iNOS和MMP-2在豚鼠形觉剥夺性近视中的表达变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     近200年来,对近视机制的研究一直是眼科学研究的重要课题。自1977年Wiesel首次用缝合恒河猴眼睑的方法成功诱导出形觉剥夺性近视(formdeprivation myopia,FDM)以来,随着建立近视动物模型方法的日趋完善,对近视的发生发展及转归有了深入研究。目前的研究表明:形觉剥夺主要通过局部视网膜机制来调控邻近巩膜的生长,形觉剥夺可导致视网膜上的多种神经递质与生长因子水平发生改变,它们作为一级信使作用于视网膜色素上皮细胞和脉络膜,使之产生二级信使,再作用于巩膜,进而通过影响巩膜细胞外基质(extracellularmaterial,ECM)的合成或降解,使巩膜重新塑形,眼轴过度延长,形成近视。
     形觉剥夺性近视以后极部巩膜的变薄为一个重要的特征,其主要原因是因为巩膜细胞外基质的重塑。基质金属蛋白酶(matrix metalloproteinase,MMPs)是广泛存在于动植物体内的能够降解细胞外基质(ECM)的一组锌离子依赖性蛋白酶系。已有实验表明,小鸡和豚鼠的形觉剥夺眼后极部巩膜活性MMP-2明显增加,恢复期活性MMP-2减少,提示MMP-2与形觉剥夺性近视有关。一氧化氮(NO)是近20年来新发现的视网膜神经递质,与视网膜的发育、视觉兴奋和视觉信息的传导有关。NO由一氧化氮合酶(nitric oxide synthase,NOS)催化左旋精氨酸(L-Arginine,L-Ag)而合成。Fujiis等研究发现,在新生鸡单眼形觉剥夺过程中,视网膜-色素上皮-脉络膜的三种NOS亚型中,只有诱导型一氧化氮合酶(i-NOS)表达水平明显下降,这提示i-NOS可能参与形觉剥夺性近视的形成。
     尽管iNOS和MMP-2在形觉剥夺性近视动物模型的变化已分别被证实,但是两者在形觉剥夺性近视的形成过程是否有内在联系尚未被研究。本研究拟建立豚鼠形觉剥夺性近视模型,应用免疫组织化学染色法,研究iNOS和MMP-2在形觉剥夺性近视豚鼠眼后极部的表达变化以及两者的相关性,以进一步揭示形觉剥夺性近视产生的机制,从而为近视的防治提供有价值的参考。
     材料与方法
     2周龄健康花色豚鼠60只,随机分为4组:Ⅰ组:未遮盖组;Ⅱ组:右眼遮盖3周组;Ⅲ组:右眼遮盖6周组;Ⅳ组:右眼遮盖9周组。Ⅱ、Ⅲ和Ⅳ组均以右眼为实验眼,将直径为15mm的半透明眼罩粘于豚鼠右眼周围皮肤上,并在眼罩下方留有狭长缝隙供透气用;左眼不作任何处理为自身对照组。于不同时间点检测各组豚鼠的双眼屈光度、眼轴长度,HE染色光学显微镜下观察视网膜巩膜病理变化,免疫组织化学染色法检测视网膜iNOS和巩膜MMP-2的蛋白表达。
     所有数据均用(?)±s表示,统计学处理采用SPSS13.0统计软件,双眼比较采用配对t检验,组间比较采用单因素方差分析,多个样本均数之间进行LSD两两比较,相关性采用Person积差相关分析,以a=0.05为检验水准。
     结果
     1.遮盖眼与对照眼屈光度、眼轴比较:遮盖眼由实验前远视眼渐变为近视眼,并随遮盖时间延长,近视度数加深,眼轴延长。遮盖眼与对照眼(正常眼和自身对照眼)相比在统计学上差异具有显著性(P<0.05),成功建立了实验性近视动物模型。
     2.视网膜、巩膜形态学变化:遮盖3、6、9周后,遮盖眼视网膜较自身对照眼和正常对照眼变薄,以内外核层最明显;后极部巩膜变薄、稀疏。
     3.免疫组化染色:iNOS在正常和自身对照眼豚鼠的视网膜内呈低水平表达,而在形觉剥夺近视中主要表达于视网膜节细胞层、内核层、感光细胞层和脉络膜间质组织,在神经纤维层和巩膜也有阳性着色。MMP-2主要表达于巩膜,在节细胞层、内核层、感光细胞层也有阳性着色。随着遮盖时间的延长,视网膜iNOS和巩膜MMP-2吸光度值均成增加趋势(P<0.01)。
     4.iNOS和MMP-2的相关性分析:经相关性分析发现,在形觉剥夺的不同阶段,视网膜iNOS和巩膜MMP-2蛋白表达量相关系数为r=0.769,P<0.05,提示两者蛋白表达具有明显正相关。
     结论
     1.单眼遮盖可造成豚鼠遮盖眼视网膜中i-NOS和巩膜中MMP-2表达量增加,并随遮盖时间的延长逐渐加强,与近视屈光度增加和眼轴延长趋势相一致,提示iNOS和MMP-2可能参与了形觉剥夺性近视的形成。
     2.遮盖眼视网膜iNOS和巩膜MMP-2的表达量在形觉剥夺过程中呈强的正相关。可以推测在形觉剥夺性近视的发展过程中,模糊的物像通过刺激视网膜产生包括NO在内的多种神经递质,直接或间接作用于巩膜,影响MMP-2的表达和活性,最终导致巩膜重塑和近视的形成。
Recent 200 years, the mechanism of myopia has been the focus of scientists' research issues. Since Wiesel built up form deprivation myopia (FDM) on rhesus monkey in 1977 for the first time, people have made a more in-depth research to the occurrence、development and turnover of myopia with this animal model. Current research shows that: form deprivation modulates the development of adjacent sclera mainly through local retinal control mechanism. Form deprivation can lead to changes of various neurotransmitters and growth factors in the retina. As primary messenger, these neurotransmitters and factors act on the retinal pigment epithelium and choroid to produce the secondary messenger, which act on the sclera by influencing the sclera extracellular matrix (ECM) synthesis or degradation, finally make the sclera re-shaped,axial length over-extended and myopia formed.
     Form deprivation myopia is characterized by thinning of sclera at posterior pole, which results from scleral extracellular matrix remodeling. Matrix metalloproteinases (MMPs) widely distributed in plants and animals are a group of zinc-dependent protease whose main function is to degrade the extracellular matrix. Experiments have shown that MMP-2 activity in posterior-sclera of form-deprived chicks and guinea pigs eyes increased significantly and decreased in recovery period,which means there is a realationship between MMP-2 and form deprivation myopia. Nitric oxide( NO) is a new class of retinal neurotransmitter discovered in recent years. Nitric oxide plays an important role in the development of the retina and the formation ,regulation, transmission of visual information. Nitric oxide (NO) is synthesized from L-arginine by nitric oxide synthase (NOS) .In 1998, Fujiis found that three isoforms of NOS expressed in neonatal chicken monocular form deprivated retina-pigment epithelium-choroid, but only inducible NOS( iNOS ) level decreased significantly. This indicate i-NOS may be involved in form-deprivation myopia.
     Though changes of iNOS and MMP-2 in form-deprivation myopia in animal models have been demonstrated separately, but whether or not there is an intrinsical link between iNOS and MMP-2 in form deprivation myopia has not yet been studied. Our research use immunohistochemistry to study the expression of iNOS and MMP-2 in form-deprivation myopia in guinea pig eyes and the corelation of the two by establishing FDM animal model, which in order to reveal the mechanism of form deprivation myopia and further for the prevention and treatment of myopia.
     Materials and Methods
     60 twe-week-old healthy multicolor guinea pigs were randomly divided into 4 groups. Group I: Normal control group( not occluded in both eyes ); Group II: the right eye was monocular occluded for 3 weeks; Group III: the right eye was monocular occluded for 6 weeks; Group IV: the right eye was monocular occluded for 9 weeks. All the right eyes in groups II, III, IV underwent form deprivation with translucent goggles(diameter 15mm) and the left eyes were used as control. Before and after occluded for 3 , 6 , 9 weeks, the refractive state and axial length were measured by retinoscope and A-scan ultrasonography respectively, morphological changes in form deprived guinea pigs retina and sclera was observed by routine hematoxylin-eosin (HE) staining, the expression of iNOS protein and MMP-2 protein in retina, choroid and sclera was detected by immunohistochemistry (IHC).
     The results are expressed as the mean±the standard error of the mean (SEM).All the datas were analyzed by SPSS 13.0 statistical package. Paired-Samples T test were used to analyze the difference between the experimental and control groups. One-Way ANOVA were used to analyze the difference among the four groups. The relation of two variables was analyzed by the Pearson's correlation analysis. a less than 0.05 was considered statistical significance.
     Results
     1. Comparison of refraction state and axial length between the occluded eyes and control eyes: The longer the eye was occluded, the axial length was longer, and more severe the myopia was. There was significant differences between the occluded eyes and the control ( normal and self ) eyes (P <0.05), FDM of guinea pig has been successed established.
     2. Morphology change in retina and sclera: After occluded for 3, 6, 9 weeks, the posterior retina of the occluded eyes was thinner than that of the control eyes, most obvious in inner and outer nuclear layer,the posterior sclera of the occluded eyes was thin, too.
     3. Immunohistochemistry: iNOS was low expressed in the retina in normal and self-controlled eyes, but in FDM eyes,it was mainly expressed in the retinal ganglion cell, inner nuclear, photoreceptor cell and choroid mesenchymal organization. The nerve fiber layer and sclera also had positive staining. MMP-2 was mainly expressed in the sclera, but the ganglion cell layer, inner nuclear layer and photoreceptor cell layer also had positive staining. As form deprivation time prolonged, retinal iNOS and scleral MMP-2 absorbance showed an increasing tendency (P <0.05).
     4. Correlation analysis between retinal iNOS and scleral MMP-2 absorbance: Correlation analysis showed that expression of retinal iNOS and scleral MMP-2 protein at different form deprivation stages has obvious positive correlation( r = 0.769, P<0.05)
     Conclusions
     1. The expression of iNOS in the FDM retina and MMP-2 in the FDM sclera increase according to the monocular deprivation time. This result suggest that retinal iNOS and sclera MMP-2 may be involved in the occurrence of FDM.
     2. Expression of retinal iNOS and scleral MMP-2 protein at different form deprivation stages has obvious positive correlation. We can speculate that during form deprivation myopia development process, the fuzzy object-image stimulate the retina to generate a variety of neurotransmitters including NO, which have an directly or indirectly impact of the MMP-2 expression and activity in the sclera, finally result in scleral remodeling and myopia formation.
引文
1.McBrien NA,Adams DW.A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group[J].Invest Ophthalmol Vis Sci,1997,38(2):321-333.
    2.吴君舒,钟兴武,聂昊辉,等.光学离焦和行觉剥夺对幼恒河猴正视化过程的影响[J].眼科学报,2004,20(2):118-122.
    3.Wiesel TN,Raviola E.Myopia and eye enlargement after neonatal lid fusion in monkeys[J].Nature,1977,266(5597):66-68.
    4.胡诞宁,Meeomriek SA.视网膜色素上皮-脉络膜在近视发病中的作用[J].眼视光学杂志,2000,2(4):197-200.
    5.Fujii S,Honda S,Sekiya Y,et al.Differential expression of nitric oxide synthase isoforms in form-deprived chick eyes[J].Curr Eye Res 1998;17(6):586-593.
    6.Aimes RT,Quigley JP.Matrix metalloproteinase-2 is an interstitial collagenase.Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type Ⅰ collagen generating the specific 3/4-and 1/4-length fragments[J].J Biol Chem,1995,270(11):5872-5876.
    7.Rada JA,Perry CA,Slover ML,et al.Gelatinase A and TIMP-2 expression in the fibrous sclera of myopic and recovering chick eyes[J].Invest Ophthalmol Vis Sci,1999,40(13):3091-3099.
    8.闫磐石,张金嵩,吕勇.豚鼠形觉剥夺性近视巩膜中MMP-2表达的变化[J].医药论坛杂志,2005,26(7):21-25.
    9.Shariftabrizi A,Nifli AP,Ansari M,et al.Matrix metalloproteinase 2secretion in WEHI 164 fibrosarcoma cells is nitric oxide-related and modified by morphine[J].Eur J Pharmacol.2006,13;530(1-2):33-39.
    10.Hirai Y,Migita K,Honda S,et al.Effects of nitric oxide on matrix metalloproteinase-2 production by rheumatoid synovial cells[J].Life Sci.2001,12;68(8):913-920.
    11.Yamada M,Sankoda Y,Tatsumi R,et al.Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner[J].Int J Biochem Cell Biol.2008,40(10):2183-2191.
    12.Brown DJ,Lin B,Chwa M,et al.Elements of the nitric oxide pathway can degrade TIMP-1 and increase gelatinase activity[J].Mol Vis.2004,16;10:281-288.
    13.Wiesel TN,Raviola E.Myopia and eye enlargement after neonatal lid fusion in monkeys[J].Nature,1977,266(5597):66-68.
    14.Wallman J,Gottlieb MD,Rajaram V,et al.Local retinal regions control local eye growth and myopia[J].Science,1987,237(4810):73-77.
    15.Marsh-Tootle WL,TT Norton.Refractive and structural measures of lid-suture myopia in tree shrew[J].Invest Opthalmol Vis Sci,1989,30(11):2245-2257.
    16.McFadden SA,Howlett MH,Mertz JR.Retinoic acid signals the direction of ocular elongation in the guinea pig eye[J].Vision Res,2004,44(7):643-653.
    17.Vo TD,Coleman DJ,Iwamoto T,et al.An animal model for myopia:increased axial length of rabbit eye by ultrasonically induced[J].Invest Ophthalmol Vis Sci(ARVO Suppl),1987,28(2):217.
    18.Troilo D,Judge SJ,Ridley R,et al.Myopia induced by brief visual deprivation in a new world primate-the common marmoset[J].Invest Opthalmol Vis Sci(ARVO Suppl),1990,31(2):254.
    19.Zhou G,Williams RW.Mouse models for the analysis of myopia:an analysis of variation in eye size of adult mice[J].Optom Vis Sci,1999,76(6):408-418.
    20.胡磊,李军,汪芳润.实验性近视眼研究进展[J].中国斜视与小儿眼科杂志,1996,4:92.
    21.高前应,高如尧,王培杰,等.多巴胺对兔实验性形觉剥夺性近视形成的影响[J].眼科研究,2001,19:19-22.
    22.高建华,张东果.单眼缝合致幼猫实验性近视研究[J].眼科新进展,1997,17:68.
    23.瞿佳.实验性近视研究进展[J].China Medical News,2004,19:17.
    24.史剑波,徐锦堂,夏潮涌,等.豚鼠视网膜正常结构的定量研究[J].眼科研究,1999,17(2):98-100.
    25.欧阳朝祜,褚仁远,胡文政.哌仑西平对豚鼠透镜诱导性近视眼的作用[J].中华眼科杂志,2003,39(6):348-351.
    26.戴怡康,褚仁远.哌仑西平滴眼液在兔房水中的药代动力学研究[J].眼视光学杂志,2002,4:228-230.
    27.陈悦,张金嵩,朱子诚.形觉剥夺性近视豚鼠视网膜中神经生长因子及其受体的表达[J].眼科研究,2007,25(6):439-442.
    28.徐格致,李维英,曹安民.病理性近视视网膜变性中感光细胞的凋亡[J].中华眼底病杂志,1996,12:144-146.
    29.Lin T,Grimes PA,Stone RA.Expansion of the retinal pigment epithelium in experimental myopia[J].Vision Res,1993,33(14):1881-1885.
    30.钟兴武,葛坚,陈晓莲,等.猴光学离焦性与形觉剥夺性近视眼视网膜形态及超微结构比较[J].中华眼科杂志,2005,41(7):625-630.
    31.Siegwart JT Jr,Norton TT.The time course of changes in mRNA levels in tree shrew sclera during induced myopia and recovery[J].Invest Ophthalmol Vis Sci,2002,43(7):2067-2075.
    32.Gantle A,Liu Y,Martin JE et al.Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia[J].J Biol Chem,2003,278(19):16587-16594.
    33.Becquet F,Courtois Y,Goureau O.Nitric oxide in the eye:multifaceted roles and diverse outcomes[J].Surv Ophthalmol,1997,42(1):71-82.
    34.Moncada S,Palmer RM,Higgs EA.Nitric oxide:physiology,pathophysiology,and pharmacology[J].Pharmacological Reviews.1991;43(2):109-142.
    35.Fischer AJ,Stell WK.Nitric oxide synthase-containing cells in the retina,pigmented epithelium,choroid,and sclera of the chick eye[J].J Comp Neurol.1999,1,405(1):1-14.
    36.Kim IB,Lee EJ,Kim KY,et al.Immunocytochemical localization of nitric oxide synthase in the mammalian retina[J].Neurosci Lett,1999,4,267(3):193-196.
    37.Wu J,Liu Q,Yang X,et al.Time-course of changes to nitric oxide signaling pathways in form-deprivation myopia in guinea pigs[J].Brain Res,2007,1186:155-163.
    38.朱玉广,刘双珍.形觉剥夺性近视中巩膜变化的生物学机制[J].眼科新进展,2003,23(1):46-51.
    39.Visse R,Nagase H.Matrix metalloproteinases and tissue inhibitors of metalloproteinases:structure,function,and biochemistry[J].Circ Res,2003,2,92(8):827-839.
    40.Kuzuya M,Iguchi A.Role of matrix metalloproteinases in vascular remodeling[J].J Atheroscler Thromb,2003,10(5):275-282.
    41.Jones BE,Thompson EW,Hodos W,et al.Scleral matrix metalloproteinases,serine proteinase activity and hydrational capacity are increased in myopia induced by retinal image degradation[J].Exp Eye Res,1996,63(4):369-381.
    42.Rada JA,Brenza HL.Increased latent gelatinase activity in the sclera of visually deprived chicks[J].Invest Ophthalmol Vis Sci,1995,36:1555-65.
    43.Guggenheim JA,McBrien NA.Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew[J].Invest Ophthalmol Vis Sci,1996,37(7):1380-1395.
    44.Siegwart JT Jr,Norton TT.Steady state mRNA levels in tree shrew sclera with form-deprivation myopia and during recovery[J].Invest Ophthalmol Vis Sci,2001,42(6):1153-1159.
    45.贾丁,周翔天,吕帆等.豚鼠形觉剥夺性近视眼巩膜基质金属蛋白酶-2表达的实验研究[J].眼视光学杂志.2006,8(6),360-363.
    46.Lindsey JD,Crowston JG,Tran A,et al.Direct matrix metalloproteinase enhancement of transscleral permeability[J].Invest Ophthalmol Vis Sci,2007,48(2):752-755.
    1.McBrien NA,Adams DW.A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group[J].Invest Ophthalmol Vis Sci,1997,38(2):321-333.
    2.吴君舒,钟兴武,聂昊辉,等.光学离焦和行觉剥夺对幼恒河猴正视化过程的影响[J].眼科学报,2004,20(2):118-122.
    3.Wiesel TN,Raviola E.Myopia and eye enlargement after neonatal lid fusion in monkeys[J].Nature,1977,266(5597):66-68.
    4.胡诞宁,Meeomriek SA.视网膜色素上皮-脉络膜在近视发病中的作用[J].眼视光学杂志,2000,2(4):197-200.
    5.Iuvone PM,Tigges M,Stone RA,et al.Effects of apomorphine,a dopamine receptor agonist,on ocular refraction and axial elongation in a primate model of myopia[J].Invest Ophthalmol Vis Sci.1991,32(5):1674-1677.
    6.Rohrer B,Stell WK.Localization of putative dopamine D2-like receptors in the chick retina,using in situ hybridization and immunocytochemistry[J].Brain Res.1995,16;695(2):110-116.
    7.Stone RA,Lin T,Laties AM,et al.Retinal dopamine and form-deprivation myopia[J].Proc Natl Acad Sci USA.1989,86(2):704-706.
    8.Pendrak K,Nguyen T,Lin T,et al.Retinal dopamine in the recovery from experimental myopia[J].Curr Eye Res.1997,16(2):152-157.
    9.Schaeffel F,Bartmann M,Hagel G,et al.Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens[J].Vision Res.1995,35(9):1247-1264.
    10.席晓勃,褚仁远,周行涛,等.实验性近视眼视网膜多巴胺转运蛋白研究[J].中华眼科杂志,2003,39(6):344-347.
    11.Rymer J,Wildsoet CF.The role of the retinal pigment epithelium in eye growth regulation and myopia:a review[J].Vis Neurosci.2005,22(3):251-261.
    12.McBrien NA,Moghaddam HO,Reeder AP.Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism[J].Invest Ophthalmol Vis Sci.1993,34(1):205-215.
    13.Tigges M,Iuvone PM,Fernandes A,et al.Effects of muscarinic cholinergic receptor antagonists on postnatal eye growth of rhesus monkeys[J].Optom Vis Sci.1999,76(6):397-407.
    14.Le QH,Cheng NN,Wu W,et al.Effect of pirenzepine ophthalmic solution on form-deprivation myopia in the guinea pigs[J].Chin Med J(Engl).2005,5,118(7):561-566.
    15.Vessey KA,Cottriall CL,McBrien NA.Muscarinic receptor protein expression in the ocular tissues of the chick during normal and myopic eye development[J].Brain Res Dev Brain Res.2002,30;135(1-2):79-86.
    16.Lind GJ,Chew SJ,Marzani D,et al.Muscarinic acetylcholine receptor antagonists inhibit chick scleral chondrocytes[J].Invest Ophthalmol Vis Sci.1998,39(12):2217-2231.
    17.Luft WA,Ming Y,Stell WK.Variable effects of previously untested muscarinic receptor antagonists on experimental myopia[J].Invest Ophthalmol Vis Sci.2003m44(3):1330-1338.
    18.Stone RA,Lin T,Laties AM.Muscarinic antagonist effects on experimental chick myopia[J].Exp Eye Res.1991,52(6):755-758.
    19.Rickers M,Schaeffel F.Dose-dependent effects of intravitreal pirenzepine on deprivation myopia and lens-induced refractive errors in chickens[J].Exp Eye Res.1995,61(4):509-516.
    20.Truong HT,Cottriall CL,Gentle A,et al.Pirenzepine affects scleral metabolic changes in myopia through a non-toxic mechanism[J].Exp Eye Res.2002,74(1):103-111.
    21.Schwahn HN,Kaymak H,Schaeffel F.Effects of atropine on refractive development,dopamine release,and slow retinal potentials in the chick[J].Vis Neurosci.2000,17(2):165-176.
    22.史志洁,张金嵩,王楷迪,等.哌仑西平抑制豚鼠形觉剥夺性近视的效果与机制研究[J].眼科新进展.2006,26(12):904-907.
    23.Lee JJ,Fang PC,Yang IH,et al.Prevention of myopia progression with 0.05% atropine solution[J].J Ocul Pharmacol Ther,2006,22(1):41-46.
    24.Siatkowski RM,Cotter SA,Crockett RS,et al.Two-year multicenter,randomized,double-masked,placebo-controlled,parallel safety and efficacy study of 2%pirenzepine ophthalmic gel in children with myopia[J].J AAPOS.2008,12(4):332-339.
    25.Becquet F,Courtois Y,Goureau O.Nitric oxide in the eye:multifaceted roles and diverse outcomes[J].Surv Ophthalmol,1997,42(1):71-82.
    26.Moncada S,Palmer RM,Higgs EA.Nitric oxide:physiology,pathophysiology,and pharmacology[J].Pharmacological Reviews.1991;43(2):109-142.
    27.Fischer AJ,Stell WK.Nitric oxide synthase-containing cells in the retina,pigmented epithelium,choroid,and sclera of the chick eye[J].J Comp Neurol.1999,1,405(1):1-14.
    28.Kim IB,Lee EJ,Kim KY,et al.Immunocytochemical localization of nitric oxide synthase in the mammalian retina[J].Neurosci Lett,1999,4,267(3):193-196.
    29.Fujii S,Honda S,Sekiya Y,et al.Differential expression of nitric oxide synthase isoforms in form-deprived chick eyes[J].Curr Eye Res 1998;17(6):586-593.
    30.Fujikado T,Kawasaki Y,Fujii J,et al.The effect of nitric oxide synthase inhibitor on form-deprivation myopia[J].Curr Eye Res,1997,16(10):992-996.
    31.Wu J,Liu Q,Yang X,et al.Time-course of changes to nitric oxide signaling pathways in form-deprivation myopia in guinea pigs[J].Brain Res,2007,1186:155-163.
    32.许军,赵江月,王洪学,等.形觉剥夺下雏鸡视网膜、脉络膜和巩膜中全反视黄酸含量的变化[J].国际眼科杂志.2007,7(3);677-681.
    33.Seko Y,Shimokawa H,Tokoro T.In vivo and in vitro association of retinoic acid with form-deprivation myopia in the chick[J].Exp Eye Res.1996,63(4):443-452
    34.McFadden SA,Howlett MH,Mertz JR.Retinoic acid signals the direction of ocular elongation in the guinea pig eye[J].Vision Res.2004,44(7):643-653.
    35.Nickla DL,Wilken E,Lytle G,et al.Inhibiting the transient choroidal thickening response using the nitric oxide synthase inhibitor 1-NAME prevents the ameliorative effects of visual experience on ocular growth in two different visual paradigms[J].Exp Eye Res.2006,83(2):456-464.
    36.王剑锋,刘双珍,吴文灿.外源性视黄酸对鸡后巩膜基质MMP-2/TIMP-2表达作用的动态观察[J].眼科研究.2005;23(6):596-599.
    37.Kansaku N,Shimada K,Ohkubo T,et al.Molecular cloning of chicken vasoactive intestinal polypeptide receptor complementary DNA,tissue distribution and chromosomal localization[J].Biol Reprod.2001,64(5):1575-1581.
    38.Seltner RL,Stell WK.The effect of vasoactive intestinal peptide on development of form deprivation myopia in the chick:a pharmacological and immunocytochemical study[J].Vision Res.1995,35(9):1265-1270.
    39.Tkatchenko AV,Walsh PA,Tkatchenko TV,et al.Form deprivation modulates retinal neurogenesis in primate experimental myopia[J].Proc Natl Acad Sci USA.2006,21,103(12):4681-4686.
    40.王平宝,王华,刘双珍,等.血管活性肠肽受体拮抗剂VIPhybrid对鸡形觉剥夺性近视眼发展的影响[J].中南大学学报(医学版).2008,33(8):669-674.
    41.Jin N,Stjernschantz J.Effects of prostaglandins on form deprivation myopia in the chick.Acta Ophthalmol Scand[J].2000,78(5):495-500.
    42.Weinreb RN,Kashiwagi K,Kashiwagi F,et al.Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells[J].Invest Ophthalmol Vis Sci.1997,38(13):2772-2780.
    43.Sagara T,Gaton DD,Lindsey JD,et al.Topical prostaglandin F2alpha treatment reduces collagen types Ⅰ,Ⅲ,and Ⅳ in the monkey uveoscleral outflow pathway[J].Arch Ophthalmol.1999,117(6):794-801.
    44.Chebib M,Johnston GA.The 'ABC' of GABA receptors:a brief review[J].Clin Exp Pharmacol Physiol.1999,26(11):937-940.
    45.Stone RA,Liu J,Sugimoto R,et al.GABA,experimental myopia,and ocular growth in chick[J].Invest Ophthalmol Vis Sci.2003,44(9):3933-3946.
    46.Gospodarowicz D.Localisation of a fibroblast growth factor and its effect alone with hydrocortisone on 3T3 cell growth[J]. Nature , 1974,10,249(453):123-127.
    47. Ogata N, Matsushima M, Takada Y,et al. Expression of basic fibroblast growth factor mRNA in developing choroidal neovascularization[J]. Curr Eye Res. 1996,15(10):1008-1018.
    48. Rohrer B, Tao J, Stell WK. Basic fibroblast growth factor, its high-and low-affinity receptors ,and their relationship to form-deprivation myopia in the chick[J]. Neuroscience ,1997,79(3):775-787.
    49. Seko Y, Shimokawa H, Tokoro T. Expression of bFGF and TGF-beta 2 in experimental myopia in chicks[J]. Invest Ophthalmol Vis Sci, 1995,36(6): 1183 -1187.
    50. Rohrer B, Stell WK. Basic fibroblast growth factor (bFGF) and transforming growth factor beta (TGF-beta) act as stop and go signals to modulate postnatal ocular growth in the chick. Exp Eye Res. 1994,58(5):553-561.
    51. Gentle A, McBrien NA.Retinoscleral control of scleral remodelling in refractive development: a role for endogenous FGF-2? [J].Cytokine.2002,21;18(6):344-348.
    52. Lutty GA, Merges C, Threlkeld AB,et al. Heterogeneity in localization of isoforms of TGF-beta in human retina, vitreous, and choroid[J]. Invest Ophthalmol Vis Sci.1993,34(3):477-487.
    53. Pfeffer BA, Flanders KC, Guérin CJ,et al. Transforming growth factor beta 2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the monkey eye[J]. Exp Eye Res. 1994,59(3):323-333.
    54. Kusakari T, Sato T, Tokoro T. Visual deprivation stimulates the exchange of the fibrous sclera into the cartilaginous sclera in chicks[J].Exp Eye Res,2001, 73(4): 533-546.
    55. Seko Y, Tanaka Y, Tokoro T. Influence of bFGF as a potent growth stimulator and TGF-beta as a growth regulator on scleral chondrocytes and scleral fibroblasts in vitro[J].Ophthalmic Res. 1995,27(3): 144-152.
    56. Honda S, Fujii S, Sekiya Y, et al. Retinal control on the axial length mediated by transforming growth factor-beta in chick eye[J]. Invest Ophthalmol Vis Sci , 1996,37(12): 2519-2526.
    57.Lindsay RM.Neurotrophins and receptors[J].Prog Brain Res,1994,103:3-14.
    58.Seki M,Nawa H,Fukuchi T,et al.BDNF is upregulated by postnatal development and visual experience:quantitative and immunohistochemical analyses of BDNF in the rat retina[J].Invest Ophthalmol Vis Sci.2003,44(7):3211-3218.
    59.Bozzi Y,Pizzorusso T,Cremisi F,et al.Monocular deprivation decreases the expression of messenger RNA for brain-derived neurotrophic factor in the rat visual cortex[J].Neuroscience.1995,69(4):1133-1144.
    60.Lodovichi C,Berardi N,Pizzorusso T,et al.Effects of neurotrophins on cortical plasticity:same or different?[J].J Neurosci.2000,15;20(6):2155-2165.
    61.Cellerino A,Kohler K.Brain-derived neurotrophic factor/neurotrophin-4 receptor TrkB is localized on ganglion cells and dopaminergic amacrine cells in the vertebrate retina[J].J Comp Neurol.1997,15;386(1):149-160.
    62.Kl(o|¨)cker N,Kermer P,Gleichmann M,et al.Both the neuronal and inducible isoforms contribute to upregulation of retinal nitric oxide synthase activity by brain-derived neurotrophic factor[J].J Neurosci.1999,1,19(19):8517-8527.
    63.Hackett SF,Schoenfeld CL,Freund J,et al.Neurotrophic factors,cytokines and stress increase expression of basic fibroblast growth factor in retinal pigmented epithelial cells[J].Exp Eye Res,1997,64(6):865-873.
    64.Danias J,Stylianopoulou F.Expression of IGF-Ⅰ and IGF-Ⅱ genes in the adult rat eye[J].Curr Eye Res.1990,9(4):379-386.
    65.Lupia E,Elliot SJ,Lenz O,et al.IGF-1 decreases collagen degradation in diabetic NOD mesangial cells:implications for diabetic nephropathy[J].Diabetes.1999,48(8):1638-1644.
    66.Tripathi BJ,Tripathi RC,Livingston AM,et al.The role of growth factors in the embryogenesis and differentiation of the eye[J].Am J Anat.1991,192(4):442-471.
    67.卢艳,盛树力,吴航.大鼠视网膜神经网膜上神经营养因子的表达[J].眼科新进展.2002,22(1):21-22.
    68.Nastri G,Benusiglio E,Sellitti L,et al.Does anti-NGF inhibit deprivative myopia onset?[J].InterNet J Ophthalmol.1998,3:30-36.
    69.Akamatsu S,Fujii S,Escano MF,et al.Altered expression of genes in experimentally induced myopic chick eyes[J].Jpn J Ophthalmol.2001,45(2):137-143.
    70.屠一帆,黄倩,赵新峰.多巴胺在形觉剥夺性近视眼中的作用[J].眼视光学杂志,2002,4(3):190-192.
    71.Visse R,Nagase H.Matrix metalloproteinases and tissue inhibitors of metalloproteinases:structure,function,and biochemistry[J].Circ Res,2003,2,92(8):827-839.
    72.Bode W.Structural basis of matrix metalloproteinase function.Biochem Soc Symp,2003,70:1-14.
    73.Jones BE,Thompson EW,Hodos W,et al.Scleral matrix metalloproteinases,serine proteinase activity and hydrational capacity are increased in myopia induced by retinal image degradation[J].Exp Eye Res,1996,63(4):369-381.
    74.Rada JA,Brenza HL.Increased latent gelatinase activity in the sclera of visually deprived chicks[J].Invest Ophthalmol Vis Sci,1995,36(8):1555-1565.
    75.Guggenheim JA,McBrien NA.Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew[J].Invest Ophthalmol Vis Sci,1996,37(7):1380-1395.
    76.Siegwart JT Jr,Norton TT.Steady state mRNA levels in tree shrew sclera with form-deprivation myopia and during recovery[J].Invest Ophthalmol Vis Sci,2001,42(6):1153-1159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700