基于HHT的果蝇振翅鸣声特征提取及分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫鸣声是其生命活动中与外界环境联系的重要媒介,生物学意义极其丰富。果蝇是一种严重危害农业发展的昆虫,主要危害瓜果蔬菜和多种植物的茎叶。果蝇鸣声可以反映种的特异性,对外部形态特征相似的近缘种,可以利用鸣声特征进行区分;果蝇鸣声还可以用于果蝇害虫的诱集捕杀以及科学工作者的实验研究,所以,果蝇鸣声的研究具有很大的实用价值。
     对果蝇鸣声的研究,大多数研究者分析的是果蝇鸣声中的求偶歌,而且多数研究是在鸣声信号的时域上进行。本文以果蝇振翅鸣声为研究对象,提出应用时频局部化分析方法——希尔伯特-黄变换(HHT)分析同种内两个不同品系果蝇振翅鸣声的时频特征。然后,用BP神经网络分类两个品系果蝇振翅鸣声。本文方法的应用研究可以为果蝇鸣声及其它昆虫鸣声的进一步研究提供更新的科学依据。
     本文的研究主要包括以下几个方面:
     (1)简单概括了昆虫与人类生活的关系、昆虫鸣声的发声机制、鸣声类型和功能以及鸣声研究的意义,重点介绍了果蝇对各种水果蔬菜的危害及果蝇鸣声的国内外研究现状。
     (2)深入研究了希尔伯特-黄变换(HHT)方法的基本原理,阐明了希尔伯特变换、瞬时频率以及固有模态函数的数学定义,给出了经验模态分解的具体分解步骤和流程图,分析了希尔伯特谱和边际谱,并用仿真信号实例和实际信号实例对希尔伯特-黄变换的整个流程作了更详细的说明。本文还详细介绍了希尔伯特-黄变换方法在生物医学领域、地球物理学领域以及其他领域的应用情况,充分说明了该方法在信号处理中的优势。
     (3)本文提出将希尔伯特-黄变换方法应用于果蝇振翅鸣声信号的特征分析和提取中。针对鸣声信号经验模态分解后各阶固有模态函数的幅值谱能量不同,提取了两个不同品系果蝇振翅鸣声信号的各阶固有模态函数与原信号的能量比值特征;针对鸣声信号的希尔伯特谱上能量分布的差异性,提取了两个不同品系果蝇振翅鸣声信号在希尔伯特谱上的相对能量特征和时频熵特征;针对鸣声信号的边际谱不同频段上幅值分布的不同,提取了两个不同品系果蝇振翅鸣声信号的边际谱幅值特征。
     (4)用BP神经网络分类两个不同品系果蝇振翅鸣声。简单介绍了人工神经网络的发展过程,并详细分析了BP神经网络的基本原理和网络的参数选择。将希尔伯特-黄变换方法提取的果蝇振翅鸣声的特征作为BP神经网络的输入向量,分类两个品系果蝇振翅鸣声,识别结果都可以达到86%以上,说明了本文特征提取和分类识别方法的可行性和有效性。
Insect's sound is the important media that can connect with outside environment in their life activities, which contains rich biological significance. Fruit fly is a kind of insect that has more serious harm for agricultural product, mainly damages vegetables, stem and leaves of various plants. Fruit fly's sound can reflect species-specificity, especially for some allied species, outer morphological characteristics are extremely similar, using characteristics of their sound can distinguish them. Also fruit fly's sound can be used to trap drosophila pests and experimental study for scientific workers. Therefore, the research of fruit fly's sound has great practical value.
     For the study of fruit fly's sound, most researchers analyzed the courtship song of drosophila and most analyses focused on the time domain of sound. The paper uses fruit fly's wing vibration sound as research object, proposes that uses Hilbert-Huang Transform (HHT), a new method of time-frequency localization analysis, to analyze time-frequency characteristics of wing vibration sound of fruit fly of two different strains in the same species. Then, it uses BP neural network to classify two strains of fruit fly's wing vibration sound. The method of the paper can provide scientific basis for further researches of fruit fly's sound and other insects'sound. The study of paper mainly includes following aspects:
     (1) The paper simply summarizes the relationship of human life and insects, insects'sound mechanism, type and function of the sound, and significance of sound research, mainly introduces the fruit fly's sound of this paper, analyzes harms of fruit fly to various fruits and vegetables, and describes the current state of fruit fly's sound research at home and abroad.
     (2) The paper deeply studies the fundamental principles of Hilbert-Huang Transform, clarifies the mathematic definitions of Hilbert transform, instantaneous frequency and intrinsic mode function, gives the specific steps and flow chart of empirical mode decomposition, analyzes the Hilbert spectrum and marginal spectrum, and illustrates the entire process of the Hilbert-Huang transform in more detail with examples of simulation signal and actual signal. In addition, the paper introduces application of the method in biomedical, geophysics and other fields, which fully explains the advantages of the method in signal processing.
     (3) The paper proposes that applies Hilbert-Huang transform in feature analysis and extraction of fruit fly's wing vibration sound. Because amplitude spectrum energy of each intrinsic mode function is different after EMD, the paper extracts ratios of each intrinsic mode function and signal total energy of two stains of fruit fly's sound. Because the energy distribution in Hilbert spectrum of fruit fly's wing vibration sound is different, the paper extracts the relative energy of HH spectrum and time-frequency entropy. Because the amplitude distribution of marginal spectrum in different frequency band is different, the paper extracts the amplitude characteristics of marginal spectrum of fruit fly's wing vibration sound.
     (4) The paper uses BP neural network to classify two strains of fruit fly's wing vibration sound. Firstly, it briefly introduces development process of artificial neural network, and analyzes the basic principle and parameter selection of BP neural network in detail. Then, the paper takes features extracted by Hilbert-Huang transform as input vector of BP neural network, classifies two strains of fruit fly's wing vibration sound, and the recognition result can reach over 86%, which explains the feasibility and effectiveness of the method.
引文
[1]廉振民.昆虫鸣声分类研究[M].北京:科学出版社,2001.
    [2]赵丽稳,王鸿斌,张真等.昆虫声音信号和应用研究进展[J].植物保护,2008,34(4):5-12.
    [3]曹凤勤,程立生.昆虫鸣声的研究进展及其应用概述[J].华南热带农业大学学报,2004,10(1):29-33.
    [4]芦荣胜,石福明,杨培林.两种米纹蝗雄性鸣声的比较研究(直翅目,蝗总科)[J].动物学学报,2003,28(3):411-415.
    [5]韩萍,张红梅.仓储粮害虫分类识别中的声信号的特征提取[J].计算机工程与应用,2003,14:215-217.
    [6]R. W. Mankin, W. L. Osbrink. Acoustic Detection of Termite Infestations in Urban Trees[J]. J Econ Entomol,2006,99 (1):244-250.
    [7]R. W. Mankin, J. B. Anderson. Broadcasts of Wing-fanning Vibrations Recorded from Calling Male Ceratitis capitata (Diptera:Tephritidae) Increase Captures of Females in Traps[J]. J. Econ Entomol,2004,97 (4):1299-1309.
    [8]郭建明.樱桃新害虫黑腹果蝇的生物学特性[J].昆虫知识,2007,44(5):743-745.
    [9]倪福清.东魁杨梅果蝇的发生规律与综合防治[J].现代农业科技,2009,22:145-146.
    [10]杨勇胜,任光玉,姚德芬等.杨梅黑腹果蝇的食物诱杀防治效果[J].贵州农业科学,1998,26(3):25-29.
    [11]张鹏飞,毛玉蕊,杨绕华等.黑腹果蝇的一些生物学特性观察[J].北京农学院学报,2010,25(1):16-19.
    [12]E. TAUBER, D. F. EBERL. Acoustic Communication in Drosophila[J]. Behavioral Processes,2003,64:197-210.
    [13]J. C. Webb, J. L. Sharp, D. L. Chambers, et al. Acoustical Properties of the Flight Activities of the Caribbean Fruit Fly [J]. J.exp.Biol,1976,64:761-772.
    [14]J. Sivinski, C. O. Calkins, J. C. Webb. Comparisons of Acoustic Courtship Signals in Wild and Laboratory Reared Mediterranean Fruit Fly Ceratitis Capitata[J]. Florida Entomol,1989,72 (1):212-214.
    [15]A. Mizrach, A. Hetzroni, M. Mazor, et al. Acoustic Trap for Female Mediterranean Fruit Flies[J]. American Society of Agricultural Engineers,2005,48 (5):2017-2022.
    [16]D. E. Cowling, B. Burnet. Courtship Songs and Genetic Control of their Acoustic Characteristics in Sibling Species of the Drosophila melanogaster Subgroup[J]. Anim.Behav.,1981,29:924-935.
    [17]M. G. Ritchie, E. J. Halsey, J. M. Gleason. Drosophila Song as a Species-specific Mating Signal and the Behavioural Importance of Kyriacou & Hall cycles in D. melanogaster song[J]. Animal Behaviour,1999,58:649-657.
    [18]F. Rybak, T. Aubin. Acoustic Communication in Drosophila melanogaster Courtship: are Pulse-song and Sine-song Frequencies Important for Courtship Success?[J]. Can J Zool,2002,80:987-996.
    [19]B. C. TALYN, H. B. DOWSE. The Role of Courtship Song in Sexual Selection and Species Recognition by Female Drosophila melanogaster[J]. Animal Behavior,2004, 68:1165-1180.
    [20]庚镇城,朱定良,蔡怀新等.黑腹果蝇野生型和翅形眼色异常突变型的求爱歌的比较研究[J].遗传学报,1987,14(6):442-446.
    [21]庚镇城,朱定良,孙耀来.果蝇亚群中六个种的求爱歌的研究——对ipi作用的探究[J].遗传学报,1989,16(6):448-454.
    [22]邵红光,里敦,张咸宁等.果蝇nasuta亚群求爱歌的种间识别与进化遗传学研究[J].遗传学报,1997,24(4):311-321.
    [23]吴伟忠,陈暨耀,蔡怀新等.用微机技术测量黑腹果蝇求偶歌节律[J].复旦学报(自然科学版),1988,27(4):402-406.
    [24]袁越,王隽奇,钟忠等.时域-频域结合分析法——一种分析果蝇求爱歌的新方法[J].遗传学报,1992,19(6):497-509.
    [25]李成林,刘江伟,刘镇清等.果蝇求爱歌的声学分析[[J].声学技术,1996,15(1):29-30.
    [26]聂晓颖,郭敏.地中海果蝇鸣声特征分析[J].宁夏大学学报(自然科学版),2007,28(1):37-40.
    [27]聂晓颖.果蝇鸣声特征提取及人工神经网络分类研究[D].陕西:陕西师范大学,2007.
    [28]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [29]N. E. Huang, S. Zheng, S. R. Long, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proc. R. Soc. Lond. A,1998,454:903-995.
    [30]张义平.爆破震动信号的HHT分析与应用研究[D].湖南:中南大学,2006.
    [31]刘慧婷.EMD方法的研究与应用[D].安徽:安徽大学,2004.
    [32]陈娟.Hilbert-Huang变换及其在信号处理中的应用[D].辽宁:大连理工大学,2005.
    [33]龚英姬.基于HHT变换的病态嗓音特征提取及识别研究[D].广西:广西师范大学,2007.
    [34]迟慧广.希尔伯特-黄变换在水雷目标特征提取中的应用[D].黑龙江:哈尔滨工程大学,2007.
    [35]王伟.Hilbert-Huang变换及其在非平稳信号分析中的应用研究[D].北京:华北电力大学,2008.
    [36]吕成刚.水下瞬态信号特性获取与分析[D].黑龙江:哈尔滨工程大学,2009.
    [37]王强.基于HHT和SVM的水电机组特征提取与状态识别[D].湖北:华中科技大学,2008.
    [38]刘欢.分频Hilbert-Huang变换对非平稳信号的分析作用[D].湖南:湖南大学,2007.
    [39]黄成惕.希尔伯特-黄变换及其应用研究[D].四川:西南交通大学,2006.
    [40]王巍巍.鱼类声信号的分析及特征提取研究[D].黑龙江:哈尔滨工程大学,2009.
    [41]陈一贤.HHT方法分析[D].浙江:浙江大学,2007.
    [42]李琳.基于Hilbert-Huang变换的信号分析及应用[D].吉林:吉林大学,2004.
    [43]褚敏,田社平,王志武.人体结肠压力信号的HHT分析[J].北京生物医学工程,2008,27(4):367-370.
    [44]W. Huang, Z. Shen, N. E. Huang, et al. Engineering Analysis of Biological Variables: An Example of Blood Pressure over one Day[C]. Proceeding of the National Academy of Science, USA,1998,95:4816-4821.
    [45]H. L. Liang, Z. Y. Lin, R. W. McCallum. Artifact Reduction in Electrogastrogram Based on the Empirical Mode Decomposition Method[J]. Med. Biol. Eng. Comput., 2000,38(1):35-41.
    [46]H. L. Liang, Z. Y. Lin. Multiresolution Signal Decomposition and Its Application to Electrogastric Signals[J]. Recent research developments in biomedical engineering, Kerala, India,2002:15-31.
    [47]R. Balocchi, D. Menicucci, M. Varanini. Empirical Mode Decomposition to Approach the Problem of Detecting Sources from a Reduced Number of Mixtures[C]. Proceedings of the 25th Annual International Conference of the IEEE EMBS, MeXico, 2003:17-21.
    [48]孙仁,沈海东等.HHT方法在脉搏波信号分析中的应用[J].医用生物力学,2006,21(2):87-93.
    [49]M. L. Wu, S. Schubert, N. E. Huang. The Development of the South Asian Summer Monsoon and the Intraseasonal Oscillatio[J]. Journal of Climate,1999,12:2054-2075.
    [50]P. Gloerson, N. E. Huang. Comparison of Interannual Intrinsic Mode in Hemispheric Sea Ice Covers and Other Geophysical Parameters[C]. IEEE Trans. on Geosci. and Remote Sens,2003,41 (5):1062-1074.
    [51]公茂盛,谢礼立.HHT方法在地震工程中的应用之初步探讨[J].世界地震工程,2003,19(3):40-43.
    [52]张义平,李夕兵,赵国彦.基于HHT方法的爆破地震信号分析[J].工程爆破,2005,11(1):2-7.
    [53]D. Pines, L. Salvino. Structural Health Monitoring Using Empirical Mode Decomposition and the Hilbert Phase[J]. Journal of Sound and Vibration,2006,294: 97-124.
    [54]吕艳新,孙书学,顾晓辉.基于EMD和能量比的战场声目标分类与识别[J].振动与冲击,2008,27(11):51-55,61.
    [55]王锋,尹力,朱明洪.基于Hilbert-Huang变换的水声信号特征提取及分类技术[J].应用声学,2007,26(4):223-30.
    [56]于德介,张嵬,程军圣等.基于EMD的时频熵在齿轮故障诊断中的应用[J].振动与冲击,2005,24(5):26-27,29.
    [57]H. Huang, J. Q. Pan. Speech Pitch Determination Based On Hilbert-Huang Transform [J]. Signal Processing,2006,86:792-803.
    [58]杨宇,于德介,程军胜.基于Hilbert边际谱的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):70-73.
    [59]钟佑明,秦树人,汤宝平.希尔伯特-黄变换中边际谱的研究[J].系统工程与电子技术,2004,26(9):1323-1326.
    [60]蒋宗礼.人工神经网络导论[M].北京:高等教育出版社,2001.
    [61]周建平,陶春辉,吕文正,何拥华,顾春华.基于BP网络对模拟声呐信号分类[J].海洋学研究,2007,25(2):83-90.
    [62]侯媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007.
    [63]许振伟.BP神经网络分类器在储粮害虫图像检索中的应用研究[J].中国粮油学报,2010,25(1):103-106.
    [64]吴晓栋.基于BP神经网络的脉搏波信号的辩识研究[D].山西:太原理工大学, 2010.
    [65]高东璇.基于BP神经网络的齿轮故障模式识别研究[D].陕西:长安大学,2010.
    [66]胡方明,简琴,张秀君.基于BP神经网络的车型分类器[J].西安电子科技大学学报(自然科学版),2005,32(3):439-442.
    [67]姚青,赖风香,付强等.基于人工神经网络的昆虫鸣声识别[J].昆虫分类学报,2005,27(1):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700