,2005.
    [15]李永俊.电磁理论的高频方法[M].武汉:武汉大学出版社.
    [16]Fawwaz T. Ulaby, M. Craig Dobson. Handbook of radar scattering statistics forterrain[M].London: Artech House,1989.
    [17]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,2001.
    [18]黄培康,殷红成,徐小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [19]聂在平,方大纲.目标与环境电磁散射特性建模(基础篇)[M].北京:国防工业出版社,2009.
    [20]张玉.电磁场并行计算[M].西安:西安电子科技大学出版社.
    [21]Yee K S. Numerical solution of initial boundary value problems involving Maxwell’sequations in isotropic media[J]. IEEE Trans. Antennas Propagat,14(3):302-307,1966.
    [22]盛新庆.计算电磁学要论[M].北京:科学出版社,2004.
    [23]吕英华.计算电磁学的数学方法[M].北京:清华大学出版社,2006.
    [24]Mur G. Absorbing boundary conditions for the finite difference approximation of thetime domain electromagnetic field equitions[J]. IEEE Trans. EMC,23(4):419-422,1981.
    [25]Berenger J P. Three dimensional perfectly matched layer for the absorption ofelectromagnetic wave[J]. J of Computational Physics, vol127:363-378,1996.
    [26]Berenger J P. Perfectly matched layer for the FDTD solution of wave structureproblems[J]. IEEE Trans. AP,44(1):110-117,1996.
    [27]Berenger J P. Improved PML for the FDTD solution of wave structure interactionproblems[J]. IEEE Trans. AP,45(3):466-473,1997.
    [28]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社.
    [29]Juan M Rius, Miguel Ferrando. High frequency RCS of complex radar targets in realtime[J]. IEEE Transactions on Antennas and Propagation,1993,41(9):1308-1318.
    [30]Ludwig A. C., Computation of radiation patterns involving numerical doubleintegration[J]. IEEE Trans. Antennas and Propagation,1968,16(6):767-769.
    [31]W.B.Gordon. Far field approximation to the Kirchhoff-Helmhotz representation of thescattered field[J]. IEEE Trans. Antennas and Propagation,1975,23(7):590-592.
    [32]W.B.Gordon. High frequency approximations to the physical optics scatteringintegral[J]. IEEE Trans. Antennas and Propagation,1994,42(3):427-432.
    [33]W.B.Gordon. Far field approximation of the Kirchoff-Helmhotz of scattered field[J].IEEE Trans. AP,23(5):864-876,1975.
    [34]A Michaeli. Elimination of infinities in Equivalent Edge current s part1: fringe currentcomponents[J]. IEEE Trans. Antennas and Propagation,1986,34(7):912-918.
    [35]Michaeli. A Equivalent edge currents for arbitrary aspects of observation[J]. IEEETrans. AP,32(3):252-258,1984.
    [36]续树均,赵维江,汪茂光.用数值方法分析一致性等效电磁流公式[J].西安电子科技大学学报,1995,22(3):285-289.
    [37]聂在平,方大纲.目标与环境电磁散射特性建模(应用篇)[M].北京:国防工业出版社,2009.
    [38]Domingo M,Rivas F. Calculation of the RCS interaction of edges and facets[J]. IEEETrans. AP,42(6):885-888,1994.
    [39]Shyh Kang Jeng. Near field scattering by physical theory of diffraction and bouncingray[J]. IEEE Trans. AP,46(4):551-558,1998.
    [40]刘世良.隐身技术与隐射飞行器[J].中国航天,2:42-45,1995.
    [41]张考,张云飞,马东立,丁林峰.飞行器对雷达隐身性能计算与分析[M].北京:国防工业出版社,1997.
    [42]张考,马东立.机翼散射特性及隐身外形设计原则[J].内部会议文章,1991.
    [43]马东立,武哲.机翼雷达散射截面计算[J].北京航空航天大学学报,1995,21(2):35-38.
    [44]张考.机身及翼身组合的行波效应[J].内部会议文章,1993.
    [45]马东立,武哲.二维机翼影区爬行波RCS的研究[J].航空学报,1995,7:68-70.
    [46]Din Kow Sun,Zoltan Cendes. Adaptive Mesh Refinement, h-Version for SolvingMultiport Microwave Devices in Three Dimensions[J]. IEEE Transactions onMagnetics,2000,36(4):1596-1599.
    [47]Nikolaos A. Golias, Antonis G. Papagiannakis. Efficient Mode Analysis with EdgeElements and3-D Adaptive Refinement[J]. IEEE Transactions on Microwave Theoryand Techniques,1994,42(1):99-107.
    [48]Bhattacharyya A K, Sengupta D L. Radar Cross Section Analysis and Control[M].Norwood, MA: Artech House,1991.
    [49]何国瑜,卢才成,洪家才,邓晖.电磁散射的计算和测量[M].北京:北京航空航天大学出版社,2006.
    [50]Leland H.Hemming, Electromagnetic Anechoic Chambers[M]. New York, USA: JohnWiley&Sons, INC.2002.
    [51]D.L.Mensa. High Resolution Radar Imaging[M]. Norwood MA:Artech House,1991
    [52]刘永坦.雷达成像术[M].哈尔滨:哈尔滨工业大学出版社,1999
    [53]张直中.微波成像术[M].北京:科学出版社,1990
    [54]张澄波.综合孔径雷达[M].北京:科学出版社,1989
    [55]S. Bill著,徐纹译.隐身飞机[M].西安:西北工业大学出版社,1988.
    [56]王自容,余大斌等.雷达隐身技术概论[M].上海航天,1999(3):21-25.
    [57]黄爱萍,冯则坤,聂建华,何华辉,干涉型多层吸波材料研究[J].材料导报,2003(4):21-24
    [58]M. T. Wu, I. C. Leu, M. H. Hon, Anodization behavior of Al film on Si substrate withdifferent interlayers for preparing Si-based nanoporous alumina template[J]. Journal ofMaterial Research,2004(3):888-895.
    [59]涂国荣,林东生,李讯,文潮,周刚等,从隐身技术的发展看隐身材料发展要求[J].隐身材料技术发展研讨会论文集,2002
    [60]朱绪宝,崔东辉.我国雷达吸波材料的发展[J].隐身技术,2001(1):2-6
    [61]戴全辉,陆红.航天隐身材料发展的几点思考[J].隐身材料技术发展研讨会论文集,2002.
    [62]康青.新型微波吸收材料[M].北京:科学出版社,2005.
    [63]S. C. Jiang, L. Y. Xing, B. T. Li, Study on a novel absorbing structure composite[J].Materials Science Forum Volumes,2005(475-479):1023-1028
    [64]Y. Mizutani, J. Kawata, K. Miwa, K. Yasue, T. Tamura, Y. Sakaguchi, Effect of thefrequency of electronmagnetic vibrations on microstructural refinement of AZ91Dmagnesium alloy[J].Journal of Material Research,2004(10):2997-3003
    [65]L. Olmedo, G. Chateau, C. Deleuze, J. L. Forveille, Microwave characterization andmodelization of magnetic granular materials[J].Journal of Applied Physics,1993(10):6992-6994
    [66]G. Viau, F. Ravel, P. Acher, F. Vincent, F. Fievet, Preparation and microwavecharacterization of spherical and monodisperse Co20Ni80particles[J]. Journal ofApplied Physics,1994(10):6570-6572
    [67]C. D. Francisco, J. M. Munoz, R. Torres, L. Torres, J. Iniguez, M. Zazo, A study of themagnetic after-effect in W-hexagonal compounds[J].IEEE Transactions on Magnetics,1993(7-8):3523-3525
    [68]J. Y. Shin, J. H. Oh, The microwave absorbing phenomena of ferrite microwaveabsorbers[J].IEEE Transactions on Magnetics,1993(7-8):3437-3439
    [69]Dawson, H. Maynard, Suffredini, P. Leonard, O’Neal, R. John, Converse, E. William,Anti-radar means and techniques[M]. United States Patent:417301
    [70]M. Suzuki, Y. Hasegawa, M. Aizawa, Y. Nakata, T. Okutani, Characterization ofsilicon carbide-silicon nitride composite ultrathin particles synthesized using a Co2laser by silicon-29magic angle spinning NMR and ESR[J]. Journal of The AmericanCeramic Society,1995(1):83-89
    [71]王晓红,关于吸波涂层实用化中若干问题之浅见[J].隐身材料技术发展研讨会论文集,2002
    [72]施冬梅,邓辉,杜仕国,田春雷,雷达隐身材料技术的发展[J].兵器材料科学与工程,2002(1):64-67
    [73]刘飚,官建国,王琦,张清杰,纳米技术在微波吸收材料中的应用[J].材料导报,2003(3):45-47
    [74]刘俊能,邢丽英,雷达吸波涂料研究进展[J].航空制造工程,1996(12):6-8
    [75]阎鑫,胡小玲,岳红,张秋禹,黄英,吕玲,雷达波吸收剂材料的研究进展[J].材料导报,2001(1):62-64
    [76]步文博,徐洁,丘泰,李远强,唐惠东,吸波材料的基础研究及微波损耗机理的探讨[J].材料导报,2001(5):14-17
    [77]赵东林,周万城,纳米雷达波吸收剂的研究和发展[J].材料工程,1998(5):3-5
    [78]何山,熊克敏,潜艇雷达隐身用吸波涂料研究[J].航空材料学报,1994(1):43-47
    [79]高正平,饶力,宽频带低反射多层吸波材料的设计[J].隐身技术,2001(1):15-20
    [80]何山,雷达吸波材料性能测试[J].材料工程,2003(6):25-28
    [81]曾祥云,马铁军,李家俊,吸波材料(RAM)用损耗介质及RAM技术发展趋势[J].材料导报,1997(3):57-60
    [82]闻立时,黄荣芳,当代薄膜技术的若干前沿问题[M].沈阳:中国科学院金属研究所,1998
    [83]L. S. Wen, R. F. Huang, D. C. Liu, X. T. Hu, X. D. Bai, C. Sun, J. Gong, Microscopicfundamentals0f electromagnetic functional metal/dielectric nanocomposite multilayerfilms[J].Surface and Coatings Technology,2000(130):100-109
    [84]白雪东,中国科学院金属研究所博士论文[J].沈阳:中国科学院金属研究所,1999
    [85]刑丽英等.隐身材料[M].北京:化学工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700