肝脏遗传性出血性毛细血管扩张症的临床基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和意义
     遗传性出血性毛细血管扩张症(Hereditary Hemorrhagic Telangiectasia, HHT)亦称Osler-Weber-Rendu病,是一种由转化生长因子β (Transforming Growth Factor β, TGF-β)信号通路相关基因突变导致血管形成发育障碍而引起的涉及鼻、口腔、唇、舌、四肢等全身皮肤粘膜以及肝、肺、脑、胃肠道等内脏器官的全身性疾病。该病属于常染色体显性遗传病,但不完全外显,存在散发性病例,其纯合子病人尚无文献报道,杂合子病人因“单倍剂量不足”出现随年龄增长而不断进展的病症。患者的发病情况、受累脏器、临床表现及预后存在较大的个体间差异,给该病的早期临床诊断和治疗造成困难。2002年日本秋田县(人口约120万)开展了HHT的流行病学调查,结果显示当地该病的发病率为1/8000-1/5000,与欧美国家相比较,亚洲尤其东亚地区或许是HHT的高发区域。
     上世纪八十、九十年代,国外开展的病例回顾性研究表明HHT肝脏受累的比例为8-31%。然而,随着影像技术的进步和筛查方法的改进,近年来肝脏受累的病例报道逐渐增多,而HHT肝脏受累的比例也不断增高。2004年,Buscarini利用彩超对64个HHT家系进行肝脏筛查,发现41.4%的HHT患者存在肝血管畸形;而非家系选择性队列研究中,影像学筛查发现67%-84%的HHT患者病变累及肝脏,其中Buonamico于2008年报道的肝脏受累比例高达84%。因此,HHT肝脏受累的相关研究必然地成为了HHT研究的重要部分,而“肝脏遗传性出血性毛细血管扩张症(Hepatic Hereditary Hemorrhagic Telangiectasia, HHHT)"的概念也逐渐被接受。
     HHHT的大多数患者起初无明显症状,亦无特异性体征,有症状而就诊者比例不足15%,而具备充血性心力衰竭、门脉高压、胆系症状等典型症状的患者更少,容易漏诊、误诊。有学者提出了诊断HHT的经验性的"Curacao标准”,但具体到肝脏(即HHHT),其特异性、敏感性受到质疑,临床指导意义有限。影像学检查方面,作为血管畸形诊断“金标准”的血管造影逐渐被无创性检查技术取代,但该病彩超、CT的诊断标准尚未统一。国外HHHT相关的基因检查已开展,然而,不同致病位点被陆续发现,且有新的致病基因被报道(如MADH4基因)。由于其家族特异性遗传特点,对于未知突变基因的病人以及无家族遗传背景的患者,基因诊断困难。因此,HHHT的临床诊断策略有待进一步完善。
     与此同时,HHHT的治疗方案,尤其外科治疗也没有达成共识,值得深入探讨。广义的HHHT外科治疗主要包括肝动脉介入栓塞、肝动静脉瘘结扎、缩扎术、肝移植术。介入治疗利用栓塞剂或不锈钢圈栓塞动静脉瘘的供血血管,具有创伤小、显效快特点,但随访发现术后易复发,且能引起胆道甚至肝组织缺血坏死。肝动静脉瘘结扎及扩张的动脉瘤结扎术,手术创伤较大,术后并发症较多,部分患者术后也出现局部肝组织和胆道缺血坏死。2006年《Annal of Surgery》总结了1985年-2003年欧洲14个医疗中心开展的40例HHHT肝移植的情况:60%出现移植后并发症;20%移植后死亡;另有2例疑似复发。
     近年来,国内相关肝脏遗传性出血性毛细血管扩张症(HHHT)报道逐渐增多,但遗憾的是,国内尚无较为系统的病例分析和临床研究。针对国内HHHT的系统临床病例研究的空白及诊断方法和治疗方式的争议,我们课题组随访调查了山东济南、淄博桓台、聊城莘县、临沂蒙阴以及上海、浙江衢州、河南郑州、河北石家庄等地的HHHT病例,采集了临床资料和家系信息。本研究(第一部分)整理并回顾性分析了2002年-2011年山东大学齐鲁医院以及山东、河南、河北、浙江等地合作医疗单位诊治的15例HHHT患者临床资料,对HHHT的临床表现、病理、诊断、治疗及预后进行总结、分析,初步提出了HHHT的诊断策略、个体化治疗方案以及肝动脉结扎术式的改进方法。
     HHHT的遗传学背景是转化生长因子β (TGF-β)受体超家族相关编码基因的突变:HHT1型致病基因为ENG(endoglin),位于9号染色体长臂(9q33-34),编码TGF-β的细胞表面协同受体endoglin;HHT2型致病基因为ALK-1(activin receptor-like kinase1),位于12号染色体长臂(12q13),编码ALK-1(或ACVRL1),是TGF-βⅠ型受体的一种。ENG和ALK-1主要存在于内皮细胞尤其血管内皮细胞表面,在血管形成、发育方面具有重要作用。目前新发现其他4个基因与HHT相关,其中除了5号染色体和7号染色体上的2个致病基因功能尚不明确外,MADH4基因和BMPR2基因都与TGF-β信号通路相关,而位于18号染色体(18q21)的MADH4,编码TGF-β受体的激酶底物——Smad4,对TGF-β信号传导具有重要作用。
     TGF-β参与人体诸多生命过程的调控,如细胞生长分化、胚胎发育、血管形成,而其信号通路的传导异常可引发肿瘤、HHT等多种疾病。现代分子生物学研究已经基本明确TGF-β信号传导过程,即当TGF-β与其细胞表面受体TGF-β receptor, TβR)结合后,诱导受体TβR-Ⅰ, TβR-Ⅱ形成复合体,TβR-Ⅱ催化Tβ R-Ⅰ结构域的丝氨酸/苏氨酸残基磷酸化,激活丝氨酸/苏氨酸蛋白激酶,从而活化TβR-Ⅰ,再作用于细胞内底物,如SMAD家族,完成细胞信号传导。正是由于TGF-β细胞表面受体和细胞内SMAD家族结构和功能不同,激活或抑制基因表达,使TGF-β产生不同生物学效应。其中,Smad分为3类:即受体活化型(R-Smad)、共同通路型(Co-Smad)和抑制型(I-Smad)。R-Smad(包括Smad2、 Smad3)和Co-Smad(即Smad4)是TGF-β信号正常传导所需介质;而I-Smad(如Smad7)则能抑制TGF-β的信号传导。ENG、ALK-1及MADH4基因的突变使TGF-β细胞表面相关受体及下游Smad4异常,阻碍了TGF-β正常信号传导,导致血管生成发育障碍,引发HHT。
     因此,我们设想:增强TGF-β传导通路,尤其增强TGF-β受体或Smad4功能的干预措施,或许能起到一定治疗效果或延缓HHT的病情发展。我们尝试寻找TGF-β通路的正性调控因子,而RNF11可能就是这样一种调节蛋白。
     环指蛋白11(Ring-Finger Protein11, RNF11)是最早由肿瘤cDNA文库中克隆出来的具有环指结构的蛋白,经免疫共沉淀法发现其能与近80种不同类型和功能的细胞内蛋白作用,并且发现其能通过自身直接作用及泛素化等间接作用调节TGF-β通路和表皮生长因子(Epidermal Growth Factor, EGF)通路,被认为是细胞信号和转录调节的交叉点。泛素-蛋白酶体系统是目前已知最重要的蛋白质降解体系,参与基因表达、转录调节、信号传递、细胞增殖、凋亡、分化等几乎一切生命活动的调控。而RNF11是一种包含多个结构域的调节蛋白,其中包括一个泛素结合结构域,能通过泛素化途径对受体、转录因子、信号蛋白进行调控。Smurf2(一种泛素化连接酶)是已知的TGF-β信号的高效负性调节因子:一方面能促进Smad2降解而下调TGF-β信号,另一方面能与Smad7作用以抑制TGF-β信号传导并促进TGF-β受体降解。国外学者报道RNF11或许能通过阻断Smurf2活性和直接增强Smad4活性的方式以增强TGF-β信号。
     因此,我们选取环指蛋白11(RNF11)作为可能延缓HHHT病情发展或治疗HHHT的因子。本研究(第二部分)中,我们成功构建了RNF11过表达真核载体,通过脂质体转染方法对体外肝细胞系(Chang Liver)的增殖进行干预,观察RNF11是否能够增强TGF-β1的增殖抑制能力,论证RNF11对TGF-β通路的正性调节作用,为我们课题组之后应用TGF-β通路相关调节因子调控血管生成及治疗HHHT相关实验研究做前期准备。
     第一部分
     肝脏遗传性出血性毛细血管扩张症的诊断策略和个体化治疗
     目的
     总结肝脏遗传性出血性毛细血管扩张症(Hepatic Hereditary Hemorrhagic Telangiectasia, HHHT)的诊治经验,探讨其临床诊断策略和治疗方案。
     方法
     回顾性分析15例HHHT患者的临床症状、体征、实验室检查、组织病理学检查、影像学检查、治疗方法和临床效果及预后资料。
     结果
     1、HHHT早期无特异性临床表现,可出现上腹痛、贫血、气短、肝区杂音等,但可能迅速进展,出现门脉高压、肝硬化、充血性心力衰竭等并发症;
     2、彩超、CT显示肝内弥漫性或局灶性毛细血管扩张、动静脉瘘、肝动脉迂曲扩张甚至动脉瘤形成;数字减影血管造影(DSA)对多支肝动脉的复杂患者,血管显影欠佳,而计算机断层扫描血管造影(CTA)则显示清晰;
     3、组织病理学检查示肝内弥散性或局灶性毛细血管扩张灶以及交替出现的再生和萎缩,部分肝组织呈现“窦性扩张”特点;局部出现灶性结节性增生及硬化样改变;免疫组化染色显示HHHT患者肝组织TGF-β1强阳性;
     4、手术6例,其中5例患者接受肝动脉结/缩扎术,随访效果满意;血管介入治疗3例,其中1例存在多支肝动脉的复杂型患者介入栓塞失败,药物治疗30月后病逝;4例仅行药物治疗,随访彩超、CT示肝脏病变逐渐加重;2例起始无症状,但21月、35月后分别出现肝功异常、腹水等症状,其中1例病逝。
     结论
     依据“充血性心力衰竭、门脉高压、胆系病变”三项主要临床表现,参照家族史和累及其他脏器所导致的相应症状和体征,以“肝内毛细血管扩张、动静脉瘘、肝动脉迂曲扩张或动脉瘤形成”的影像学特征作为主要诊断指标;而基因检测、血清TGF-β1检测可以作为辅助性诊断方法;肝脏组织病理学活检应当谨慎对待;HHHT为进展性疾病,依据病变程度和发病阶段,病人可以分为无症状型、简单型(肝动脉单支型)和复杂型(肝动脉多支型)三型;早期、积极的个体化治疗具有较好的临床效果;保留肝周韧带及胆道供血的肝动脉结/缩扎手术疗效满意。
     意义
     比较系统地总结和分析了HHHT病人的临床特点,在国内率先提出了HHHT的诊断策略和个体化治疗方案;针对单纯肝动脉结扎术后引起肝组织及胆道缺血坏死的风险,创新性地提出了预防性措施和改良术式,即1)严格控制手术适应征,当存在明显门静脉-肝静脉瘘时,避免施行肝动脉结扎术;2)尽量不游离胆管、保留肝周韧带及胆管血供;3)将结扎和缩扎术式结合(即肝动脉结/缩扎术),避免单纯结扎术后肝组织及胆道缺血坏死。
     第二部分环指蛋白11(RNF11)与TGF-β传导通路相关实验研究
     目的
     探讨环指蛋白11(Ring Finger Protein11, RNF11)通过TGF-β通路对Chang Liver肝细胞系增殖的作用,验证RNF11对TGF-β传导通路的正性调控作用。
     方法
     通过PCR技术检测Chang Liver正常肝细胞系、Hepg-2肝癌细胞系、A549肺腺癌细胞系中RNF11的表达情况;构建并通过SgfⅠ单酶切法、SgfⅠ和MIuI双酶切法以及DNA直接测序法鉴定RNF11真核表达载体pCMV6-RNF11-GFP;应用TGF-β1对Chang Liver细胞增殖的浓度梯度实验标准化TGF-β1的给药浓度;通过脂质体法将PCMV6-RNF11-GFP载体及空载体转染给Chang Liver细胞;转染后24h,给予终浓度5ng/ml TGF-β1处理(由浓度梯度实验确定),在转染后48h、72h、96h(即TGF-β1给药后24h、48h、72h),对转染组、空转组、对照组分别用CCK-8法、Brdu-DAPI复染法及生长曲线描述法检测细胞增殖情况。
     结果
     1、Chang Liver细胞系表达RNF11;
     2、CCK-8法及细胞生长曲线示RNF11转染组细胞增殖趋缓,与相应对照组及空转组相比有显著性差异(P<0.05);
     3、RNF11转染后48、72、96小时Chang Liver细胞增殖抑制率分别为10.80%、14.47%、16.31%,而相对应空转组细胞的增殖抑制率分别为3.52%、4.61%、4.84%;
     4、Brdu-DAPI法示转染组Brdu阳性细胞比例明显少于空转组及对照组,具有统计学意义(P<0.05)。
     结论
     RNF11能增强TGF-β1在Chang Liver细胞增殖过程中的增殖抑制作用,提示其对TGF-β传导通路具有正性调节作用;RNF11可能成为肝脏增生调控的新靶点,对研究肝脏增殖终止阶段TGF-β1及TGF-β通路的作用具有一定意义。
     意义
     RNF11被认为是细胞信号和转录调节的交叉点,我们通过体外细胞增殖实验验证其对TGF-β信号的正性调节作用。另一方面,遗传性出血性毛细血管扩张症的致病原因为TGF-β通路相关基因突变,导致TGF-β传导通路受阻。针对“单倍剂量不足”的致病机制,增强TGF-β信号的方法或许能起到治疗作用,而RNF11与TGF-β传导通路相关实验研究正是有益的尝试,为下一步应用TGF-β通路相关调节因子调控血管生成及治疗HHHT的实验研究做前期准备。
Background and Significance
     Hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, which is characterized by the skin mucosa telangiectasias of the whole body (such as nose, oral cavity, lip, tongue, fingers) and visceral arteriovenous malformations (liver, pulmonary, brain, gastrointestinal tract and so on), is a systemic angiogenesis disorder caused by the mutation of genes related to transforming growth factor beta signal pathway. HHT is an autosomal dominant disease, and to date, there is no report of a genetically confirmed case of homozygosity in human HHT. The heterozygous patients of HHT could present a wide range of individual symptoms, which could develop progressively with increasing age, and the underlying mechanism is "haploinsufficiency ". The involved organ or tissue, the clinical features, and the outcome or prognosis of HHT patients vary greatly among the affected people, so that it is difficult for early diagnosis and treatment. In2002, a genetic epidemiologic study of HHT in the Akita prefecture (population1.2million) located in northern Japan was reported, and the estimated population incidence of this genetic vascular disorder in the Japanese county was1:8000-1:5000, roughly comparable with those reported in European and American populations, which is contradictory to the traditional view that HHT is rare among Asians.
     A low prevalence of liver involvement, ranging between8%and31%, has been reported in retrospective studies performed during the1980s and1990s in patient series selected according to clinical criteria. However, liver vascular malformations of HHT are being discovered fortuitously more frequently with the increasing performance of sensitive imaging techniques such as color Doppler ultrasound (US) or multislice computed tomography (CT) and the improvement method of screening. The incidence of liver involvement has been shown to be higher (41.4%) in a family screening protocol study and to range between67%and84%in unselected consecutive HHT patients. The difference in the rate of liver involvement in consecutive patient series of HHT may be influenced by the criteria used for the diagnosis. It is obviously that the study of the liver involvement of HHT becomes one of the most important parts of the HHT research and the concept of "Hepatic Hereditary Hemorrhagic Telangiectasia (HHHT)" is accepted gradually.
     The majority HHHT patients are asymptomatic onset, without any special signs, and the proportion of patients present with typical symptoms (such as high-output heart failure, portal hypertension and biliary disease) who seek help from doctors is very low. The clinical diagnosis of HHT has been based upon the Curacao criteria, however, it should be noted that the criteria represent consensus expert opinion, and its sensitivity and specificity have not been formally validated. Gene detection has been applied to screen for the HHT diagnosis, but more and more mutation sites were found, and new virulence genes were reported continually. Due to the family specific genetic characteristics of HHT, the gene diagnosis is difficult for the patients with unknown mutant gene. In a word, the diagnostic strategy for HHHT needs to be perfected.
     With respect to the treatment of HHHT, the appropriate therapy, especially the surgical therapy is controversial. The surgical treatment of HHHT consists of hepatic artery embolization, open ligation or banding related to the feeding artery of the hepatic arteriovenous malformation, and liver transplantation. Embolization, ligation and banding have been performed in patients with controversial results and with the development of complications derived from ischemia of the biliary tree. What is more, these methods may cause hepatic or biliary necrosis. One article, published in Annals of Surgery in2006, summarize the effect of liver transplantation from14centers where40patients were transplanted for HHT during the period from1985to2003. Among them, Twenty-four (60%) patients had post-transplant complications, eight (20%) patients died perioperatively, six of them due to bleeding, one due to cardiac failure, and the last one died late due to chronic rejection. In addition, two patients were diagnosed with possible recurrences.
     In recent years, the case reports about HHHT in China arise gradually, unfortunately, there is no systemic cases analysis and clinical study. We visited and made follow-up of the HHHT patients in Shandong province (such as Huantai county, Shenxian county, Mengyin county), Zhejiang province (Quzhou city), Henan province (Zhengzhou city), Hebei province (Shijiazhuang city) and Shanghai to collect clinical data and pedigrees. In the first part of this doctoral dissertation, the clinical data of15HHHT patients from Qilu Hospital of Shandong University and cooperation units from Shandong province, Henan province, Hebei province and Zhejiang province were retrospectively analyzed. We summarized the clinical manifestation, imaging and laboratory features, and investigated the diagnostic strategy and individual treatment.
     Hereditary hemorrhagic telangiectasia (HHT) is a disease of inherited vascular dysplasia, and its genetic background is the mutations of the coding genes of transforming growth factor beta signal pathway. The two identified virulence genes are ENG/endoglin (HHT type1) on chromosome9q33-34, and activin receptor-like kinase1(ALK-1)(HHT type2) on chromosome12q13. ENG codes for a homodimeric integral membrane glycoprotein, which takes part in the form of the receptor complex of TGF-β. ALK-1gene codes for the activin-like kinase receptor type Ⅰ of the TGF-β receptor superfamily. Both ENG and ALK-1express mainly restricted to endothelial and vascular smooth muscle cells, and play very important role in angiogenesis. To date, four other genes are regarded as the suspected virulence genes, two of which with unknown function. The other two(MADH4、BMPR2) are involved in the transforming growth factor beta signal pathway too.
     TGF-β superfamily plays a pivotal role in cellular proliferation, differentiation, embryo development and vascular formation. TGF-β family members initiate their activities on the cell by binding to a heteromeric complex of type Ⅰ and type Ⅱ serine/threonine kinase receptors at the cell surface. Binding of the ligand to the type Ⅱ receptor recruits the type I receptor that becomes phosphorylated and itself phosphorylates members of the Smad protein family. Once Smad proteins have been activated they are translocated into the nucleus and regulate gene expression as transcription factors. The mutation of ENG, ALK-1and MADH4lead to the abnormality of the receptor and Smad4of TGF-β signal pathway, which causes the disorder of angiogenesis.
     According to the mechanism of HHT, we assume that the method of up-regulating TGF-β signalling, especially the mode of enhancing the function of receptor or Smad4, may slow down the progression of HHT. RNF11may be the key of positive regulation factor of transforming growth factor beta signal pathway.
     The gene of Ring-Finger protein11(RNF11) is originally cloned from a library enriched for tumour cDNAs. It is reported that nearly80protein interactions for RNF11and RNF11is placed at the cross-roads of cell signalling and transcriptional regulation. It modulats TGF-β signal through the direct action of itself and the indirect action of ubiquitination. RNF11is known to interact with both E2conjugating enzymes and E3ubiquitination ligases (such as Smurf1、Smurf2). Smurf2is a highly effective negative regulator of the TGF-β pathway:on the one hand, Smurf2can interact with Smad2, thereby targeting Smad2for degradation, as well as the Smad2associated transcription factor SnoN; on the other hand, Smurf2has been shown to interact with Smad7and target the TGF-β receptor for degradation. Foreign scholars infer that RNF11can up-regulate the TGF-β through abrogating Smurf2-mediated ubiquitination of the TGF-β receptor and enhancing Smad2-Smad4transcriptional activity.
     We chose Ring-Finger protein11(RNF11) as the regulator of TGF-β signal pathway in order to slow down the progression of HHT. In the second part of this doctoral dissertation, we constructed the eukaryotic expression vector of RNF11, and then transfected the vector into the Chang Liver cell, which was a cell line of non-tumor hepatocyte, in order to observe whether RNF11could enhance the effect of TGF-β and suppress the proliferation of this cell line. The purpose of this work is to test and verify the positive regulation effect of RNF11towards the TGF-β signal pathway and to prepare for the experimental research for application of TGF-β signaling regulator in order to regulate the angiogenesis and treat HHHT.
     Part One The Diagnostic Strategy and Individual Treatment Of Hepatic Hereditary Hemorrhagic Telangiectasia
     Objective
     To analyze the clinical features of the Hepatic Hereditary Hemorrhagic Telangiectasia(HHHT) in order to improve the current understanding of the disease and explore the diagnostic strategy and treatment.
     Method
     The clinical data of15HHHT patients were retrospectively analyzed. The clinical manifestations, features of imaging and laboratory examination were summarized, and the diagnosis, treatment and prognosis of the disease were investigated.
     Results
     1. HHHT had nonspecific symptoms, some patients presented with right upper quadrant discomfort, shortness of breath, liver bruit or anemia. The condition of HHHT patients could be worsened by liver cirrhosis or portal hypertension rapidly.
     2. The results of ultrasonography and CT showed parenchymal hepatic telangiectasias, intrahepatic shunting and at least one enlarged hepatic artery in all of the15patients. Digtial subtraction angiography (DSA) was not clear enough for the two complex HHHT patients with more than one enlarged hepatic arteries, but computed tomographic angiography (CTA) was feasible.
     3. The specimens showed diffuse intraparenchymal telangiectasias, ectatic vessels, and alternating areas of regeneration and atrophy. Some areas of the specimen were cirrhotic, and showed nodular hyperplasia with fibrous tissue along ectatic vessels. Immunohistochemistry experiment showed the liver tissue of HHHT patients presented with strong positive feature of TGF-β1.
     4. According to the degree and stages of the disease, the patients could be divided into asymptomatic HHHT, simple HHHT and complex HHHT. Among the six patients who underwent surgical treatment, five patients accepted ligation/banding of the enlarged hepatic arteries with subsequent disappearance of symptoms. Three cases underwent interventional treatment, but one complex patient with multiple hepatic arteries failed. The patient did not accept surgical treatment and died30months later. The ultrasonography and/or CT of four patients with medical therapy showed the pathological changes were aggravated gradually. Two HHHT patients with one enlarged hepatic artery, who were asymptomatic at first, suffered liver dysfunction and ascites21and35months later respectively, and one of them died6months later.
     Conclusion
     Telangiectasias, intrahepatic arteriovenous and hepatic aneurysm are the main imaging characteristics of HHHT, and imaging diagnosis has significant value in the diagnosis of HHHT. HHHT is a progressive disease, and individualized surgical procedures are proper, while early and active therapy may be helpful. Open ligation/banding are effective for HHHT patients.
     Significance
     The clinical data of patients in China were summarized and analyzed systematically, and we brought up the idea of diagnostic strategy and individual treatment firstly. With respect to the postoperative complications of ischemia of hepatic tissue and biliary tree after ligation, we proposed the preventive measures or the modified operation.
     Part Two Experimental Study for Ring-Finger Protein11(RNF11) and Transforming Growth Factor β Conductive Pathway
     Objective
     To explore the effect of the Ring-Finger Protein11(RNF11) towards the proliferation of Chang Liver through the transforming growth factor beta (TGF-β) signal pathway, and to test and verify the positive regulation effect of RNF11towards the TGF-β signalling.
     Methods
     The expression levels of RNF11in Chang Liver cell, Hepg-2cell, A549cell were determined by RT-PCR. The Chang Liver cell was transfected with eukaryotic expression vector pCMV6-RNF11-GFP in mediation of liposomes.5ng/ml TGF-P1in final concentration was administrated into the Chang Liver cell of the group A of transfection cells, the group B of empty plasmid cell and the group C of non-transfection cell24hours later. We observed the cell morphology and growth condition with microscope. Cell regeneration was detected through the method of Brdu-DAPI labeling, Cell Counting Kit-8measure and cell growth curve description at different time spots after the administration of TGF-β1.
     Results
     1. Chang Liver cell expressed the RNF11.
     2. The morphology of transfected Chang Liver cell (group A) was changed, and cell condition was not good. The shape of cells both in group B of empty plasmid cell and group C of non-transfection cell was normal. The Cell Counting Kit-8measure and cell growth curve description showed the proliferation ability of the transfected cells was suppressed compared with the group B of empty plasmid cell and the group C of non-transfection.
     3. The cell inhibition rate of group A (transfection group)24hours,48hours and72hours after treatment of TGF-01were10.80%.14.47%.16.31%respectively, and the result of the group B (empty-transfection group) were3.52%、4.61%、4.84%respectively.
     4. Brdu-DAPI labeling method indicated the proportion of the Brdu-positive cell was decreased with statistical significance (P<0.05).
     Conclusions
     RNF11takes role in the process of hepatocytes proliferation in vitro, and it could suppress proliferation through TGF-βsignalling. RNF11is a positive regulator of TGF-β signal pathway.
     Significance
     RNF11was placed at the cross-roads of cell signalling and transcriptional regulation, and we tested and verified the positive regulation effect of RNF11towards the TGF-β signalling. What's more, the pathogeny of HHHT was the mutation of related genes of TGF-β signal pathway. According to the mechanism of "haploinsufficiency", we assumed that the method of up-regulating TGF β signalling, especially the mode of enhancing the function of receptor or Smad4, may slow down the progression of HHT.
引文
[1]Begbie ME, Wallace GM, Shovlin CL. Hereditary haemorrhagic telangiectasia (Osler-Weber-Rendu syndrome):a view from the 21st century[J]. Postgrad Med J,2003,79 (927):18-24.
    [2]Smith JL, Lineback MI. Hereditary hemorrhagic telangiectasia; nine cases in one negro family with special reference to hepatic lesions [J]. Am J Med,1954,17(1):41-49.
    [3]李棋华.遗传性出血性毛细血管扩张症的肝脏B超表现[J].中国超声医学杂志,1988,4(2):115,72.
    [4]Garcia-Tsao G, Korzenik JR, Young L. Liver disease in patients with hereditary hemorrhagic telangiectasia[J]. N Engl J Med,2000,343(13): 931-936.
    [5]Plauchu H, de Chadarevian JP, Bideau A. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an hepidemiologicaly recruited population[J]. Am J Med Genet,1989,32(3):291-297.
    [6]Reilly PJ, Nostrant TT. Clinical manifestations of hereditary hemorrhagic telangiectasia[J]. Am J Gastroenterol,1984,79(5): 363-367.
    [7]Buscarini E, Buscarini L, Danesino C, et al. Hepatic vascular malformations in hereditary hemorrhagic telangiectasia:Doppler sonographic screening in a large family[J]. J Hepatol 1997,26(1): 111-118.
    [8]Memeo M, Stabile Ianora AA, Scardapane A, et al. Hepatic involvement in hereditary hemorrhagic telangiectasia:CT findings[J]. Abdom Imaging,2004,29 (2):211-220.
    [9]Ravard G, Soyer P, Boudiaf M et al. Hepatic involvement in hereditary hemorrhagic telangiectasia:helical computed tomography features in 24 consecutive patients[J]. J Comput Assist Tomogr,2004,28(4): 488-495.
    [10]Wu JS, Saluja S, Garcia-Tsao G, et al. Liver involvement in hereditary hemorrhagic telangiectasia:CT and clinical findings do not correlate in symptomatic patients[J]. AJR Am J Roentgenol,2006,187(4): W399-W405.
    [11]Buonamico P, Suppressa P, Lenato GM, et al. Liver involvement in a large cohort of patients with hereditary hemorrhagic telangiectasia: echo-color-Doppler vs multislice computed tomography study[J]. J Hepatol,2008,48(5):811-820.
    [12]Shovlin CL, Guttmacher AE, Buscarini E, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia[J]. Am J Med Genet,2000, 91(1):66-67.
    [13]Lee M, Sze DY, Bonham CA, et al. Hepatic Arteriovenous Malformations from Hereditary Hemorrhagic Telangiectasia:Treatment with Liver Transplantation[J]. Dig Dis Sci,2010,55(11):3059-3062.
    [14]Al-Saleh S, John PR, Letarte M, et al. Symptomatic Liver Involvement in Neonatal Hereditary Hemorrhagic Telangiectasia[J]. Pediatrics [J]. 2011,127(6):e1615-e1620.
    [15]Bayrak-Toydemir P, Mao R, Lewin S, et al. Hereditary hemorrhagic telangiectasia:an overview of diagnosis and management in the molecular era for clinicians[J]. Genet Med,2004,6(4):175-191.
    [16]Brusgaard K, Kjeldsen AD, Poulsen L, et al. Mutations in endoglin and in activin receptor-like kinase 1 among Danish patients with hereditary haemorrhagic telangiectasia[J]. Clin Genet,2004,66(6): 556-561.
    [17]Abdalla SA, Cymerman U, Rushlow D, et al. Novel mutations and polymorphisms in genes causing hereditary hemorrhagic telangiectasia[J]. Hum Mutat,2005,25(3):320-321.
    [18]Kuehl HKA, Caselitz M, Hasenkamp S, et al. Hepatic manifestation is associated with ALK1 in hereditary hemorrhagic telangiectasia: identification of five novel ALK1 and one novel ENG mutations [J]. Hum Mutat,2005,25(3):320.
    [19]Letteboer TGW, Zewald RA, Kamping EJ, et al. Hereditary hemorrhagic telangiectasia:ENG and ALK1 mutations in Dutch patients [J]. Hum Genet, 2005,116(1-2):8-16.
    [20]Schulte C, Geisthoff U, Lux A, et al. High Frequency of ENG and ALK1/ACVRL1 mutations in German HHT patients[J]. Hum Mutat,2005, 25 (6):595.
    [21]Olivieri C, Pagella F, Semino L, et al. Analysis of ENG and ACVRL1 genes in 137 HHT Italian families identifies 76 different mutations (24 novel). Comparison with other European studies[J]. J Hum Genet, 2007,52(10):820-829.
    [22]Cole SG, Begbie ME, Wallace GM, et al. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5[J]. J Med Genet,2005,42(7):577-582.
    [23]Bayrak-Toydemir P, McDonald J, Akarsu N, et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7[J]. Am J Med Genet A,2006,140(20):2155-2162.
    [24]Gallione CJ, Repetto GM, Legius E, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4) [J]. Lancet,2004,363 (9412):852-859.
    [25]Rigelsky CM, Jennings C, Lehtonen R, et al. BMPR2 mutation in a patient with pulmonary arterial hypertension and suspected hereditary hemorrhagic telangiectasia[J]. Am J Med Genet A,2008,146A(19): 2551-2556.
    [26]Gothlin JH, Nordgard K, Jonsson K, et al. Hepatic telangiectasia in Osler's disease treated with arterial embolization:report of two cases[J]. Eur J Radiol,1982,2(1):27-30.
    [27]Stockx L, Raatl H, Caerts B. Transcatheter embolization of hepatic arteriovenous fistulas in Rendu-Osler-Weber disease:a case report and review of the literature[J]. Eur Radiol,1999,9(7):1434-1437.
    [28]丁国成,郑延波.肝脏遗传性出血性毛细血管介入治疗1例[J].中华放射学杂志,2000,34(8):544.
    [29]李海涛,佟小强,邹英华,等.PVA微球栓塞肝脏遗传性出血性毛细血管扩张症1例[J].中国医学影像技术,2004,20(2):322.
    [30]Whiting JH, Korzenik JR, Miller FJ, et al. Fatal outcome after embolotherapy for hepatic arteriovenous malformation of the liver in two patients with hereditary hemorrhagic telangiectasia[J]. J Vasc Interv Radiol,2000,11(7):855-858.
    [31]Koscielny A, Willinek WA, Hirner A, et al. Treatment of high output cardiac failure by flow-adapted hepatic artery banding (FHAB) in patients with hereditary hemorrhagic telangiectasia[J]. J Gastrointest Surg,2008,12(5):872-876.
    [32]Lerut J, Orlando G, Adam R, et al. Liver Transplantation for Hereditary Hemorrhagic Telangiectasia:Report of the European Liver Transplant Registry [J]. Ann Surg,2006,244(6):854-62, discussion 862-864.
    [33]Mitchell A, Adams LA, Macquillan G, et al. Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia[J]. Liver Transpl,2008,14(2):210-213.
    [34]Dakeishi M, Shioya T, Wada Y, et al. Genetic Epidemiology of Hereditary Hemorrhagic Telangiectasia in a Local Community in the Northern Part of Japan[J]. Hum Mutat,2002,19(2):140-148.
    [35]Chung DY, Federle MP, Barrett JP, et al. Hepatic hereditary hemorrhagic telangiectasia[J]. Clin Gastroenterol Hepatol,2006, 4(11):A20.
    [36]Blobe GC, Schiemann WP, Lodish HF. Role of Transforming Growth Factor β in Human Disease[J]. N Engl J Med,2000,342(18):1350-1358.
    [37]McAllister KA, Grogg KM, Johnson DW, et al. Endoglin, a TGF-beta binding protein of endothelial cells is the gene for hereditary haemorrhagic telangiectasia type 1 [J]. Nat Genet,1994,8(4):345-351.
    [38]McDonald MT, Papenberg KA,Ghosh S, et al. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34 [J]. Nat Genet, 1994,6(2):197-204.
    [39]Shovlin CL, Hughes JMB, Tuddenham EGD, et al. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3[J]. Nat Genet, 1994,6(2):205-209.
    [40]Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary hemorrhagic telangiectasia type 2[J]. Nat Genet,1996,13(2):189-195.
    [41]Li DY, Sorensen LK, Brooke BS, et al. Defective angiogenesis in mice lacking endoglin[J]. Science,1999,284(5419):1534-1537.
    [42]Urness LD, Sorensen LK, Li DY. Arteriovenous malformations in mice lacking activin receptor-like kinase-1[J]. Nat Genet,2000,26 (3): 328-331.
    [43]Mancini ML, Terzic A, Conley BA, et al. Endoglin plays distinct roles in vascular smooth muscle cell recruitment and regulation of arteriovenous identity during angiogenesis [J]. Dev Dyn,2009,238(10): 2479-2493.
    [44]Karabegovic A, Shinawi M, Cymerman U, et al. No live individual homozygous for a novel endoglin mutation was found in a consanguineous Arab family with hereditary haemorrhagic telangiectasia[J]. J Med Genet,2004,41(11):e119.
    [45]Bourdeau A, Faughnan ME, McDonald ML, et al. Potential role of modifier genes influencing transforming growth factor-betal levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia[J]. Am J Pathol,2001,158(6): 2011-2020.
    [46]Arthur HM, Ure J, Smith AJ, et al. Endoglin, an ancillary TGF beta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development[J]. Dev Biol,2000,217(1):42-53.
    [47]Satomi J, Mount RJ, Toporsian M, et al. Cerebral vascular abnormalities in a murine model of hereditary hemorrhagic telangiectasia[J]. Stroke,2003,34(3):783-789.
    [48]Srinivasan S, Hanes MA, Dickens T, et al. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2[J]. Hum Mol Genet,2003,12(5): 473-482.
    [49]Oh SP, Seki T, Goss KA, et al. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis[J]. Proc Natl Acad Sci USA,2000,97(6):2626-2631.
    [50]Pece N, Vera S, Cymerman U, et al. Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative [J]. J Clin Invest,1997, 100(10):2568-2579.
    [51]Raab U, Velasco B, Lastres P, et al. Expression of normal and truncated forms of human endoglin[J]. Biochem J,1999,339 (Pt3):579-588.
    [52]Letteboer TGW, Mager HJ, Snijder RJ, et al. Genotype-phenotype relationship in hereditary hemorrhagic telangiectasia[J]. J Med Genet, 2006,43(4):371-377.
    [53]Lesca G, Olivieri C, Burnichon N, et al. Genotype-phenotype correlations in hereditary hemorrhagic telangiectasia:data from the French-Italian HHT network[J]. Genet Med,2007,9(1):14-22.
    [54]Milot L, Dumortier J, Boillot 0, et al. Giant aneurysm of the main hepatic artery secondary to hereditary hemorrhagic telangiectasia:3D contrast-enhanced MR angiography features [J]. Gastroenterol Clin Biol, 2007,31 (3):297-299.
    [55]Sawabe M, Arai T, Esaki Y, et al. Three-dimensional organization of the hepatic microvasculature in hereditary hemorrhagic telangiectasia [J]. Arch Pathol Lab Med,2001,125(9):1219-1223.
    [56]Lane MJ, Jeffrey RB, Katz DS. Spontaneous intrahepatic vascular shunts [J]. Am J Roentgenol,2000,174(1):125-131.
    [57]郭昱,郭霞,崔东来,等.遗传性毛细血管扩张症合并肝硬化一例[J].中华消化杂志,2003,23(6):343.
    [58]McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia:An overview of diagnosis, management, and pathogenesis[J]. Genet Med,2011,13(7):607-616.
    [59]Abdalla SA, Letarte M. Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease[J]. J Med Genet, 2006,43(2):97-110.
    [60]Lenato GM, Lastella P, Di Giacomo MC, et al. DHPLC-based mutation analysis of ENG and ALK-1 genes in HHT Italian population [J]. Hum Mutat. 2006,27(2):213-214.
    [61]Richards-Yutz J, Grant K, Chao EC, et al. Update on molecular diagnosis of hereditary hemorrhagic telangiectasia[J]. Hum Genet 2010, 128(1):61-77.
    [62]McDonald J, Damjanovich K, Millson A, et al. Molecular diagnosis in hereditary hemorrhagic telangiectasia:findings in a series tested simultaneously by sequencing and deletion/duplication analysis[J]. Clin Genet,2011,79(4):335-344.
    [63]Buscarini E, Plauchu H, Garcia Tsao G, et al. Liver involvement in hereditary hemorrhagic telangiectasia:consensus recommendations[J]. Liver Int,2006,26(9):1040-1046.
    [64]Buscarini E, Leandro G, Conte D, et al. Natural History and Outcome of Hepatic Vascular Malformations in a large cohort of patients with hereditary hemorrhagic teleangiectasia[J]. Dig Dis Sci,2011,56(7): 2166-2178.
    [65]Sadick H, Riedel F, Naim R, et al. Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-betal as well as high ALK1 tissue expression[J]. Haematologica,2005,90(6): 818-828.
    [66]Brenard R, Chapaux X, Deltenre P, et al. Large spectrum of liver vascular lesions including high prevalence of focal nodular hyperplasia in patients with hereditary haemorrhagic telangiectasia: the Belgian Registry based on 30 patients[J]. Eur J Gastroenterol Hepatol,2010,22(10):1253-1259.
    [67]Caselitz M, Bahr MJ, Bleck JS, et al. Sonographic criteria for the diagnosis of hepatic involvement in hereditary hemorrhagic telangiectasia (HHT)[J]. Hepatology,2003,37(5):1139-1146.
    [68]lanora AA, Memeo M, Sabba C, et al. Hereditary hemorrhagic telangiectasia:multi-detector row helical CT assessment of hepatic involvement. Radiology,2004,230(1):250-259.
    [69]Milot L, Gautier G, Beuf 0, et al. Hereditary hemorrhagic telangiectases:magnetic resonance imaging features in liver involvement[J]. J Comput Assist Tomogr,2006,30(3):405-411.
    [70]Olitsky SE. Hereditary hemorrhagic telangiectasia:diagnosis and management[J]. Am Fam Physician,2010,82(7):785-790.
    [71]Song X, Chen HQ, Chen YX, et al. Individualized Management of Hepatic Diseases in Hereditary Hemorrhagic Telangiectasia[J]. Am Surg, 2011,77(3):281-285.
    [72]Scelzo C, Greco S, Bonanni L, et al. The Role of Liver Transplantation in the Treatment of Hereditary Hemorrhagic Telangiectasia:A Short Literature Review[J]. Transplant Proc,2007, 39 (6):2045-2047.
    [1]McAllister KA, Grogg KM, Johnson DW, et al. Endoglin, a TGF-beta binding protein of endothelial cells is the gene for hereditary haemorrhagic telangiectasia type 1 [J]. Nat Genet,1994,8(4):345-351.
    [2]Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary hemorrhagic telangiectasia type 2[J]. Nat Genet,1996,13(2):189-195.
    [3]Cole SG, Begbie ME, Wallace GM, et al. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5[J]. J Med Genet,2005,42(7):577-582.
    [4]Bayrak-Toydemir P, McDonald J, Akarsu N, et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7[J]. Am J Med Genet A,2006,140(20):2155-2162.
    [5]Gallione CJ, Repetto GM, Legius E, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4) [J]. Lancet,2004,363 (9412):852-859.
    [6]Rigelsky CM, Jennings C, Lehtonen R, et al. BMPR2 mutation in a patient with pulmonary arterial hypertension and suspected hereditary hemorrhagic telangiectasia[J]. Am J Med Genet A,2008,146A(19): 2551-2556.
    [7]McDonald J, Damjanovich K, Millson A, et al. Molecular diagnosis in hereditary hemorrhagic telangiectasia:findings in a series tested simultaneously by sequencing and deletion/duplication analysis[J]. Clin Genet,2011,79(4):335-344.
    [8]Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A, et al. Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors Ⅰ and Ⅱ[J]. J Biol Chem,2002,277(32): 29197-29209.
    [9]Fernandez-L A, Sanz-Rodriguez F, Blanco FJ, et al. Hereditary Hemorrhagic Telangiectasia, a Vascular Dysplasia Affecting the TGF-β Signaling Pathway[J]. Clin Med Res,2006,4(1):66-78.
    [10]Karabegovic A, Shinawi M, Cymerman U, et al. No live individual homozygous for a novel endoglin mutation was found in a consanguineous Arab family with hereditary haemorrhagic telangiectasia[J]. J Med Genet,2004,41(11):e119.
    [11]Li DY, Sorensen LK, Brooke BS, et al. Defective angiogenesis in mice lacking endoglin[J]. Science,1999,284(5419):1534-1537.
    [12]Bourdeau A, Faughnan ME, Letarte M. Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia[J]. Trends Cardiovasc Med,2000,10(7):279-285.
    [13]Arthur HM, Ure J, Smith AJ, et al. Endoglin, an ancillary TGF beta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development [J]. Dev Biol,2000,217(1):42-53.
    [14]Satomi J, Mount RJ, Toporsian M, et al. Cerebral vascular abnormalities in a murine model of hereditary hemorrhagic telangiectasia[J]. Stroke,2003,34(3):783-789.
    [15]Srinivasan S, Hanes MA, Dickens T, et al. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2[J]. Hum Mol Genet,2003,12(5): 473-482.
    [16]Oh SP, Seki T, Goss KA, et al. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis[J]. Proc Natl Acad Sci USA,2000,97(6):2626-2631.
    [17]Pece N, Vera S, Cymerman U, et al. Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative [J]. J Clin Invest,1997, 100(10):2568-2579.
    [18]Raab U, Velasco B, Lastres P, et al. Expression of normal and truncated forms of human endoglin[J]. Biochem J,1999,339(Pt 3):579-588.
    [19]Burger A, Li H, Zhang XK, et al. Breast cancer genome anatomy: correlation of morphological changes in breast carcinomas with expression of the novel gene product Di12 [J]. Oncogene,1998,16 (3):327-333.
    [20]Miller SL, Malotky E,O'Bryan JP. Analysis of the role of ubiquitin-interacting motifs in ubiquitin binding and ubiquitylation[J]. J Biol Chem,2004,279(32):33528-33537.
    [21]Azmi P, Seth A. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation[J]. Eur J Cancer 2005,41(16):2549-2560.
    [22]Bonni S, Wang HR, Causing CG, et al. TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation[J]. Nat Cell Biol,2001,3(6):587-595.
    [23]Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation[J]. Mol Cell,2000,6(6):1365-1375.
    [24]Azmi PB, Seth AK. The RING finger proteinl 1 binds to Smad4 and enhances Smad4-dependant TGF-beta signaling[J]. Anticancer Res,2009,29(6): 2253-2263.
    [25]Hanahan D, Weinberg RA. The hallmarks of cancer [J]. Cell,2000,100(1): 57-70.
    [26]Fausto N. Liver regeneration and repair:hepatocytes, progenitor cells, and stem cells[J]. Hepatology,2004,39(6):1477-1487.
    [27]Michalopoulos GK. Liver regeneration [J]. J Cell Physiol,2007,213(2): 286-300.
    [28]Koniaris LG, McKillop IH, Schwartz SI, et al. Liver regeneration [J]. J Am Coll Surg,2003,197(4):634-659.
    [29]Mars WM, Kim TH, Stolz DB, et al. Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor[J]. Cancer Res,1996,56(12):2837-2843.
    [30]Enami Y, Kato H, Murakami M,et al. Anti-transfomf ing growth factor-beta 1 antibody transiently enhances DNA synthesis during liver regeneration after partial hepatectomy in rats[J]. J Hepatobiliary Pancreat Surg,2001,8(3):250-258.
    [31]Houck KA, Michalopoulos GK. Altered responses of regenerating hepatocytes to norepinephrine and transforming growth factor type beta [J]. J Cellular Physiol,1989,141(3):503-509.
    [32]黄瑾,胡晋红,蔡溱,等.阿魏酸钠对转化生长因子β抑制肝细胞增殖作用的影响[J].中国药理学通报,2004,20(2):222-225.
    [33]Subramaniam V, Li H, Wong M, et al. The RTNG-H2 protein RNF11 is overexpressed in breast cancer and is a target of Smurf2 E3 ligase[J]. Br J Cancer,2003,89(8):1538-1544.
    [34]Kitching R, Wong MJ, Koehler D, et al. The RING-H2 protein RNF11 is differentially expressed in breast tumours and interacts with HECT-type E3 ligases[J]. Biochim Biophys Acta,2003,1639(2):104-112.
    [35]Jolliffe CN, Harvey KF, Haines BP, et al. Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4[J]. Biochem J,2000, 351(Pt 3):557-565.
    [36]Fang S, Lorick KL, Jensen JP, et al. RING finger ubiquitin protein ligases:implications for tumorigenesis, metastasis and for molecular targets in cancer[J]. Semin Cancer Biol,2003,13(1):5-14.
    [37]Joazeiro CA, Weissman AM. RING finger proteins:mediators of ubiquitin ligase activity[J]. Cell,2000,102(5):549-552.
    [38]Fang S, Weissman AM. A field guide to ubiquitylation[J]. Cell Mol Life Sci,2004,61(13):1546-1561.
    [39]Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer:therapeutic implications[J]. Eur J Cancer,2004, 40(15):2217-2229.
    [40]Pickart CM. Mechanisms underlying ubiquitination[J]. Annu Rev Biochem,2001,70:503-533.
    [41]Scheper J, Oliva B, Villa-Freixa J, et al. Analysis of electrostatic contributions to the selectivity of interactions between RING-finger domains and ubiquitin-conjugating enzymes[J]. Proteins,2009,74(1):92-103.
    [42]Jacque E, Ley SC. RNF11, a new piece in the A20 puzzle[J]. EMBO J, 2009,28(5):455-456.
    [43]Santonico E, Belleudi F, Panni S, et al. Multiple modification and protein interaction signals drive the Ring finger protein 11 (RNF11) E3 ligase to the endosomal compartment[J]. Oncogene,2010,29(41): 5604-5618
    [44]Kretschmer A, Moepert K, Dames S, et al. Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4[J]. Oncogene,2003, 22(43):6748-6763.
    [45]Lagna G, Hata A, Hemmati-Brivanlou A, et al. Partnership between DPC4 and SMAD proteins in TGF-beta signaling pathways[J]. Nature,1996, 383(6603):832-836.
    [46]Ohnishi H, Miyata T, Yasuda H, et al. Distinct roles of Smad2-, Smad3-and ERK-dependent pathways in transforming growth factor-betal regulation of pancreatic stellate cellular functions [J]. J Biol Chem, 2004,279(10):8873-8878.
    [47]Wrana J, Pawson T. Signal transduction. Mad about SMADs[J]. Nature, 1997,388(6637):28-29.
    [48]Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signaling[J]. Nature,1997, 389(6651):631-635.
    [49]Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling[J]. Cell,1997,89(7):1165-1173.
    [50]Lin X, Liang M, Feng XH. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling[J]. J Biol Chem,2000,275(47):36818-36822.
    [51]Komuro A, Imamura T, Saitoh M, et al. Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1)[J]. Oncogene,2004,23(41): 6914-6923.
    [52]Colland F, Jacq X, Trouplin V, et al. Functional proteomics mapping of a human signaling pathway[J]. Genome Res,2004,14(7):1324-1332.
    [53]Mitchell A, Adams LA, Macquillan G, et al. Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia[J]. Liver Transpl,2008,14(2):210-213.
    [54]Lebrin F, Srun S, Raymond K, et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia[J]. Nat Med,2010,16(4):420-428.
    [55]Fernandez LA, Garrido-Martin EM, Sanz-Rodriguez F, et al. Therapeutic action of tranexamic acid in hereditary haemorrhagic telangiectasia (HHT):regulation of ALK-1/endoglin pathway in endothelial cells [J]. Thromb Haemost,2007,97(2):254-262.
    [56]Buscarini E, Manfredi G, Zambelli A. Bevacizumab to treat complicated liver vascular malformations in hereditary hemorrhagic telangiectasia: a word of caution[J]. Liver Transpl,2008,14(11):1685-1686.
    [57]Albinana V, Bernabeu-Herrero ME, Zarrabeitia R, et al. Estrogen therapy for hereditary haemorrhagic telangiectasia (HHT):effects of raloxifene, on endoglin and ALK1 expression in endothelial cells[J]. Thromb Haemost,2010,103(3):525-534.
    [1]Begbie ME, Wallace GM, Shovlin CL. Hereditary haemorrhagic telangiectasia (Osler-Weber-Rendu syndrome):a view from the 21st century[J]. Postgrad Med J,2003,79 (927):18-24.
    [2]Dakeishi M, Shioya T, Wada Y, et al. Genetic Epidemiology of Hereditary Hemorrhagic Telangiectasia in a Local Community in the Northern Part of Japan [J]. Hum Mutat,2002,19(2):140-148.
    [3]Buscarini E, Danesino C, Olivieri C, et al. Doppler ultrasonographic grading of hepatic vascular malformations in hereditary hemorrhagic telangiectasia—results of extensive screening[J]. Ultraschall Med, 2004,25(5):348-355.
    [4]Buonamico P, Suppressa P, Lenato GM, et al. Liver involvement in a large cohort of patients with hereditary hemorrhagic telangiectasia: echo-color-Doppler vs multislice computed tomography study[J]. J Hepatol,2008,48(5):811-820.
    [5]McDonald MT, Papenberg KA, Ghosh S, et al. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34 [J]. Nat Genet, 1994,6(2):197-204.
    [6]Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary hemorrhagic telangiectasia type 2[J]. Nat Genet,1996,13(2):189-195.
    [7]Li DY, Sorensen LK, Brooke BS, et al. Defective angiogenesis in mice lacking endoglin [J]. Science,1999,284 (5419):1534-1537.
    [8]Bourdeau A, Faughnan ME, McDonald ML, et al. Potential role of modifier genes influencing transforming growth factor-betal levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia [J]. American Journal of Pathology,2001,158 (6):2011-2020
    [9]Mancini ML, Terzic A, Conley BA, et al. Endoglin plays distinct roles in vascular smooth muscle cell recruitment and regulation of arteriovenous identity during angiogenesis [J]. Dev Dyn,2009,238(10): 2479-2493.
    [10]Letteboer TGW, Mager HJ, Snijder RJ, et al. Genotype-phenotype relationship in hereditary hemorrhagic telangiectasia[J]. J Med Genet, 2006,43(4):371-377.
    [11]Lesca G, Olivieri C, Burnichon N, et al. Genotype-phenotype correlations in hereditary hemorrhagic telangiectasia:data from the French-Italian HHT network [J]. Genet Med,2007,9(1):14-22.
    [12]Brakensiek K, Frye-Boukhriss H, Malzer M, et al. Detection of a significant association between mutations in the ACVRL1 gene and hepatic involvement in German patients with hereditary haemorrhagic telangiectasia[J]. Clin Genet,2008,74(2):171-177.
    [13]Gallione CJ, Repetto GM, Legius E, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4)[J]. Lancet,2004,363 (9412):852-859.
    [14]Cole SG, Begbie ME, Wallace GM, et al. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5[J]. J Med Genet,2005,42(7):577-582.
    [15]Bayrak-Toydemir P, McDonald J, Akarsu N, et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7[J]. Am J Med Genet A,2006,140(20):2155-2162.
    [16]Rigelsky CM, Jennings C, Lehtonen R, et al. BMPR2 mutation in a patient with pulmonary arterial hypertension and suspected hereditary hemorrhagic telangiectasia[J]. Am J Med Genet A,2008,146A(19) 2551-2556.
    [17]Karabegovic A, Shinawi M, Cymerman U, et al. No live individual homozygous for a novel endoglin mutation was found in a consanguineous Arab family with hereditary haemorrhagic telangiectasia[J]. J Med Genet,2004,41(11):e119.
    [18]Goumans MJ, Valdimarsdottir G, Itoh S, et al.Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors [J]. EMBO J,2002,21(7):1743-1753.
    [19]Brenard R, Chapaux X, Deltenre P, et al. Large spectrum of liver vascular lesions including high prevalence of focal nodular hyperplasia in patients with hereditary haemorrhagic telangiectasia: the Belgian Registry based on 30 patients[J]. Eur J Gastroenterol Hepatol,2010,22(10):1253-1259.
    [20]Sawabe M, Arai T, Esaki Y, et al. Three-dimensional organization of the hepatic microvasculature in hereditary hemorrhagic telangiectasia [J]. Arch Pathol Lab Med,2001,125 (9):1219-1223.
    [21]Milot L, Dumortier J, Boillot O, et al. Giant aneurysm of the main hepatic artery secondary to hereditary hemorrhagic telangiectasia:3D contrast-enhanced MR angiography features [J]. Gastroenterol Clin Biol, 2007,31(3):297-299.
    [22]Garcia-Tsao G, Korzenik JR, Young L. Liver disease in patients with hereditary hemorrhagic telangiectasia[J]. N Engl J Med,2000,343(13): 931-936.
    [23]Mavrakis A, Demetris A, Ochoa ER, et al. Hereditary hemorrhagic telangiectasia of the liver complicated by ischemic bile duct necrosis and sepsis:case report and review of the literature[J]. Dig Dis Sci, 2010,55(7):2113-2117.
    [24]Buscarini E, Danesino C, Olivieri C, et al. Liver involvement in hereditary haemorrhagic telangiectasia or Rendu-Osler-Weber disease [J]. Dig Liver Dis,2005,37(9):635-645.
    [25]McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia:an overview of diagnosis, management, and pathogenesis[J]. Genet Med,2011,13(7):607-616.
    [26]Buscarini E, Leandro G, Conte D, et al. Natural History and Outcome of Hepatic Vascular Malformations in a large cohort of patients with hereditary hemorrhagic teleangiectasia[J]. Dig Dis Sci,2011,56(7): 2166-2178.
    [27]Bernard G, Mion F, Henry L, et al. Hepatic involvement in hereditary hemorrhagic telangiectasia:clinical, radiological and hemodynamic studies of 11 cases [J]. Gastroenterology,1993,105(2): 482-487.
    [28]Guttmacher AE, Marchuk DA, White RI. Hereditary hemorrhagic telangiectasia[J]. N Engl J Med,1995,333 (14):918-924.
    [29]Cottin V, Dupuis-Girod S, Lesca G, et al. Pulmonary vascular manifestations of hereditary hemorrhagic telangiectasia (rendu-osler disease)[J]. Respiration,2007,74(4):361-378.
    [30]Sell B, Evans J, Horn D. Brain abscess and hereditary hemorrhagic telangiectasia[J]. South Med J,2008,101(6):618-625.
    [31]Sadick H, Riedel F, Naim R, et al. Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-betal as well as high ALK1 tissue expression[J]. Haematologica,2005,90(6): 818-828.
    [32]Shovlin CL, Guttmacher AE, Buscarini E, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome) [J]. Am J Med Genet,2000,91(1):66-67.
    [33]Lee M, Sze DY, Bonham CA, et al. Hepatic Arteriovenous Malformations from Hereditary Hemorrhagic Telangiectasia:Treatment with Liver Transplantation[J]. Dig Dis Sci,2010,55(11):3059-3062.
    [34]Al-Saleh S, John PR, Letarte M, et al. Symptomatic Liver Involvement in Neonatal Hereditary Hemorrhagic Telangiectasia[J]. Pediatrics [J]. 2011,127(6):el615-e1620.
    [35]Abdalla SA, Cymerman U, Rushlow D, et al. Novel mutations and polymorphisms in genes causing hereditary hemorrhagic telangiectasia[J]. Hum Mutat,2005,25(3):320-321.
    [36]Kuehl HKA, Caselitz M, Hasenkamp S, et al. Hepatic manifestation is associated with ALK1 in hereditary hemorrhagic telangiectasia: identification of five novel ALK1 and one novel ENG mutations [J]. Hum Mutat,2005,25(3):320.
    [37]Schulte C, Geisthoff U, Lux A, et al. High Frequency of ENG and ALK1/ACVRL1 mutations in German HHT patients[J]. Hum Mutat,2005, 25(6):595.
    [38]Olivieri C, Pagella F, Semino L, et al. Analysis of ENG and ACVRL1 genes in 137 HHT Italian families identifies 76 different mutations (24 novel). Comparison with other European studies[J]. J Hum Genet, 2007,52(10):820-829.
    [39]Buscarini E, Plauchu H, Garcia-Tsao G, et al. Liver involvement in hereditary hemorrhagic telangiectasia:consensus recommendations [J]. Liver Int,2006,26(9):1040-1046.
    [40]Naganuma H, Ishida H, Niizawa M, et al. Hepatic involvement in Osler-Weber-Rendu disease:findings on pulsed and color Doppler sonography [J]. Am J Roentgenol,1995,165(6):1421-1425.
    [41]Bodner G, Peer S, KarnerM, et al. Nontumorous vascular malformations in the liver. Color Doppler ultrasonographic findings [J]. J Ultrasound Med,2002,21(2):187-197.
    [42]Ianora AA, Memeo M, Sabba C, et al. Hereditary hemorrhagic telangiectasia:multi-detector row helical CT assessment of hepatic involvement[J]. Radiology,2004,230(1):250-259.
    [43]Memeo M, Stabile Ianora AA, Scardapane A, et al. Hepatic involvement in hereditary hemorrhagic telangiectasia:CT findings[J]. Abdom Imaging,2004,29 (2):211-220.
    [44]Milot L, Gautier G, Beuf 0, et al. Hereditary hemorrhagic telangiectases:magnetic resonance imaging features in liver involvement[J]. J Comput Assist Tomogr,2006,30(3):405-411.
    [45]DeLeve LD, Valla DC, Garcia-Tsao G. Vascular disorders of the liver [J]. Hepatology.2009,49(5):1729-1764.
    [46]Stockx L, Raatl H, Caerts B. Transcatheter embolization of hepatic arteriovenous fistulas in Rendu-Osler-Weber disease:a case report and review of the literature[J]. Eur Radiol,1999,9 (7):1434-1437.
    [47]丁国成,郑延波.肝脏遗传性出血性毛细血管介入治疗1例[J].中华放射学杂志,2000,34(8):544.
    [48]李海涛,佟小强,邹英华,等.PVA微球栓塞肝脏遗传性出血性毛细血管扩张症1例[J].中国医学影像技术,2004,20(2):322.
    [49]Chavan A, Caselitz M, Gratz KF, et al. Hepatic artery embolization for treatment of patients with hereditary hemorrhagic telangiectasia and symptomatic hepatic vascular malformations [J]. Eur Radiol,2004, 14(11):2079-2085.
    [50]Whiting JH, Korzenik JR, Miller FJ, et al. Fatal outcome after embolotherapy for hepatic arteriovenous malformation of the liver in two patients with hereditary hemorrhagic telangiectasia[J]. J Vasc Interv Radiol,2000,11 (7):855-858.
    [51]Koscielny A, Willinek WA, Hirner A, et al. Treatment of high output cardiac failure by flow-adapted hepatic artery banding (FHAB) in patients with hereditary hemorrhagic telangiectasia[J]. J Gastrointest Surg,2008,12(5):872-876.
    [52]Song X, Chen HQ, Chen YX, et al. Individualized Management of Hepatic Diseases in Hereditary Hemorrhagic Telangiectasia[J]. Am Surg, 2011,77(3):281-285.
    [53]Orlando G, Sabba C, De Liguori Carino N, et al. Non-transplant surgical approach to liver-based hereditary haemorrhagic telangiectasia:a first report[J]. Liver Int,2008,28(4):574-577.
    [54]Scelzo C, Greco S, Bonanni L, et al. The Role of Liver Transplantation in the Treatment of Hereditary Hemorrhagic Telangiectasia:A Short Literature Review[J]. Transplant Proc,2007, 39 (6):2045-2047.
    [55]Lerut J, Orlando G, Adam R, et al. Liver Transplantation for Hereditary Hemorrhagic Telangiectasia:Report of the European Liver Transplant Registry[J]. Ann Surg,2006,244(6):854-62, discussion 862-864.
    [56]Mitchell A, Adams LA, Macquillan G, et al. Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia[J]. Liver Transpl,2008,14(2):210-213.
    [57]Lebrin F, Srun S, Raymond K, et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia[J]. Nat Med,2010,16(4):420-428.
    [58]Fernandez LA, Garrido-Martin EM, Sanz-Rodriguez F, et al. Therapeutic action of tranexamic acid in hereditary haemorrhagic telangiectasia (HHT):regulation of ALK-1/endoglin pathway in endothelial cells[J]. Thromb Haemost,2007,97(2):254-262.
    [59]Buscarini E, Manfredi G, Zambelli A. Bevacizumab to treat complicated liver vascular malformations in hereditary hemorrhagic telangiectasia: a word of caution[J]. Liver Transpl,2008,14(11):1685-1686.
    [60]Albinana V, Bernabeu-Herrero ME, Zarrabeitia R, et al. Estrogen therapy for hereditary haemorrhagic telangiectasia (HHT):effects of raloxifene, on endoglin and ALK1 expression in endothelial cells[J]. Thromb Haemost,2010,103(3):525-534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700