果蝇鸣声特征提取及人工神经网络分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫与人类的关系十分密切,它们直接或间接地影响着人类的生活。昆虫以各种行为发出的声音作为特定的交流方式,不同的行为发出的鸣声其意义也有所不同。研究其鸣声,分析鸣声产生的原因和鸣声特征,比较种群间的异同,对于掌握昆虫的活动规律、监测和控制害虫具有重要意义。利用昆虫鸣声进行分类,对那些形态上难以区分的近缘种或疑难种及种下分类十分有利。
     本文对同种不同品系果蝇飞行时翅振产生的鸣声进行了采集、分析研究。
     实验中所用的果蝇均为黑腹果蝇,来源于陕西师范大学生命科学学院。共有同种下的3个品系,分别为Canton-Special(Canton-S)品系和标号为18号、22号的突变型果蝇。采集声音前,先将3个品系果蝇的雌、雄人工分离,然后分别对雌、雄果蝇飞行翅振鸣声进行采集。采集的鸣声数据以WAV格式存储,所以声音数据未经压缩,无畸变。
     首先,用小波降噪和自适应滤波的方法分别对含噪的果蝇飞行翅振鸣声信号进行消噪。结果表明:小波降噪对高频部分噪声的抑制十分有效,对噪声的频谱分析发现,噪声的能量主要集中在50Hz左右的低频处,用小波方法对低频段的降噪并不理想;采用自适应滤波方法可以将低频处的噪声有效地消除,因此自适应滤波在本文研究中是一种更为有效的去噪方法。
     其次,从时域、频域分别对3个品系的雌、雄果蝇鸣声进行了分析。通过时域分析发现,3个品系果蝇飞行翅振鸣声的波形都为相似的正弦波,脉冲间距(IPI)略有不同。通过频域分析发现,同品系雌、雄果蝇飞行的翅振鸣声频率有很大重叠,平均雄性略高于雌性。而不同品系果蝇之间的飞行翅振鸣声频率也有重叠,略有差异。3个品系雌、雄果蝇飞行的翅振频率主频在200—300Hz之间,频率范围在0—4000Hz之间,能量主要集中在200—2000Hz,其中22号果蝇能量范围较大,主要集中在200—3000Hz。翅振鸣声所含频率成分都比较多,呈现为多谐谱。
     最后,利用人工神经网络对3个品系果蝇进行分类识别。实验分为两种方案,每种方案实验分4组。第一种方案对每个鸣声样本进行频谱分析,取7个幅值最大的频率作为特征值。在这种方案中,神经网络设置为2个隐层。通过实验结果发现:神经网络对同品系内果蝇雌、雄的分类和种内不同品系雌性果蝇的分类效果都不理想。第二种方案对每个鸣声样本进行频谱分析,将129个频率点对应的功率谱密度作为输入特征向量。将每个品系雌、雄果蝇鸣声信号都分为训练样本集和验证样本集。每个训练样本集都包含50个鸣声信号样本,用训练样本集对所设计的人工神经网络进行训练。训练成功的网络,用对应的未参与训练的30个验证样本来验证神经网络。对同品系雌、雄果蝇进行识别,实验结果表明,神经网络对Canton-S果蝇雌性的识别率很高,对18号果蝇雄性的识别率很高,对22号果蝇雌性识别率很高。对另一性的识别率较低。可见同品系内雌、雄果蝇的翅振鸣声模式基本相同,翅振频率和声强特征相似,无法通过鸣声对同品系内的雌、雄果蝇进行分类识别。对3个不同品系(Canton-S、18号和22号)雌性果蝇进行识别,实验结果表明,Canton-S果蝇的平均识别率可达96.7%,18号果蝇的识别率可达100%,22号的识别率可达100%。可见,所建立的神经网络对种内不同品系间的果蝇飞行翅振鸣声具有较好的识别效果,利用鸣声信号特征的种内分类是可行和有效的,具有很好的推广性。飞行翅振鸣声的频域特征在果蝇种下分类中具有重要的识别意义。
Insects are closely related to human beings. They have direct or indirect influence on people's life. Insects communicate through particular sounds produced by various actions. The sounds produced by different actions mean differently. Studying the insect sound, analyzing its causes and features, and making comparison between different groups are of great significance to learn the rules of insects' actions and monitor and control the pests. The classification by sounds is helpful to classify the related species, dubious species and subspecies.
     This paper has collected and analyzed the fruit fly's sound.
     In the experiment, all the fruit flies are drosophila melanogasters provided by the School of Life Science of Shaanxi Normal University. There are three strains of them. One is Canton-Special(Canton-S) and the other two are mutant fruit flies numbered 18 and 22 respectively. Before the collection of sounds, each type is divided artificially into the male and the female. The wing-vibrating sounds of the male and the female are collected separately. The sounds are recorded and saved in WAV form without compression and aberration.
     Firstly, the wing-vibrating sound signals of fruit flies, which have noise, are processed by means of wavelet denoising and adaptive filtering. What the results indicate are as follows. It is effective in controlling the noise in high frequency part using wavelet denoising. The energy of noise is in the low frequency part, around 50Hz in the spectrum. The noise in the low frequency is not eliminated effectively by wavelet denoising. Therefore, adaptive filtering proves to be an effective approach of removing noise in this research.
     Secondly, the male and the female fruit flies of the three strains have been analyzed in terms of sounds from the time domain and frequency domain. With the analysis of time domain, the wing-vibrating sounds of the three strains have similar sine wave with slight difference in the interpulse interval (IPI). With the analysis of frequency domain, the male and the female of the same strain have a large overlapping part in the frequency of wing-vibrating sounds. On average, the frequency of the male is a bit higher than that of the female. Different strains also have overlaps in the frequency of wing-vibrating sounds, and little difference. The main frequency of the three strains ranges from 200 to 300Hz, frequency from 0 to 4000Hz, energy from 200 to 2000Hz. Number 22 has the largest range of energy from 200 to 3000Hz. There are many frequency components. It presents a multi-harmonic spectrum.
     Thirdly, the classification of the three strains of fruit fly is conducted using neural network. The experiment is carried out in two ways, each of which is divided into four groups. Firstly, the spectrum analysis of each sound sample is made to take seven frequencies with the largest amplitude as the eigenvalue. The neural network is set in two implicit strata. As the result indicates, the neural network doesn't work effectively in classifying the male and the female of same strain and classifying the strains of same species. Secondly, the spectrum analysis of each sound sample is made to take 129 points in power spectral density estimate as the feature vector. Sound signals of the male and the female of each strain are divided into training collection and validation collection. Each training collection contains 50 signals which are used to train the artificial neural network. After the network is successfully trained, the neural network will be validated by the 30 corresponding validation samples of each strain of fruit fly. Neural network has a high level of identification accuracy for female Canton-S as well as for male number 18 and female number 22; while it has a level of identification accuracy for the other sex. It is clear that the male and the female of same strain have basically the same pattern of wing-vibrating sound, wing-vibrating frequency and sound intensity as well. The sex classification of same strain can not be conducted by sound. When the female fruit flies of Canton-S, number 18 and number 22 are analyzed, the average accuracy of identification of Canton-S reaches 96.7%, no.18 is 100%, and no.22 is 100%. As the result of the experiment demonstrates, the established neural network is effective in identifying the wing-vibrating sounds of different strains of same species. The utilization of sound signal features is applicable and feasible with great significance being popularized suitably. The features of frequency domain of wing-vibrating sounds have important significance to identification.
引文
[1] 程惊秋.昆虫声波研究的一些新进展[J].国外农学——植物保护,1988,2:39—42.
    [2] 石福明,杨培林,杜喜翠.日本条螽不同地理种群雄性鸣声的比较研究[J].动物分类学报,2003,28(3):402—410.
    [3] 石福明,杨培林,蒋书楠.鼻优草螽和苍白优草螽鸣声和发音器的研究[J].动物学研究,2001,22(2):89—92.
    [4] 杨培林,常岩林,芦荣胜.日本条螽鸣声特征的初步研究[J].广西科学院学报,2000,16(3):138~141.
    [5] 席瑞华,刘举鹏,陈念丽.长白山自然保护区蝗虫鸣声结构的特点[J].昆虫知识,1990,27(6):329—331.
    [6] 曹立民,郑哲民,廉振民.东北地区跃度蝗属鸣声结构的比较研究[J].昆虫分类学报,1995,17(1):70—74.
    [7] 郑哲民.中国蝗虫的分类学研究[J].陕西师范大学学报(自然科学版),2003,31:46—58.
    [8] 芦荣胜,石福明,黄原.四种蝗虫雄性鸣声的比较研究[J].动物分类学报,2004,29(4):639—645.
    [9] 芦荣胜,石福明,杜喜翠.四种雏蝗虫雄性鸣声结构的比较研究[J].广西科学,2003,10(2):146—149.
    [10] 芦荣胜,石福明,杨培林.两种米纹蝗雄性鸣声的比较研究[J].动物分类学报,2003,28(3):411—415.
    [11] 蒋锦昌,冯德修,王强.非洲蝼蛄的鸣声特点[J].生物物理学报,1985,4:279—285.
    [12] 何忠,陈念丽,席瑞华等.非洲蝼蛄的鸣声结构及声引诱[J].动物学报,1989,35(1):73—81.
    [13] 何忠.蝼蛄的声学通讯[J].生物学报,1995,30(12):6—7.
    [14] 何忠,席瑞华,张丽瑛等.东方蝼蛄声通讯中的方言.昆虫学创新与发展—中国昆虫学会2002年学术年会论文集[C],2002:214—221.
    [15] 何忠,陈念丽.北京地区五种常见鸣虫的鸣声结构[J].动物学报,1985,31(4):324—330.
    [16] 吴福桢,冯平章,何忠.北京及银川常见蟋蟀鸣叫习性与种类鉴定[J].昆虫学报,1986.29(1):62—66.
    [17] 李恺,郑哲民.棺头蟋属六种常见蟋蟀鸣声特征分析与种类鉴定[J].昆虫分类学报,1999,21(1):17—21.
    [18] 芦荣胜,杨培林,石福明等.历山自然保护区四种蟋蟀鸣声结构的比较研究[J].动物分类学报,2002,27(3):491—496.
    [19] 廉振民,李恺.蟋蟀常见鸣声类型的比较研究[J].昆虫分类学报,2002,24(1):45—51.
    [20] 陈道海,袁肇友,杜金球等.迷卡斗蟋鸣声的声学特征及其生物学意义[J].昆虫学报,2005,48(1):82—89.
    [21] 陈道海,林焕芳,李洁萍等.双斑蟋鸣声特征与行为关系的初步研究[J].动物学研究,2002,23(4):288—295.
    [22] 陈道海,丘占锋,李洁萍等.黑色油葫芦行为谱及鸣声结构的实验分析[J].湛江师范学院学报,2006,27(3):50—54.
    [23] 白雅.三种蟋蟀鸣声特征的比较[J].南阳师范学院学报,2006,5(9):27—29.
    [24] 谢令德,郑哲民,唐国文等.三种油葫芦鸣声节律谱图比较[J].动物分类学报,2006,31(3):485—489.
    [25] 程惊秋.楝星天牛胸部摩擦和鞘翅振动发声及其声学特征的研究[J].昆虫学报,1993,36(2):150—157.
    [26] 程惊秋.桔褐天牛和桑粒肩天牛幼虫声行为的研究[J].林业科学,1993,29(4):307—312.
    [27] 傅强,陈伟,张志涛.褐稻飞虱鸣叫行为与起飞的关系[J].华东昆虫学报,1994,3(2):81—84.
    [28] 傅强,张志涛,陈伟等.回放雄虫第二种鸣声对稻褐飞虱生殖过程的抑制作用[J].昆虫学报,1999,42(1):1—6.
    [29] 姚青,赖凤香,傅强等.褐飞虱雄虫鸣声特征分析及其生物学意义[J].中国农业科学,2004,37(7):993—999.
    [30] Ossiannilsson F. Insect drummers A study on the morphology and function of the sound producing organ of Swedish Homoptera Acchenorrhyncha with notes on their sound—production [J ]. Opusc Entomol Supp 1, 1949, 10:1~145.
    [31] Fleming C A. Acoustic behaviour as a generic character in New Zealand Cicadas[J].J.R.Soc.N.Z.,1975, 5 (1): 4—64.
    [32] Ewart A.Revisionary notes on the genus Pauropsatta Goding and Froggattt with special reference to Queensland[J].Mem.QdMus, 1989, 27 (2): 289—375.
    [33] 蒋锦昌.云南景洪地区蝉鸣特点的分析[J].昆虫学报,1985,28(3):257—265.
    [34] 何忠,陈念丽.北京地区五种常见鸣虫的鸣声结构[J].动物学报,1985,31(4):324—330.
    [35] 张志涛,陈伦裕.稻飞虱、叶蝉求偶鸣声研究初报[J].中国水稻科学,1987,1(2):134—135.
    [36] 蒋锦昌,王强,刘向群.黑蚱蝉鸣声的结构和音色特征[J].昆虫学报,1988,31(2):129—139.
    [37] 冯德修.黑蚱蝉鸣声的波谱特征[J].生物物理学报,1998,4(1):25—29.
    [38] 雷仲仁,周尧,李莉.蝉鸣特征及其在分类学上的意义[J].昆虫分类学报,1994,16(1):51—59.
    [39] 雷仲仁,蒋锦昌,李莉等.不同地区蟪蛄蝉求偶鸣声的比较[J].昆虫学报,1997,40(4):349—356.
    [40] 赵冬香,高景林,陈德懋等.假眼小绿叶蝉鸣声德初步研究[J].茶业科学,2004,24(4).235—239
    [41] Hay—Roe M M,Mankin R W.Wing-click sounds of Heliconius cydno alithea Butterflies[J].Journal of Insect Behavior, 2004, 17 (3): 329—335.
    [42] 程惊秋.昆虫声波研究的一些新进展[J].国外农学—植物保护,1988,2:39—42.
    [43] 王进忠,孙淑玲.鳞翅目蛾类超声信号及其行为研究进展[J].北京农学院学报,1998,13(2):101—104.
    [44] Harald Esch,Donald Wilson.The sounds produced by flies and bees.Zeitschrift fur vergleichende physiologie, 1967, 54: 256—267.
    [45] Roth L M.A study of mosquito behaviour.An experimental study of the sexual behaviour of Aedes aegypti.The American Midland Naturalist, 1948, 40: 265—352.
    [46] Belton P, Costello R A.Flight sounds of the females of some mosquitoes of Western Canada[J].Ent.exp.and appl, 1979, 26 (1): 105—114.
    [47] 何忠.淡色库蚊的飞翔声[J].昆虫学报,1984,27(4):472—475.
    [48] 徐启丰.我国几种蚊虫声频的测定[J].昆虫知识,1986,1:35—36.
    [49] 丁荣定.三种蚊虫飞行声的记录和频率测定.昆虫学研究集刊[C],1986,6:273—274.
    [50] 李振宇,周祖基,沈佐锐等.人工神经网络在蚊虫自动鉴定中的应用[J].四川农业大学学报,2005,23(4):411—416.
    [51] Wishart G, Riordan D EFlight responses to various sounds by adult males of Aedes aegypti[J].Canadian Entomologist, 1959, 91: 181—191.
    [52] Kimio Hirabayashi,Kenichi Ogawa.The effiency of artificial wingbeat sounds for capturing midges in black light traps[J].Entomologia Experimentalis et Applicata, 1999, 92: 233—238.
    [53] 张时妙,莫建初,傅桂明等.雌蚊翅振音及其在蚊虫防治中的应用[J].昆虫知识,2004,41(5):403—408.
    [54] Webb J C, Sharp J L, Chambers D L, et al.Acoustical properties of the flight activities of the Caribbean fruit fly[J].J.exp.Biol, 1976, 64: 761—772.
    [55] Sivinski J, Calkins C O, Webb J C.Comparisons of acoustic courtship signals in wild and laboratory reared Mediterranean fruit fly Ceratitis Capitata[J].Florida Entomol, 1989, 72 (1): 212—214.
    [56] Mizrach A, Hetzroni A, Mazor M,et al.Acoustic Trap For Female Mediterranean fruit flies[J].American Society of Agricultural Engineers, 2005, 48 (5): 2017—2022.
    [57] Webb J C, Calkins C O, Chambers D L, et al.Acoustic aspects of behaviour of Mediterranean fruit fly, Ceratitis Capitata:Analysis and identification of courtship sound.Entomol[J].Exp.Appl, 1983, 33 (1): 1—8.
    [58] 邵红光,里敦,张咸宁等.果蝇nasuta亚群求爱歌的种间识别与进化遗传学研究[J].遗传学报,1997,24(4):311—321.
    [59] 庚镇城,朱定良,孙耀来.果蝇亚群中六个种的求爱歌的研究——对ipi作用的探究[J].遗传学报,1989,16(6):448—454.
    [60] 庚镇城,朱定良,蔡怀新等.黑腹果蝇野生型和翅形眼色异常突变型的求爱歌的比较研究[J].遗传学报,1987,14(6):442—446.
    [61] 吴伟忠,陈暨耀,蔡怀新等.用微机技术测量黑腹果蝇求偶歌节律[J].复旦学报(自然科学版),1988,27(4):402—406.
    [62] Cowling D E, Burnet B. Courtship song and genetic control of their acoustic characteristics in sibling species of the Drosophila melanogaster subgroup. Anim. Behav. 1981, 29: 924-935.
    [63] 陈暨耀,吴伟忠,蔡怀新等.用新的计量方法研究黑腹果蝇的求爱歌[J].动物学研究,1988,9(2):133—139.
    [64] 袁越,王隽奇,钟忠等.时域—频域结合分析法——一种分析果蝇求爱歌的新方法[J].遗传学报,1992,19(6):497—509.
    [65] 李成林,刘江伟,刘镇清等.果蝇求爱歌的声学分析[J].声学技术,1996,15(1):29—30.
    [66]张婷婷,张霞.裁翅对果蝇生殖行为的影响[J].石河子大学学报(自然科学版),2005,23(5):580—582.
    [67]曹凤勤,程立生.昆虫鸣声的研究进展及其应用概述[J].华南热带农业大学学报,2004,10(1):29—33.
    [68]胡昌华,李国华,刘涛等.基于MATLAB6.X的系统分析与设计—小波分析[M].第二版.西安:西安电子科技大学出版社,2004.1.
    [69]Grossman A, Morlet J. Decomposition of Hardy Functions into Square Integable Wavelets of Constant Shape, Siam. J. Math. Anal, 1984, 15(4): 723~736.
    [70]Zhang Zhongfu,Liu Linzhong, Wang Jianfang.Adjacent strong edge coloring of graphs[J].Applied Mathematics Letters, 2002,15:623-626.
    [71]Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693.
    [72]李勇,徐震.MATLAB辅助现代工程数字信号处理[M].西安:西安电子科技大学出版社,2002:187—191.
    [73]姜仕仁,丁平,邬艳春等.竹鸡鸣声特征分析[J].杭州大学学报(自然科学版),1996,23(2):188—194.
    [74]陈家焱,陈冬娇,张达响.基于Matlab的声音信号采集与分析处理[J].计算机与现代化,2005,6:91—96.
    [75]薛年喜.MATLAB在数字信号处理中的应用[M].北京:清华大学出版社,2003:270.
    [76]Rosenblatt E The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain [J] . Psychological Review, 1958, 65: 386~408.
    [77]Hopfield J J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities [J]. Prco.Natl.Acad.Sci., U.S.A., 1982 , 79: 2554~2558.
    [78]许东,吴铮.基于MATLAB6.X的系统分析与设计—神经网络[M].第二版.2002:19—21.
    [79]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005:100—102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700