轧制镁合金棘轮行为研究及微观组织数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为最轻质的结构材料,已经广泛应用于通讯、运输及航天航空等工业领域。这些构件常处于变幅载荷、非对称循环应力或应变服役条件,因此除了要有较高比强度、比刚度,还要求其抗循环应变能力强。构件的棘轮行为是其循环塑性变形积累的表征,对棘轮行为的研究可以有效地防止构件由于过大的塑性变形而导致尺寸失效甚至破坏。
     本文通过单向热轧获得AZ31镁合金板材,研究不同压下率、不同取样角度对镁合金微观组织、力学性能、棘轮行为规律的影响。并建立了基于Voronoi图的多晶体模型,数值模拟其棘轮行为规律及微观组织变化。结果表明:
     1)轧制过后AZ31镁合金出现孪晶,压下率越大,孪晶越多,晶粒尺寸越小;随着压下率的增大,强度增高,延伸率降低,各向异性明显;取样角度为900时的强度较高,0°时延伸率较差。
     2)轧制AZ31镁合金的棘轮行为规律与挤压态类似,存在循环硬化特性,增大平均应力和幅值应力都会使得棘轮应变增大,平均应力决定了棘轮应变的水平,幅值应力决定变形量的范围,并且峰值应力是棘轮行为开动的动力。
     3)压下率越大,轧制镁合金硬化能力越强;45°取样时,轧制镁合金的抗棘轮应变性能最好。棘轮应变由压下率和取样角度共同决定,当压下率为45%时,取样角度为0°,试样过早断裂。
     4)多晶体模型中平均相对晶粒尺寸与晶粒数目成负指数关系。棘轮行为数值模拟的结果与实际试验吻合较好。多晶体的应力应变分布与外应力的大小及内部晶粒取向有关。
As the lightweight structural material, magnesium alloys have been widely used in communication, transportation and aviation industry. These components are often subjected to variable amplitude loading, non-symmetrical cyclic stress or strain conditions. So in addition to a higher specific strength and specific stiffness, also requires a smaller cycle strain. Ratcheting is the characterization of the accumulation of plastic strain in the cycle fatigue. Research on ratcheting can effectively prevent excessive size failure or damage which due to the plastic deformation.
     In this paper, the unidirectional hot rolling was applied to prepare AZ31 magnesium alloy sheets. The microstructures, static mechanical properties and ratchetings of the sheets were obtained with different reduction rates and angles. A polycrystal model which based on Voronoi figure with [0,1] fixed boundarys was built to simulate the variation of ratcheting behaviors and microstructures.
     The results shown:
     1) After rolling, twins were appeared in AZ31 magnesium alloy sheets. There were more twins and the grain size was smaller with the increase of reduction rate. Besides, the strength increased, and the elongation decreased. The anisotropy was obvious. The strength was higher when the angle was 90°while the elongation was smaller when the angle was 0°.
     2) Similar to the as-extruded AZ31 magnesium alloy, cyclic hardening occurred in the rolled sheets. The ratcheting strain of AZ31 magnesium alloy increased with mean stress and stress amplitude.The mean stress determined the level of the ratcheting strain, the stress amplitude determined the range of the deformation and the peak stress was the motive power of ratcheting.
     3) The cyclic hardening ability of sheets were better with the increase of reduction rate. The ratcheting strain was smaller when the angle was 45°. The ratcheting strain was determined by reduction rate and angle. The samples premature broke when the reduction rate was 45% and the angle was 0°.
     4) In the polycrystal model, a negative exponent relationship existed between the average relative grain size and the grain number. The results of the numerical simulation were similar to the practical ratcheting test. The stress and strain distribution of the polycrystal model was determined by the stress outside and the grain orientation inside.
引文
[1]BL Mordike, T Ebert. Magnesium properties applications potential [J]. Materials Science and Engineering A,2001,302:37-45
    [2]A A Luo. Magnesium:current and potential automotive applications [J]. Journal of the Minerals and Materials Society,2002,54(2):42-48
    [3]Y Liu. Transient plasticity and micro- structural evolution of a commercial AZ31 magnesium alloy at elevated temperatures [D]. Detroit:Wayne State University, 2003:1-24
    [4]王渠东,丁文江.镁合金研究开发现状与展望[J].世界有色金属,2004,7:8-12
    [5]曲家惠,李四军,张正贵,等.挤出退火工艺对AZ31镁合金组织和织构的影响[J].中国有色金属学报,2007,17(3):435-440
    [6]邢进,张胜男,花丽影.轧制在变形镁合金中的应用[J].科技信息,2007,35:622
    [7]陈振华.变形镁合金[M].北京:化学工业出版社,2005
    [8]涂铭旌.镁合金的应用共性基础问题[C].国际材料科学与工程学术研讨会,太原:太原理工大学,2005
    [9]杨显杰,高庆,蔡立勋,等.304不锈钢的单轴棘轮变形与失效行为研究[J].核动力工程,2004,25(5):444-450
    [10]杨显杰,罗艳,高庆,等.循环软化45碳钢和循环硬化304不锈钢棘轮行为实验研究[J].固体力学学报,2005,26(2):125-130
    [11]康国政SiCp/6061Al合金复合材料的高温单轴棘轮行为及其时间相关特性[J].复合材料学报,2006,23(2):1-8
    [12]杨显杰,高庆,向阳开,等.紫铜的非比例循环塑性变形行为实验研究[J].金属学报,1998,34(10):1055-1060
    [13]G Chen, X Chen, CD Niu. Uniaxial ratcheting behavior of 63Sn37Pb solder with loading histories and stress rates [J]. Materials Science and Engineering:A,2006, 421(1-2):238-244
    [14]X Chen, DH Yu, K Wang, et al. Experimental study on ratcheting ehavior of eutectic tin-lead solder under multiaxial loading[J]. Materials Science and Engineering:A,2005,406(1-2):86-94
    [15]X Chen, SC Hui. Ratcheting behavior of PTFE under cyclic compression [J]. Polymer Testing,2005,24(7):829-833
    [16]OS Hopperstad, M Langseth, S Remseth. Cyclic stress-strain behavior of alloy AA6060:Part I:Uniaxial experiments and modeling [J]. International Journal of Plasticity,1995,11(6):725-739
    [17]SH Im, R Huang. Ratcheting-induced wrinkling of an elastic film on a metal layer under cyclic temperatures [J]. Acta Materialia,2004,52(12):3707-3719
    [18]T Hassan, S Kyriakides. Ratcheting of cyclically hardening and softening materials:Ⅰ:Uniaxial behavior [J]. International Journal of Plasticity,1994,10 (2):149-184
    [19]T Hassan, S Kyriakides. Ratcheting of cyclically hardening and softening materials:Ⅱ:Multiaxial behavior [J]. International Journal of Plasticity,1994, 10(2):185-212
    [20]XJ Yang, GZ Kang, Q Gao, et al. On cyclic strain behavior and ratcheting of 304 stainless steel under uniaxial loading at high temperature [J]. Acta Metallurgica Sinica,1999,35 (7):698-702
    [21]L Wu, A Jain, DW Brown. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy ZK60A[J]. Acta Materialia,2008,56(4):688-695
    [22]CJ Lissenden, D Doraiswamy, SM Arnold. Experimental investigation of cyclic and time-dependent deformation of titanium alloy at elevated temperature [J]. International Journal of Plasticity,2007,23(26):1-24
    [23]P Carter. Analysis of cyclic creep and rupture. Part 1:bounding theorems and cyclic reference stresses[J]. International Journal of Pressure Vessels Piping, 2005,82(1):15-26
    [24]G Eiseneier, B Holzwarth, HW Hoppel, et al. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91[J]. Materials Science and Engineering A,2001,319/321:578-582
    [25]A Satyadevi, SM Sivakumar, SS Bhattacharya. A new failure criterion for materials exhibiting ratcheting during very low cycle fatigue [J]. Materials Science and Engineering A,2007,452/453:380-385
    [26]A Fatemi, L Yang. Cumulative fatigue damage and life prediction theories:a survey of the state of the art for homogeneous materials[J]. International Journal of Fatigue,1998,20(1):9-34
    [27]E Wei, B Postberg, T Nicak, et al. Simulation of ratcheting and low cycle fatigue [J]. International Journal of Pressure Vessels and Piping,2004,81(3):235-242
    [28]The Ameriean Soeiety of Meehanieal Engineers.ASME Boiller & Pressure Vesselcode 111, Divisionl SubseetionNB(3213.34), Class1ComPonents.1995
    [29]GZ Kang, QH Kang. Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel [J]. Mechanics of Materials,2007,39(5): 488-499
    [30]JL Cliff, D Devaraj, MA Steven. Experimental investigation of cyclic and time-dependent deformation of titanium alloy at elevated temperature [J]. International Journal of Plasticity,2007,23(1):1-24
    [31]刘宇杰.金属材料的棘轮行为研究[D].成都:西南交通大学,2004
    [32]康国政,高庆,杨显杰.不同材料的室温单轴应变循环特性和棘轮行为研究[J].机械强度,2002,24(4):608-612
    [33]罗秀芳.单轴拉压循环载荷作用下镁合金棘轮行为研究[D].南京:南京理工大学,2010
    [34]蔡力勋,刘宇杰,邱绍宇.T225NG合金的高温单轴棘轮行为研究[J].西安交通大学学报,2004,38(7):762-766
    [35]蔡力勋,牛清勇,刘宇杰.描述不锈钢材料单轴棘轮行为的一元参量体系[J].金属学报,2002,38(9):966-973
    [36]罗秀芳,杨婷慧,李政,等.单轴应力循环作用下AZ91D镁合金的棘轮行为[J].2009,19(10):1726-1732
    [37]HY Lee, JB Kim, JH Lee. Thermal ratcheting deformation of a 316L stainless steel cylindrical structure under an axial moving temperature distribution[J]. International Journal of Pressure Vessels and Piping,2003,80(1):41-48
    [38]M Kobayashi, N Ohno. Thermal ratcheting of a cylinder subjected to a moving temperature front:effects of kinematic hardening rules on the analysis[J]. International of Plasticity,1996,12(2):255-271
    [39]鹿晓阳,唐炳涛,王兆清,等.内压弯管在多轴循环外力下的棘轮应变数值分析[J].山东建筑大学学报,2008,23(2):95-98
    [40]L Taleb, G Cailletaud, L Blaj. Numerical simulation of complex ratcheting tests with a multi-mechanism model type [J]. International Journal of Plasticity,2006, 22(4):724-753
    [41]S Foletti, S Beretta, G Bucca. A numerical 3D model to study ratcheting damage of a tramcar line [J]. Wear,2010,268(5-6):737-746
    [42]徐尹杰,蔡力勋.棘轮和蠕变条件下材料的附加塑性变形行为研究[J].航空材料学报,2007,27(6):11-15
    [43]RJ Morrissey, DL McDowell, T Nicholas. Microplasticity in HCF of Ti-6Al-4V [J]. International Journal of Fatigue,2001,23:55-64
    [44]SM Yin, HJ Yang, SX Lia, et al. Cyclic deformation behavior of as-extruded Mg-3%Al-1%Zn[J]. Scripta Materialia,2008,58(9):751-754
    [45]聂德福,赵杰.AZ31镁合金疲劳裂纹扩展和过载效应[J].中国有色金属学报,2008,18(5):771-776
    [46]S Ishihara, ZY Nan, T Goshima. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy [J]. Materials science and engineering A,2007,468-470: 214-222
    [47]张永刚.有限元法发展及其应用[J].科技情报开发与经济,2007,17(11):178-179
    [48]陈锡栋,杨婕,赵晓栋,等.有限元法的发展现状及应用[J].中国制造业信息,2010,39(11):6-8
    [49]何发祥,刘浩吾.有限元法前处理技术的发展[J].水利水电科技进展,2000,20(6):15-18
    [50]龙文元,蔡启舟,魏伯康.微观组织数值模拟发展概述[J].铸造,2003,52(3)161-166
    [51]李晓丽,陈胜晖,李淼泉.金属热态塑性成形过程中组织演变的模型化研究[J].中国机械工程,2004,15(1):86-89
    [52]HN Lee, HS Ryoo. Monte Carlo simulation of microstructure evolution based on grain boundary character distribution [J]. Materials science and engineering A, 2000,281:176-188
    [53]SGR Brown. Simulation of diffusional composite growth using the cellular automation finite difference (CAFD) method [J]. Journal of Materail Science,1998,33(19):4769-4773
    [54]DJ Jarvis, SGR Brown. Modelling of non-equilibrium solidification in ternary: comparison of 1D,2D and 3D cellular qutomaton-finite difference simulation [J].Material Science and Technology,2000,16:1420-1424
    [55]刘林华,余其铮,阮立明,等.求解辐射传递方程的离散坐标法[J].计算物理,1998,15(3):35-42
    [56]陈海耿.辐射全交换面积的Monte-Carlo算法[J].冶金能源,1991,10(1):27-31
    [57]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1992
    [58]司良英,邓关宇,吕程,等.基于Voronoi图的晶体塑性有限元多晶几何建模[J].材料与冶金学报,2009,8(3):193-197
    [59]费康,张建伟ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版 社,2010
    [60]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006
    [61]陈彬,林栋樑,曾小勤,等.AZ31镁合金大压下率轧制的研究[J].锻压技术,2006,3:1-3
    [62]任晨辉,李姗,王伯健.AZ31变形镁合金轧制工艺初探[J].轻合金及其加工,2009,12:49-52
    [63]钟同圣. Python语言和ABAQUS前处理二次开发[J].郑州大学学报,2006,38(11):61-64
    [64]李秀莲,王茂银,辛仁龙,等.AZ31镁合金挤压轧制过程微观织构演变[J].材料热处理学报,2010,31(5):61-64
    [65]詹美燕,李元元,陈维平,等.AZ31镁合金轧制板材在退火处理中的组织性能演变[J].金属热处理,2007,32(7):8-12
    [66]刘劲松,竺晓华,张士宏,等.AZ31镁合金轧制板材退火后的组织与力学性能[J].材料热处理学报,2010,31(2):104-107
    [67]张志强,乐启炽,崔建忠.轧制工艺对AZ31B镁合金薄板组织与性能的影响[J].材料热处理学报,2010,31(4):90-94
    [68]徐尹杰.316L不锈钢单轴棘轮与蠕变行为研究[D].成都:西南交通大学,2006.
    [69]KS Chan. Changes in fatigue life mechanism due to soft grains and hard particles [J]. International Journal of Fatigue,2010,32(3):526-534
    [70]BL Lee, KS Kim, KM Nam. Fatigue analysis under variable amplitude loading using an energy parameter [J]. International Journal of Fatigue,2003,25(7): 621-631
    [71]TW Zhao, YY Jiang. Fatigue of 7075-T651 aluminum alloy [J]. International Journal of Fatigue,2008,30(5):834-849
    [72]谭军,李聪,孙超,等.N18锆合金的循环硬化与软化研究[C].中国核协会材料分会2007年度学术交流会,北京:中国核学会,2007:374-376
    [73]S Begum, DL Chen, S Xub, et al. Low cycle fatigue properties of an extruded AZ31 magnesium alloy [J]. International Journal of Fatigue,2009,31(4): 726-735
    [74]余琨,黎文献Mg-Al-Zn系变形镁合金轧制及热处理后的组织和性能[J].金属热处理,2002,27(5):8-11
    [75]娄花芬.铜及铜合金板带生产[M].长沙:中南大学出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700