基于已有振动台试验的钢管混凝土圆弧拱抗震性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土拱桥因具有自重轻、强度高、延性好、施工便捷等优点,近年来在国内外得到了广泛应用。我国已建成钢管混凝土拱桥300余座,跨度超过50m的有200余座。中国是一个地震多发国家,许多钢管混凝土拱桥位于高烈度抗震设防区,因此钢管混凝土拱桥的抗震性能极其重要。本文利用IDA方法和Pushover方法对钢管混凝土圆弧拱的抗震性能进行了研究。具体工作如下:
     (1)基于已有的钢管混凝土拱桥振动台试验,验证了OpenSees有限元软件在分析钢管混凝土拱桥抗震性能时的适用性,研究了钢管混凝土拱桥在强震作用下的破坏过程和破坏机理。结果表明,钢管混凝土拱肋在峰值加速度不断提高的一系列地震动作用下,拱脚处因较大的基底剪力和倾覆力矩首先进入塑性并最终导致结构动力失稳破坏。由极限峰值加速度作用下拱脚钢管与混凝土的应力应变发展关系曲线可见,在地震作用下钢管混凝土应力应变滞回性能良好,钢管混凝土拱肋具有较好的延性及耗能能力。
     (2)采用IDA方法分析了钢管混凝土圆弧拱的抗震性能,研究了钢管混凝土圆弧拱在地震动作用下的两种典型动力失稳破坏模式,以及长细比、轴压比和圆心角对钢管混凝土圆弧拱抗震性能的影响。计算了钢管混凝土圆弧拱在11条典型II类场地地震动作用下的极限峰值加速度及其平均值,并基于该平均值提出了钢管混凝土圆弧拱在II类场地地震动作用下的极限峰值加速度计算公式。与有限元计算结果对比可知,通过本文所提公式得到的计算结果偏于安全。
     (3)采用Pushover方法研究了钢管混凝土圆弧拱的抗震性能,比较了三种不同侧向力加载模式对结构抗震性能的影响,并推荐了适用于钢管混凝土圆弧拱Pushover分析的侧向力加载模式。计算了钢管混凝土圆弧拱在不同设计参数下的底部剪力-拱顶位移全过程曲线并得到了拱顶峰值位移随长细比、轴压比及圆心角的变化规律,提出了钢管混凝土圆弧拱在罕遇地震作用下的拱顶出平面位移限值计算公式。
Concrete Filled Steel Tubular (CFST) Arch Bridges have been widely used throughout the world in recent years because of its light weight, high strength, good ductility and convenient construction procedure. Over 300 CFST arch bridges have been bulit in China, among which more than 200 CFST arch bridges have spans larger than 50m. China is an earthquake-prone country, most of CFST arch bridges have been built in high seismic intensity areas, thus the seismic research on CFST arch bridges is extremely important. In this dissertation, seismic behavior of single circular CFST arches has been investigated using Pushover method and Incremental Dynamic Analysis (IDA) method. The research work is as follows:
     Based on an existing shaking table test on a CFST arch bridge, this paper verifys the applicability of OpenSees in the analysis on seismic performance of CFST arch bridges. The failure process and failure mechanism of CFST arch bridges under severe earthquakes have also been studied. It is shown that under a series of earthquake actions whose peak accelerations gradually increased, the springs of the CFST arch bridges would firstly turn to plasticity due to the significant base shear force and overturning moment and eventually the internal force could not counterpoise the earthquake actions leading to dynamic buckling of the CFST arch bridges. The stress-strain development diagram obtained under the ultimate peak acceleration shows that, the CFST arches present favorable hysterestic behavior as well as good ductility and energy dissipation under the earthquake attacks.
     The IDA method has been used in the research on seismic performance of circular CFST arches. Two typical failure modes of circular CFST arches under earthquakes have been presented. In addition, the effect of slenderness ratio, axial compression ratio and included angle on the seismic performance of CFST arches are investigated. The ultimate peak acclerations and their mean value of circular CFST arches under 11 different ground motions for site condition 2 have been caculated to propose the formula of ultimate peak acclerations of circular CFST arches. Comapred with the results obtained from finite element analysis, the results obtained from the proposed formula are safer.
     The Pushover method has been used to investigate the seismic performance of circular CFST arches, and the influence of three typical lateral loading patterns on the seismic performance of circular CFST arches are studied, based on which the most suitable pattern is selected. The curves about the base shear force against the displacement have been caculated considering different paremeters, including the slenderness ratio, axial compression ratio and included angle. The paper also proposes the formula of out-of-plane paek displacement of circular CFST arches under severe earthquakes. Comapred with the results obtained from the finite element method, the results obtained from the proposed formula are safer.
引文
1王玉银,惠中华.钢管混凝土拱桥施工全过程与关键技术.机械工业出版社, 2010:3~8
    2范立础,胡世德,叶爱君.大跨度桥梁抗震设计.人民交通出版社, 2001:6~7
    3陈宝春.钢管混凝土拱桥应用与研究最新进展.第16届全国结构工程学术会议论文集,太原. 2007:395~397
    4 F A Charney. Applications in Incremental Dynamic Analysis. Proceedings of the Structures Congress and Exposition, New York, NY, United States, 2005:1827~1834
    5 M M Dana, B Stojadinovic. Incremental Dynamic Analysis of a Structure with a Gap. Proceedings of the Structures Congress and Exposition, New York, NY, United States, 2005:1857~1867
    6 S K Kunnath, E Kalkan. IDA Capacity Curves: The Need for Alternative Intensity Factors. Proceedings of the Structures Congress and Exposition, New York, NY, United States, 2005:1869~1877
    7 D Vamvatsikos, C A Cornell. Direct Estimation of Seismic Demand and Capacity of Multidegree-of-Freedom Systems through Incremental Dynamic Analysis of Single Degree of Freedom Approximation. Journal of Structural Engineering. 2005, 131(4):589~599
    8 D Vamvatsikos, Cornell C A. Applied Incremental Dynamic Analysis. Earthquake Spectra. 2004, 20(2):523~553
    9 B Borzi, R Pinho, Crowley H. Simplified Pushover-based Vulnerability Analysis for Large-scale Assessment of RC Buildings. Engineering Structures. 2008, 30(3):804~820
    10 O T Cetinkaya, S Nakamura, K Takahashi. A Static Analysis-based Method for Estimating the Maximum Out-of-plane Inelastic Seismic Response of Steel Arch Bridges. Engineering Structures. 2006, 28(5):635~647
    11 W Huang, Gould P L. 3-D Pushover Analysis of a Collapsed Reinforced Concrete Chimney. Finite Elements in Analysis and Design. 2007, 43(11~12):879~887
    12 T S Jan, M W Liu, Y C Kao. An Upper-bound Pushover Analysis Procedure for Estimating the Seismic Demands of High-rise Buildings. Engineering Structures. 2004, 26(1):117~128
    13 H Moghaddam, I Hajirasouliha. An Investigation on the accuracy of Pushover Analysis for Estimating the Seismic Deformation of Braced Steel Frames. Journal of Constructional Steel Research. 2006, 62(4):343~351
    14 C P Providakis. Pushover Analysis of Base-isolated Steel-concrete Composite Structures under Near-fault Excitations. Soil Dynamics and Earthquake Engineering. 2008, 28(4):293~304
    15 S J Brandenberg, R W Boulanger, B L Kutter, D Chang. Static Pushover Analyses of Pile Groups in Liquefied and Laterally Spreading Ground in Centrifuge Tests. Journal of Geotechnical and Geoenvironmental Engineering. 2007, 133(9):1055~1066
    16 C Chintanapakdee, A K Chopra. Seismic Response of Vertically Irregular Frames: Response History and Modal Pushover Analyses. Journal of Structural Engineering. 2004, 130(8):1177~1185
    17 A K Chopra, C Chintanapakdee. Evaluation of Modal and FEMA Pushover Analyses: Vertically "Regular'' and Irregular Generic Frames. Earthquake Spectra. 2004, 20(1):255~271
    18 A K Chopra, R K Goel, C Chintanapakdee. Statistics of Single-Degree-of-Freedom Estimate of Displacement for Pushover Analysis of Buildings. Journal of Structural Engineering. 2003, 129(4):459~469
    19 J Daniels, D Hughes, G E Ramey, M L Hughes. Effects of Bridge Pile Bent Geometry and Levels of Scour and P Loads on Bent Pushover Loads in Extreme Flood/Scour Events. Practice Periodical on Structural Design and Construction. 2007, 12(2):122~134
    20 M Dicleli. Integral Abutment-backfill Behavior on Sand Soil-pushover Analysis Approach. Journal of Bridge Engineering. 2005, 10(3):354~364
    21 J Ger, P Yen. Pushover Analysis of Bridge Intermediate Bents. Proceedings of the 6th U.S. Conference and Workshop on Lifeline Earthquake Engineering, 2003:153~162
    22 R K Goel. Evaluation of Modal and FEMA Pushover Procedures Using Strong-Motion Records of Buildings. Earthquake Spectra. 2005, 21(3):653~684
    23 R K Goel. Evaluation of Modal and FEMA Pushover Analysis Procedures Using Recorded Motions of Two Steel Buildings, Proceedings of the 6th U.S. Conference and Workshop on Lifeline Earthquake Engineering, Nashville, TN, United States, 2004:697~706
    24 R K Goel, A K Chopra. Role of Higher-``Mode'' Pushover Analyses in SeismicAnalysis of Buildings. Earthquake Spectra. 2005, 21(4):1027-1041
    25 R K Goel, A K Chopra. Modal Pushover Analysis for Unsymmetric Buildings. Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium, New York, NY, United States, 2005:697~706
    26 R K Goel, A K Chopra. Evaluation of Modal and FEMA Pushover Analyses: SAC Buildings. Earthquake Spectra. 2005, 21(1):277~279
    27 R K Goel, A K Chopra. Extension of Modal Pushover Analysis to Compute Member Forces. Earthquake Spectra. 2005, 21(1):125~139
    28 R K Goel, A K Chopra. Evaluation of Modal and FEMA Pushover Analyses: SAC Buildings. Earthquake Spectra. 2004, 20(1):225~254
    29 W Huang, P L Gould. A Case Study Considering a 3-D Pushover Analysis Procedure. The 14th World Conference on Earthquake Engineering, Beijing, China, 2008:236~240
    30 D Hughes, G E Ramey, M L Hughes. Bridge Pile Bent Number of Piles and X-Bracing System: Impact on Pushover Capacity as Scour Increases. Practice Periodical on Structural Design and Construction. 2007, 12(2):82~95
    31 H Liu, F Bai, J L Gobeli. FEA Modeling and Modal Pushover Analysis of a 14-Story Office Building in Anchorage, Alaska. Proceedings of the 2006 Structures Congress, St. Louis, MO, United States, 2006:42
    32 J Schettler, C Caywood. Single Level Concrete Viaduct Pushover and Retrofitted Response Spectrum Analysis. Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium, New York, NY, United States, 2005:2019~2028
    33 T Tjhin, M Aschheim, Hernández-Montes E. Observations on the Reliability of Alternative Multiple-Mode Pushover Analysis Methods. Journal of Structural Engineering. 2006, 132(3):471~477
    34 R K Goel. Simplified Procedure for Seismic Evaluation of Piles with Partial-Moment Connection to the Deck in Marine Oil Terminals. Journal of Structural Engineering. 2010,136(5):521~531
    35胡世德,王君杰,魏红一.丫髻沙大桥主桥抗震性能研究.铁道标准设计. 2001, (6):21~25
    36熊峰.钢管混凝土拱桥抗震性能研究.四川大学博士学位论文. 2001:4~7
    37郭鑫,阳震宇,乔建东.基于ANSYS的钢管混凝土拱桥抗震分析.铁道标准设计. 2003, (4):43~44
    38郭刚,王一军,阳震宇,乔建东,于向东.钢管砼拱桥反应谱抗震分析.华东交通大学学报. 2003, 20(1):59~61
    39李静斌,葛素娟,陈淮. 5跨连续中承式钢管混凝土拱桥抗震性能分析.世界地震工程. 2005, 21(3):110~115
    40罗辑.基于OpenSees计算平台的钢管混凝土拱桥抗震性能分析.四川大学硕士学位论文. 2005:35~48
    41张玉萍.钢管混凝土拱桥的抗震性能分析.武汉理工大学硕士学位论文. 2005:39~52
    42盛可鉴.大跨钢管混凝土桁式拱桥抗震性能分析.森林工程. 2005, 21(3):48~49
    43王成,吴咏星,林胜.大跨度拱桥考虑初始几何缺陷的抗震特性分析.工程抗震与加固改造. 2005, (S1):113~117
    44陈阶亮.钱江四桥抗震性能分析.公路交通科技. 2005, 22(9):82~86, 126
    45胡春杨.钢管混凝土拱桥模型试验研究与结构抗震分析.浙江大学硕士学位论文. 2006:42~70
    46王连华,赵跃宇,易壮鹏.系杆对钢管混凝土拱桥抗震性能的影响.地震工程与工程振动. 2007, 27(1):59~65
    47丁文胜.下承式刚架系杆拱桥的抗震设计方法及试验研究.东南大学博士学位论文. 2007:65~80
    48胡伟岸.钢管混凝土下承式刚架系杆拱桥抗震性能和分析方法研究.东南大学硕士学位论文. 2007:16~32
    49李鹏.大跨度系杆拱桥动力特性和抗震性能研究.东南大学硕士学位论文. 2007:21~29
    50彭河星.大跨度斜拉拱桥抗震性能研究.湖南大学硕士学位论文. 2007:18~29
    51吴星.大跨度钢管混凝土拱桥抗震性能分析.西安建筑科技大学硕士学位论文. 2007:44~57
    52云迪.大跨中承式钢管混凝土拱桥静力及抗震性能.哈尔滨工业大学博士学位论文. 2007:96~133
    53 Q Wu, M Yoshimurab, K Takahashia, S Nakamuraa, T Nakamurac. Nonlinear seismic properties of the Second Saikai Bridge - a concrete filled tubular (CFT) arch bridge. Engineering Structures. 2006, 28(2):163~182
    54 D Vamvatsikos. Seismic Performance, Capacity and Reliability of Structures as
    Seen Through Incremental Dynamic Analysis. Stanford University, 2002:10~19
    55孙文林. IDA在钢框架结构弹塑性分析中的应用研究.山西建筑. 2005, 31(17):37~38
    56徐艳,胡世德.地震作用下钢管混凝土拱桥的动力稳定性.同济大学学报(自然科学版). 2007, 35(3):315~319, 340
    57张守斌,聂昊.增量动力分析方法及其在性能评估中的应用.工程建设与设计. 2007, (6):33~35
    58柳春光,林皋.桥梁结构push-over方法抗震性能研究.大连理工大学学报. 2005, 45(3):395~400
    59孙卓,闫贵平,钟铁毅,李忠龙.钢筋混凝土桥墩抗震性能的试验研究.中国安全科学学报. 2003, 13(3):46~49
    60郭斌.高墩大跨连续刚构桥梁的推倒分析.长安大学硕士学位论文. 2006:4~7
    61王维.推倒分析在桥梁抗震性能评价中的应用.西南交通大学硕士学位论文. 2007:6~9
    62 Z Lu, H Ge, T Usami. Applicability of Pushover Analysis-Based Seismic Performance Evaluation Procedure for Steel Arch Bridges. Engineering Structures. 2004, 26(13):1957~1977
    63 A M Memari, H G Harris, A A Hamid, A Scanlon. Ductility Evaluation for Typical Existing R/C bridge Columns in the Eastern USA. Engineering Structures. 2005, 27(2):203~212
    64 J L Bignell, J M Lafave, N M Hawkins. Seismic Vulnerability Assessment of Wall Pier Supported Highway Bridges Ssing Nonlinear Pushover Analyses. Engineering Structures. 2005, 27(14):2044~2063
    65 O T Cetinkaya, S Nakamura, K Takahashi. A Static Analysis-Based Method for Estimating the Maximum out-of-plane Inelastic Seismic Response of Steel Arch Bridges. Engineering Structures. 2006, 28(5):635~647
    66 N K Shattarat, M D Symans, D I Mclean, W F Cofer. Evaluation of Nonlinear Static Analysis Methods and Software Tools for Seismic Analysis of Highway Bridges. Engineering Structures. 2008, 30(5):1335~1345
    67韩林海,陶忠,闫维波.圆钢管混凝土构件弯矩-曲率滞回特性研究.地震工程与工程振动. 2000, 20(3):50~59
    68杨有福,韩林海.圆钢管混凝土压弯构件弯矩-曲率滞回模型研究.地震工程与工程振动. 2004, 24(1):186~192
    69韩林海,陶忠,阎维波.圆钢管混凝土压弯构件荷载-位移滞回性能分析.地震工程与工程振动. 2001 ,21(1):64~73
    70杨有福,韩林海.圆钢管混凝土压弯构件荷载位移滞回模型研究.地震工程与工程振动. 2003, 23(6):117~123
    71韩林海,杨有福,游经团,黄宏.圆钢管混凝土压弯构件滞回性能的试验研究与理论分析.中国公路学报. 2004, 17(3):51~56
    72李斌,薛刚,张园.钢管混凝土框架结构抗震性能试验研究.地震工程与工程振动. 2002, 22(5):53~56
    73李忠献,许成祥,王冬,王成博.钢管混凝土框架结构抗震性能的试验研究.建筑结构. 2004, 34(1):3~6, 38
    74卢明奇.有限元法研究钢管混凝土框架的滞回性能.武汉大学学报(工学版). 2005, 38(4):59~62
    75林英,陈宝春,陈友杰.钢管拱面内对称加载试验.福州大学学报(自然科学版). 2001, 29(2):66~69
    76陈宝春,林嘉阳.钢管混凝土单圆管拱空间受力双重非线性有限元分析.铁道学报. 2005, 27(6):77~84
    77陈宝春,韦建刚,林英.管拱面内两点非对称加载试验研究.土木工程学报. 2006, 39(1):43~49
    78陈宝春,韦建刚,林嘉阳.钢管混凝土(单圆管)单肋拱空间受力试验研究.工程力学. 2006, 23(5):99~106
    79陈宝春,韦建刚.管拱面内五点对称加载试验及其承载力简化算法研究.工程力学. 2007, 24(6):73~78
    80马俊,盛洪飞,孙航.钢管混凝土拱肋滞回性能非线性有限元分析.公路交通科技. 2006, 23(8):84~88, 92
    81张文福.单层钢管混凝土框架恢复力特性研究.哈尔滨工业大学博士学位论文. 2000, 11: 23~31
    82钟善桐.钢管混凝土结构.北京:清华大学出版社, 2003: 28~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700