二维变尺度非线性地震速度成像及阿尼玛卿缝合带东段地壳结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先回顾了地震层析成像和地球物理反演的发展历史,分析了全局优化算法和局部线性化反演方法各自的优缺点,指出将两类方法相结合可能做到取长补短、优势互补。然后着重介绍了混合反演算法的国内外研究现状,提出利用遗传算法和单纯形法相结合,得到一种高效、健全的非线性走时反演方法,进而形成一种新的地震层析成像方法。并对青藏高原、青藏高原东北缘的研究现状作了简要介绍。
     本文第二章介绍了遗传算法和单纯形方法的背景知识,详细阐述了基于变尺度混合反演算法的速度成像的基本原理:正问题采用有限差分波前走时计算,反问题采用遗传算法和单纯形相混合的反演方法,其成像策略是变尺度逐步逼近。具体成像过程是,把速度场划分为不同的空间尺度,定义网格节点上的速度作为待反演参数,采用双三次样条函数速度模型参数化,首先由遗传算法在较大的尺度范围内全局寻优,经过充分的演化后,将其符合终止条件的最佳个体提供给单纯形方法作为初始值,然后由单纯形方法进行快速局部寻优,这样结合的目的在于既降低计算成本,又避免陷入样本函数的局部极小值。然后,逐步减小空间尺度范围,重复上述过程,直至满足终止判别标准。
     本文第三章进行了一系列测试函数试验,将遗传算法、单纯形方法以及两者相混合方法的寻优能力做了对比,进一步阐述了全局寻优方法、局部线性化方法以及混合反演算法各自的优缺点。进行了低速异常体、高速异常体、梯度变化体、向斜、背斜、直立断层等速度模型的数值模拟试验。试验结果表明,基于变尺度混合反演算法的速度成像方法是有效的。利用对低速异常体数值模拟的观测走时加上5%和10%水平的随机噪声,然后进行速度成像的抗噪声试验,其结果表明5%的随机噪声对成像结果几乎没有影响,10%的随机噪声对成像结果影响不大,从而验证了本文提出的速度成像方法的健全性。
     本文第四章应用基于变尺度混合反演算法的速度成像方法对阿尼玛卿缝合带及其两侧的上地壳速度结构进行了成像,并将成像结果与他人的结果做了相应的对比。成像结果表明,阿尼玛卿缝合带东段的上地壳速度结构呈现一个横向宽度大于20km的低速度带的特征;研究区浅地表(2km以上)速度横向变化不大,2km以下速度横向变化剧烈,260~280km桩号之间呈现一个低速带,280~290km桩号之间,速度值突然抬升,290~300km桩号之间又出现一个规模较小的低速条带,300~310km桩号之间速度急剧升高,310km桩号已北的西秦岭褶皱带内,按照速度特征大体分为两段,340km桩号为速度分界线,以南为高速,以北为低速。库赛湖—玛沁断裂穿过283km桩号附近,速度从低速剧变为高速,基底深度由深突然变浅;在320~330km桩号之间,速度横向变化亦较大,基底深度从2.2km突然加深至4.5km,此处是武都—迭部断裂的体现;340km桩号是低速与高速的分界线,是舟曲—两当断裂的反映。
     本文第五章利用Zelt的Rayinvr软件包对阿尼玛卿缝合带及其两侧的二维地壳速度结构进行了研究,同时对Zelt的Rayinvr软件包的使用技巧进行了探讨。能够处理首波是Zelt的Rayinvr软件包的一个特点,可以将Pg波震相视作来自基底以上的回折波和来自基底界面的首波,进行有关基底的速度和界面深度的同时成像。结果表明,在阿尼玛卿缝合带内基底界面剧烈下凹,最深达5.47km;阿尼玛卿缝合带两侧相对而言,西秦岭褶皱带的基底埋深较松潘—甘孜微块体浅,在缝合带南侧的松潘—甘孜微块体内,基底埋深在3.5kin左右,基底界面在松潘—甘孜微块体也呈一定的下凹形态,在桩号170~250kin之间,基底下凹深度达4.0km;从阿尼玛卿缝合带过渡到西秦岭褶皱带,基底界面急剧变浅至1.8km,继而又急剧变深至4.7kin的深度,之后变得平坦。在使用Zelt的Rayinvr反演程序时,可以试验不同的反演方案,探寻不同的反演参数的效果,最好的方案是找到合适的参数,进行速度和深度的同时反演,其次是先速度后深度的反演方案。
     获得了关于阿尼玛卿缝合带及其两侧的二维地壳速度结构的一些重要认识:阿尼玛卿缝合带东段在深度20-45公里范围,存在贯穿整个中下地壳的低速构造,相同深度速度低于两侧约0.2~0.3km/s,这种低速构造的分布自上而下逐步减小的趋势。阿尼玛卿缝合带两侧的南北地壳结构存在明显区别,南侧的复杂程度明显高于北侧。整个地壳厚度沿测线横向变化不大,大约48~51km,阿尼玛卿缝合带略有增厚。松潘—甘孜地块有向西秦岭褶皱带下地壳俯冲的迹象。研究揭示的地球动力学含义是,研究区的构造背景以走滑、水平错断为主,下地壳物质有侧向流动的可能性。
     最后在第六章中对本文的研究成果进行了总结。
In this thesis, the development history of seismic tomography and geophysicalinversion methods is reviewed first. The advantages and defects of the globaloptimization algorithms and local linearized methods are discussed. It is pointed outthat the combination of these two types of methods will make it possible to overcomethe weakness caused by using any single method. Then, the current status of researchon the hybrid inverse methods is introduced. It is put forward that the combination ofgenetic algorithms (GA) and simplex methods will be an efficient and robust strategyof non-linear travel time inverse methods, and then a new seismic tomographymethod is developed. Besides, a brief introduction is given to the actual status ofresearch on crustal structures of Qinghai-Tibet Plateau and its northeastern margin.
     In Chapter 2, the general description about genetic algorithms and simplexmethods is presented. The basic principle of seismic velocity imaging based on themulti-scale hybrid inverse algorithms is expounded in detail. The forward problem issolved by use of the finite-difference method, and the hybrid method combininggenetic algorithms and simplex algorithms is applied to the inverse problem. Themulti-scale successive approximation strategy is adopted in the inverse process. Theimaging process is that the velocity field is firstly divided into different spatial scales,the velocities on the grids are taken as the inverted parameters, and then the model isparameterized by a bicubic spline function. Genetic algorithms (GA) are used firstlyto search the global optimization in a larger scale. The best individual obtained bygenetic algorithms, which experienced fully evolutions, acts as the initial model forthe simplex methods. And then the simplex methods are used to search rapidly thelocal optimization. The spatial scale will be reduced when the terminal conditions aresatisfied. The process mentioned above is repeated until the terminal conditions aresatisfied. The reason for combining genetic algorithms and simplex methods is that itcan not only reduce the calculation costs, but also avoid falling into the localoptimization area.
     In Chapter 3, a series of function tests and numerical simulated tests aredescribed. In the function tests, the searching abilities among genetic algorithms,simplex methods and their hybrid algorithms are compared. The advantages and defects of global, local and their hybrid algorithms are discussed in detail. Thegradient velocity, anomalous low velocity, anomalous high velocity, syncline,anticline and steep fault models are involved in the numerical simulated tests. All theresults of numerical simulated tests show that the velocity imaging method based onmulti-scale hybrid inverse algorithms proposed here is efficient. Anti-noise tests arealso done by adding 5% and 10% level random noise to the theoretical traveltimes ofthe anomalous low velocity model. It shows that the 5% level random noise makesalmost no differences to the inverse result and the 10% level random noise makes afew changes to the inverse result. The result of anti-noise tests verify that the velocityimaging method mentioned above is robust.
     In Chapter 4, the velocity imaging method based on the multi-scale hybridinverse algorithms is applied to research the upper crustal velocity structure inA'nyemaqen suture zone and its adjacent areas. The results obtained here arecompared with the others. The velocity imaging shows that the upper crustal velocitystructure of the eastern part of A'nyemaqen suture zone is characterized by a lowvelocity distribution, with a width of more than 20 km. The velocity structure abovethe depth of 2km is almost homogeneous laterally, but strong heterogeneities ofvelocity structures appear below the depth of 2km. A low velocity zone appearsbetween the stake numbers 260kin and 280kin. The P wave velocities increase rapidlybetween the stake numbers 280km and 290km. A smaller scale low velocity zoneappears between the stake numbers 290km and 300km, and the velocities increaserapidly again between the stake numbers 300km and 310km. The P wave velocitydistribution in the West Qinling fold zone to the north of the stake number 310km canbe divided into two parts depending on their velocity features. The P wave velocitiesare higher in the area to the south of the stake number 340km as compared with thevelocities in the area to the north. The Hoh Sai Lake-Maqin fault goes through theprofile at the stake number 283km, where the P wave velocities change severely andthe depths of the basement vary suddenly as well. The P wave velocity obviouslyvaries laterally between the stake numbers 320km and 330km, where the depth of thebasement varies in the range between 2.2km and 4.5km, and Wudu-Tewo fault goesthrough here. The velocity transition boundary between low and high velocities is located near the stake number 340km., where Zhouqu-Liangdang fault goes through.
     In Chapter 5, the 2D crustal section of A'nyemaqen suture zone and its adjacentarea is constructed by use of Rayinvr software package written by Zelt. Meanwhile,the skills for using the package are discussed. Rayinvr software package can deal withhead wave data, and that is its major distinguishing characteristic. The Pg waves canbe regarded as turning waves or head waves penetrating the upper crust, and thus itcan be used to reconstruct both of velocity distributions of the upper crust andtopography of the basement interfaces. The results reveal that the basement inA'nyemaqen suture zone is concave dramatically. Its maximum depth is about 5.47kmin it. As regards the both sides of A'nyemaqen suture zone, the basement in WestQinling fold zone is shallower than in Songpan-Ganzi geological block. The depth ofthe basement interface in Songpan-Ganzi block is about 3.5km. The concave featureof the basement interface also appears in Songpan-Ganzi block, and the depth of thebasement is about 4.0km between the stake numbers 170km and 250km. In thetransition zone between A'nyemaqen suture zone and West Qinling fold zone, thebasement shallows rapidly up to a depth of 1.8km, then deepens northwards up to4.7km, and finally becomes flat afterwards. Different inverse schemes and parametersare tested in order to compare their effects, when Rayinvr software package is used. Itis found that the simultaneous inversion of velocities and depths with suitableparameters is better than their individual inversion.
     The following are some major results about the 2D crustal section ofA'nyemaqen suture zone and its adjacent area. There are low velocity distributions inthe middle and lower crust in the depth range from 20km to 45km in the easternsegment of A'nyemaqen suture zone. The decrease of velocity values is about0.2~0.3km/s in A'nyemaqen suture zone and the scale of the low velocity distributionsreduces with depths. Obvious discrepancies of velocity structures exist between thesouthem and northem parts of A'nyemaqen suture zone: a more complicated structureis found in the south as compared to the north. Thickness of the crust varies very littlealong the profile, with an approximate value of about 48~51km, though a slightincrease appears in A'nyemaqen suture zone. Imaging of the crustal section shows thatthe lower crust of Songpan-Ganzi block dives under West QinLing fold zone. Geodynamic implications revealed by the results can be summed up as follows: thatstrike-slip and horizontal dislocating tectonic is the major tectonic background in thisarea and substance of lower crest tends to flow laterally. Finally, the results aresummarized in Chapter 6.
引文
艾印双,刘鹏程,郑天愉。自适应全局混合反演,中国科学(D辑),1998,28(2):105-110.
    陈国英,宋仲和,安昌强,等.中国北部及其邻区地壳上地幔三维速度结构.地球物理学报,1995,38(3):321-328.
    陈棋福,石耀霖.基于遗传算法的分类体系在地震预报中的应用探索,地球物理学报,1997,40(4):539-549.
    陈学波,龙门山构造带两侧地壳速度结构特征,中国大陆深部构造的研究与进展,北京:地质出版社,1988,97-113。
    程方道,神经网络在地球物理反演中的应用,地球物理学进展,1994,9(3):51-59.
    崔建文,一种改进的全局优化算法及其在面波频散曲线反演中的应用,地球物理学报,2004.47(3):521-527.
    崔作舟,1996,阿尔泰—台湾岩石圈地学断面综合研究:花石峡—邵阳深部地壳的结构和构造,北京:地质出版社,49-168.
    丁志峰,何正勤,孙为国,等,1999,青藏高原东部及其边缘地区的地壳上地幔三维速度结构,地球物理学报,42(2),197-205.
    丁志峰,何正勤,吴建平,等,青藏高原地震波三维速度结构的研究,中国地震,2001,17(2):202—209.
    段永红,张先康,杨卓欣等.长白山天池火山区基底结构研究.地震地质,2003,25(3):501~508.
    高锐,马永生,李秋生,等,2006a,松潘地块与两秦岭造山带下地壳的性质和关系——深地震反射剖面的揭露,地质通报,25(12):1361—1367.
    高锐,王海燕,马永生,等,2006b,松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系——深地震反射剖面探测成果,地球学报,27(5):411—418.
    管烨,高弘,高锐等.新疆塔里木—西昆仑宽频地震观测实验研究.地球学报,2001,22(6):559-562.
    郭飚,刘启元,陈九辉,等.青藏高原东北缘—鄂尔多斯地壳上地幔地震层析成像研究。地球物理学报,2004,47(5):790-797.
    郭飚,刘启元,陈九辉,等.中国境内天山地壳上地幔结构的地震层析成像.地球物理学报,2006.49(6):1693-1700.
    嘉世旭,不同速度模型条件下地震波走时的射线追踪计算,物探化探计算技术,1993,15(3): 218-225.
    姜枚,吕庆田,薛光琦.中、法两国联合进行青藏高原天然地震探测地壳结构的研究。地球物理学报,1994,37(3):412-413.
    金安蜀,刘福田,孙永智.北京地区地壳和上地幔三维P波速度结构.地球物理学报,1980,23(2):172-182.
    李福中,邢国栋,白旭明,等,初至波层析反演静校正方法研究.石油地球物理勘探,2000,35(6):710-718.
    李录明,罗省贤,赵波,初至波表层模型层析反演.石油地球物理勘探,2000,35(5):559-564.
    李家康,余钦范,近地表速度的约束层析反演,石油地球物理勘探,2001,36(2):135-140.
    李志伟 胥颐 郝天珧,等。环渤海地区的地震层析成像与地壳上地幔结构.地球物理学报,2006.49(3):797-804.
    李松林,张先康,张成科,等,玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究[J],地球物理学报,2002,45(2):210-217.
    刘福田,震源位置和速度结构的联合反演——理论和方法.地球物理学报,1984,27(2):167-175.
    刘鹏程,纪晨,Hartsell S H.改进的模拟退火—单纯形综合反演方法.地球物理学报,1995.38(2):123-134.
    刘瑞丰,陈培善,李强,云南及其邻近地区三维速度图像,地震学报,1993,15(1),61-67.
    刘勇,康立山,1997,非数值并行算法——遗传算法,北京:科学出版社.
    卢德源,黄立信,陈纪平等.1990.青藏高原北部沱沱河—格尔木地区地壳和上地幔的结构
    模型和速度分布特征.见:西藏地球物理文集,北京:地质出版社.51-62.
    卢占武,高锐,李秋生,等,中国青藏高原深部地球物理探测与地球动力学研究,地球物理学报,2006,49(3):753-770.
    师学明,王家映,张胜业等,多尺度逐次逼近遗传算法反演大地电磁资料.地球物理学报,2000.43(2):122-130.
    石琳珂,孙铭心,王广国,等,2000,地球物理遗传反演方法,北京:地震出版社,1-104.
    石耀霖,遗传算法在地球物理反演问题中的一些应用,地球物理学报,1992,35(增刊),367-371.
    宋占隆,杨卓欣,石金虎等.用Pg波走时重建华北地区结晶基底速度及时间项图像.华北地震科学,1997,15(2):9~16.
    孙鸿烈,郑度主编,1998.青藏高原形成、演化与发展,广州:广东科技出版社,21~23.
    汤吉,詹艳,赵国泽,等,青藏高原东北缘玛沁—兰州—靖边剖面地壳上她幔电性结构研究,地球物理学报,2005,48(5):1025-1216.
    滕吉文,刘福田,全幼黎,等.1994.中国西北造山带与沉积盆地地区的地壳和地幔的层析成像.见:陈运泰等主编.中国固体地球物理学进展.北京:海洋出版社,66-80.
    滕吉文,熊绍柏,尹周勋等.喜马拉雅北部地区的地壳结构模型利速度分布特征,地球物理学报,1983,26(6):525—540。
    滕吉文,尹周勋,熊绍柏 西减高原北部地区色林错—蓬错—那曲—索县地带地壳结构与速度分布,地球物理学报,1985,28(增刊Ⅰ):28—42。
    王椿镛,韩渭滨,吴建平,等,松潘—甘孜造山带的地壳结构,地震学报,2003,25(3),229—241.
    王椿镛,Mooney W.D.,王溪莉,等.川滇地区地壳上地幔三维速度结构研究.地震学报,2002,24(1),1-16.
    王椿镛,张先康,丁志峰,等,大别造山带上部地壳结构的有限差分层析成像,地球物理学报,1997,40(4):495-502.
    王夫运,张先康,陈棋福,等,北京地区上地壳三维细结构层析成像,地球物理学报,2005,48(2):359-366.
    王夫运,张先康,2006,波形反演遗传算法及其在地震测深数据解释中的应用,地震学报,28(2):158-166.
    王海燕,高锐,马永生,等,若尔盖与两秦岭地震反射岩石圈结构和盆山耦合,2007,50(2):472-481.
    王山山,李灿平,李青仁等,快速模拟退火地震反演,地球物理学报,1995,38(增刊Ⅰ):123-134.
    王彦春,余钦范,段云卿,三维折射波静校正,石油地球物理勘探,2000,35(1):13-19.
    吴建平,明跃红,王椿镛,川滇地区速度结构的区域地震波形反演研究,地球物理学报,2006,49(5):1369—1376。
    吴功建,高锐,余钦范等,青藏高原“亚东—格尔木地学断面”综合地球物理调查与研究。地球物理学报,1991,34(5):552-562.
    吴庆举,曾融生,用宽频带远震接收函数研究青藏高原的地壳结构,地球物理学报,1998,41(5):669—679。
    熊绍柏,滕吉文,尹周勋.西藏高原地区的地壳厚度和莫霍界面的起伏,地球物理学报,1985,28(增刊Ⅰ):16—27。
    胥颐,刘建华,郝天珧等,中国东部海域及邻区岩石层地幔的P波速度结构与构造分析,地球物理学报,2006,49(4):1053-1061。
    徐果明,周蕙兰,1982,地震学原理,北京:科学出版社,131-133.
    徐仲达,陶静,准葛尔盆地边缘山区的初步静校正,石油物探,1994,33(4):10-18.
    许忠淮,汪素云,裴顺平,青藏高原东北缘地区Pn波速度的横向变化,地震学报,25(1):24-31.
    许志琴,侯立玮,王宗秀等,1992,中国松潘—甘孜造山带的造山过程,北京:地质出版社,1-190.
    许志琴,袁学诚,青藏高原北部东昆仑—羌塘地区的岩石圈结构及岩石圈剪切断层,中国科学,D辑,2001,31(增):B12.
    徐朝繁,张先康,张建狮,等,射线数分布分析法及其在地壳上部复杂结构探测中的应用,地震学报,2006,19(2):167-175.
    姚振兴,李白基,梁尚鸿,等,青藏高原地区瑞利波群速度和地壳构造,地球物理学报,1981,24(3):287-295.
    杨文采.评地球物理反演的发展趋向.地学前缘,2002,9(4):389~396.
    杨文采,1997,地球物理反演的理论与方法,北京:地质出版社,4-7.
    杨文军,段云卿,姜伟才,等,层析反演静校正,物探与化探,2005,29(1):41-43.
    杨卓欣,张先康,杨健,等,地壳三维构造反演和速度层析成像,地球物理学进展,12(1):41-52.
    于湘伟,陈运泰,王培德,京津唐地区中上地壳三维P波速度结构,地震学报,2003,25(1):1-14.
    曾融生,阚荣举.1961.柴达木盆地两部地壳深界面的反射,地球物理学报,10(1):120-125.
    曾融生,滕吉文,阚荣举等.1965.我国西北地区地壳中的高速夹层,地球物理学报,1997,14(2):94-106.
    曾融生,朱介寿,周兵,等,青藏高原及东部邻区的三维地震波速度结构与大陆碰撞模型,地震学报,1992,14(增):523-564.
    张国伟,郭安林,姚平安,中国大陆构造中的西秦岭—松潘大陆构造结,地学前缘,2004,11(3):23-32.
    张培震,邓起东,张国民,等,中国大陆的强震活动与活动地块[J],中国科学,D辑,2003,33(增刊):12-20.
    张先康,杨玉春,赵平,等,唐山滦县震区的三维地震透射研究——中、上地壳速度层析成 像,地球物理学报,1994,37(6):759-766.
    张先康,杨卓欣,杨玉春,等,地壳三维结构的层析成像方法——爆破和地震资料的联合反演,地震学报,1995,17(4):422-431.
    张先康,张成科,赵金仁,等,长白山天池火山区岩浆系统深部结构的深地震测深研究,地震学报,2002,24(2):135-143.
    张先康,李松林,王夫运,等,青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异——深地震测深的结果,地震地质,2003,25(1):52-60.
    张先康,杨卓欣,徐朝繁,等,阿尼玛卿缝合带东段上地壳结构——马尔康—碌曲—古浪深地震测深剖面结果,2007,地震学报,待刊。
    赵改善,求解非线性最优化问题的遗传算法,地球物理学进展,1992,7(1):90-97.
    赵俊猛,唐伟,黎益仕,等,青藏高原东北缘岩石圈密度与磁化强度及动力学含义,地学前缘,2006,13(5):391-400.
    赵俊猛,王清晨,段永红等.天山造山带基底结构的有限差分研究.中国科学(D),2004,34(增刊Ⅰ):13~18.
    赵俊猛,张先康,邓宏钊,等,拜城—大柴旦剖面的上地壳Q值结构.地球物理学报,2003,46(4):503-509.
    赵仲和,北京地区地震参数与速度结构的联合测定,地球物理学报,1983,26(2),131-139.
    中国科学院地球物理研究所,西藏高原当雄—亚东地带地壳与上地幔速度结构和速度分布的爆炸地震研究,地球物理学报,1981,24(2):155—170。
    周民都,张元生,石雅缪,等,青藏高原东北缘地壳二维速度结构,地球物理学进展,2006,21(1):127-134.
    朱介寿,曹家敏,蔡学林,等,2004,欧亚大陆西太平洋面波层析成像及岩石圈结构,中国大陆地震学与地球内部物理学研究进展,北京:地震出版社,346-358.
    朱露培,曾融生、刘福田,京津唐张地区地壳上地幔三维P波速度结构,地球物理学报,1990,33(3):267-277.
    朱天飞,刘福田,用地震资料测定岩石圈的三维速度结构.地球物理学报,1982,25(6):500-508.
    Tarantola A著.1987;张先康译.1989.反演理论.北京:学术出版社,173-351.
    Anderson D. I., Dziewonski A. M.,] 984. Seismic tomography, Scientific American.,251(4):58-66.
    Aki, K. & Lee W.H.K., 1976. Determination of three dimensional velocity anomalies under a seismic array using first P arrival times from local earthquake 1. A homogeneous initial model,J Geophys. Res.,81,4381-4399.
    Aki K., Christoffersson A., Husebye E.S.. 1977. Determination of the three-dimensional seismic structure of the lithosphere, J. Geophys. Res., 82(1): 277-296.
    
    Al-Yahya K. M. 1989. Velocity analysis by iterative profile migration. Geophysics 54,718-729.
    Backus, G. E. and Gilbert, J. F.,1967, Numerical applications of a formalism for geophysical inverse problems,Geophys. J. R. astr.Soc.,13,247-276.
    Backus, G. E. and Gilbert, J. F.,1968, The resolving power of a gross earth data,Geophys. J. R. astr.Soc.,16,169-205.
    Backus, G. E. and Gilbert, J. F.,1970, Uniqueness in the inversion of inaccurate gross earth data, Phli. Trans. Roy. Soc.,London,Ser. A266,123-196.
    Berkhout A. J.,1984, Mutidimensional linearized inversion and seismic migration. Geophysics,49 (11) :1881-1895.
    BishopT. N., Bube K. P., Cutler R. T.,et al. 1985. Tomography determination of velocity and depth in laterally varying media. Geophysics,50 (4) :903-923.
    Bunks C, Salek FEM, Zaleski S,et al. 1995, Multiscale seismic waveform inversion. Geophysics, 60(5): 1457-1473.
    Calderon-Macias, C, M.K. Sen, and P.L. Stoffa, 2000, Neural networks for parameter estimation in geophysics, Geophys. Prosp., 48, 21-47.
    Cao S.,Greenhalgh S. A.,1994,Finite-difference solution of the eikonal eqution using an efficient first-arrival wavefront tracking scheme.Geophysics,59(4):632-643.
    Cao S.,Greenhalgh S. A., 1997, Crosswell seismic tomography delineation of mineralization in a hard rock environment, Geophys. Prosp., 45,449-460.
    Cary, P. W. and Chapman, C. H., 1988, Automatic 1-D waveform inversion of marine seismic reflection data: Geophys. J. Int., 93,527-546.
    Chunduru R.,Sen M.K.,and Stoffa P.L. 1996. Development of efficient hybrid optimization for geophysical inversion.66~(th) SEG meeting,Denver,USA,Expanded Abstracts, 1130-1133.
    Chunduru R.K.,Sen M.K.,and Stoffa P.L. 1997,Hybrid optimization methods for geophysical inversion, Geophysics ,62,1196-1207.
    Crosson,R. S.,1976. Crustal structure modeling of earthquake data 1. Simultaneous least squares estimation of hypocenter and velocity parameter, J. Geophys. Res., 81,3036-3046.
    Daily W. D.,1984. Underground oil-shale retort monitoring using geotomography. Geophysics,49: 1701 -1711.
    Dines K. A,and Lytle R. J. , 1979,Computerized Geophysical Tomography , Proc IEEE, 67(7): 1065-1073.
    Dziewonski A. M.,1984. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., 89,5929-5952.
    Ecoublet P.E., Singh S.C., Chapman C.H., Jackson G.M.2001,Bent-ray traveltime tomography and migration without ray tracing, Geophys. J.Int., 149,633-645.
    
    Farra V., Madariaga R.,1988, Non-linear reflection tomography, Geophysics,96,135-147.
    Firbas,P.,1981, Inversion of traveltime data for laterally heterogeneous velocity structure linearization approach,Geophys. J. R. Astron. Soc.,67,189-198.
    Greenhalgh S. A. Tapley D., Singh R., 1989, Crustal heterogeneity in South Australia, earthquake evidence, Geophys. J. Int,96,85-89.
    Greenhalgh S. A. Gruber T., Zhou B., 2003, Velocity field imaging with an anomaly recover algorithm, incorporating later arrivals, Geophysics,68(2),589-599.
    Harmen Bijwaard and Wim Spakman,2000,Nonlinear global P-wave tomography by iterated linearized inversion, Geophys.J.Int.141,71-82.
    Hole J.A. 1992a, Nonlinear high-resolution three-dimensional traveltime tomography. J. Geophys. Res., 97, 6553-6562.
    
    Hole J.A.,Clowes R.M., and Ellis R.M.. 1992b. Interface inversion using broadside seismic refraction data and three-dimensional travel time calculations. J. Geophys. Res.,97,3417-3429.
    Ikelle,L. T., Diet, J.P., and Tarantola,A.,1988,Linearized inversion of multioffset seismic reflection data in the ω— k domain,Geophysics,51,1266-1276.
    
    Improta L., Zollo A., Herrero A., et al.2002.Seismic imaging of complex structures by non-linear traveltime inversion of dense wide-angle data:application to a thrust belt, Geophys.J.Int. 151,264-278.
    Jackson D. D., 1972, Interpretation of inaccurate, insufficient and inconsistent data. Geophys. J. R. astr. Soc. 28,97-109.
    
    James W. D. Hobro, Satish C. Singh, Timothy A. Minshull, 2003, Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophys.J.Int. 152,79-93.
    Jin S. and Beydoun W..2000.2D multiscale non-linear velocity inversion. Geophysical Prospecting.48,163-180.
    Jin S.,and Madariaga R., 1993. Background velocity inversion with a genetic algorithm, Geophysical Research Letters,20,93-96.
    Jin S.,and Madariaga R., 1994. Non-linear velocity inversion by a two step Monte-Carlo method. Geophysics 59,577-590.
    Kirkpatrick,S.,Gelatt,C.D.,Jr & Vecchi,M.P.,1983,Optimisation by simulated annealing,Science,220,671 -680.
    
    Koch M., 1993a. Simultaneous inversion for 3-D crustal structure and hypocenters including direct,refracted and reflected phase-I. evelopment,validation and optimal regularization of the method , Geophys. J. Int.,112,385-412.
    
    Koch M., 1993b. Simultaneous inversion for 3-D crustal structure and hypocenters including direct,refracted and reflected phase-II. Apllication to the northern Rhine Grabern/Rhanish Massif Region,Germany, Geophys. J. Int.,112,413-428.
    
    Koch M., 1993c. Simultaneous inversion for 3-D crustal structure and hypocenters including direct,refracted and reflected phase-III. Apllication to the southern Rhine Grabern seismic region,Germany, Geophys , Geophys. J. Int., 112,429-447.
    Kolar,p.,2000,Two attempts of study of seismic source from teleseismic data by simulated annealing non-linear inversion. J. Seism. 4,197-214.
    Landa E., Beydoun W. and Tarantola A. 1989. Reference velocity model estimation from prestack waveforms: coherence optimization by simulated annealing. Geophysics 54,984-990.
    Lines L.R., Treitel S.,1984, Tutorial a review of least-squares inversion and its application to geophysical problems. Geophysical Prosp.,32:159-186.
    Liu P C, Hartsell S H, Stephenson W. 1995, Nolinear mulitparameter inversion using hybrid global search algorithm:Apllication in reflection seismology. Geophys.J.Int., 122:991 -1000.
    Lutter W.J., Nowack R.L., and Braile L.W. 1990. Seismic imaging of upper crustal structure using travel times from the PASSCAL Ouachita Experiment. J. Geophys. Res.,95,4621-4631.
    Lutter W.J. and Nowack R.L. 1990. Inversion for crustal structure using reflections from the PASSCAL Ouachita Experiment. J. Geophys. Res.,95,4633-4646.
    
    McCaughey, M.& Singh,S. C.,1997,Simultaneous velocity and interface inversion of wide-angle and seismic traveltime data, Geophys.J.Int. 131,87-99.
    Mirzaei M., and Bredewout J.W. 1996. An iterative method for finding small magnetic objects in the surface by linear and non-linear inversion.Geophysical Prospecting 44,289-312.
    Nelder J.A. and Mead R.,1965,A simplex method for function minimization. Computer Journal,7, 308-313.
    
    Pascal Podvin, Isabelle Lecomte. 1991,Finite difference compution of traveltime in very contrasted velocity models: a massively parallel approach and its associated tools . Geophys.J.Int,105(1),271-284.
    Hammer P. T. C, Dorman L. M., Hildebrand J. A., et al. 1994,Jasper seamount structure:seafloor seismic refraction tomography,Journal of Geophysical Research,99(B4),6731 -6752.
    Phillips W. S., Fehler M. C., 1991,Traveltime tomography: A comparison of popular methods,Geophysics,56,1639-1649.
    
    Porsani M.J.,Stoffa P.L.,Sen M.K.,Ch nduru R. and Wood W.T. 1993. A combined genetic and linear inversion algorithm for waveform inversion. 63~(rd) SEG meeting, Washington , DC,USA, Expanded Abstracts,692-695.
    Pratt R. G. , Worthington M. H. 1984. The application of diffraction tomography to crosshole seismic data. Geophysics ,53: 1284-1294.
    Qin. F. Luo,Yi. Olsen,K. B.,Cai,etl,1992,Finite-difference solution of the eikonal eqution along expanding wavefronts: Geophysics,57(3),478-487.
    Raffaele R., Langer H.,Gresta S., et al,2006,Tomographic inversion of local earthquake data from the Gioia Tauro basin(south-western Calabria,Italy), Geophys.J.Int.165,167-179.
    Robert L., 1971,Traveltime inversion for laterally inhomogeneous crustal velocity models,Bulletin of the Seismological Socity of America,61(3),729-746.
    Sambridge,M. & Drijkoningen,G.,1992,Genetic algorithms in seismic waveform inversion, Geophys.J.Int. 109,323-342.
    
    Schneider W.A., Kurt Jr., Ranzinger A., Balch A.H.,et al.1992,A dynamic programming approach to first traveltime compution in media with arbitrarily distributed velocities. Geophysics,57(1),39-50.
    Scales,J.A.,1987,Tomographic inversion via the conjugate gradient method, Geophysics, 52,179-185.
    
    Scales J.A, Snieder R. 1997,To Bayes or not to Beyes? Geophysics, 62(4): 1045—1 046.
    Sen,M.K.,and Stoffa,P.L.,1991,Nonliear one-dimensional seismic waveform inversion using simulated annealing:Geophysics, 56 (10) ,1624-1638.
    Sharam Pezeshk and Morteza Zarrabi,2005,A new inversion procedure for spectral analysis of surface waves using a genetic algorithm,Bulletin of the America,95(5),1801-1808.
    Smith M. L., Scales J. A.,Fischer T. L.,1992,Golbal search and genetic algorithms, Geophysics:The leading Edge of Exploration, 11(1),22-26.
    
    Snieder R., Xie M. Y., Pica P. and Tarantola A. 1989. Retrieving both the impedance contrast and background velocity: a global strategy for the seismic reflection problem. Geophysics 54,991-1000.
    Somerstein. 1984. Radio-frequency geotomography for remotely probing the interior of operating mini and commercial-sized oil-shale retorts. Geophysics,49 (8) :1288-1300.
    Stoffa,P.L. and Sen,M.K.,1991,Nolinear multiparameter optimization using genetic algorithms:inversion of plane-wave seismogram, Geophysics, 56(11), 1794-1810.
    Stork,C. and Kusuma, T.,1992, Hybrid genetic autostatics: New approach for large-amplitude statics with noisy data: 62nd Ann. Internat. Mtg., Soc. Of Expl. Geophys., Expanded Abstracts, 1127-1131.
    Tanimoto T., Anderson D. L.,1984. Mapping convection in the mantle. Geophys.Res. Lett.,11:287-290.
    Tarantola A., 1984. Linearized inversion of seismic reflection data: Geophysical Prosp.,32:998-1015.
    
    Tarantola A., Inverse Problem Theory, Elsevier, 1987.
    
    Thomas L. Pratt, James F. Dolan, Jackson K. Odum, et al. 1998. Multiscale seismic imaging of active fault zones for hazard assessment: A case study of the Santa Monica fault zone,Los Angeles,California. Geophysics,63(2),479-489.
    Van der Hilst,R. D., Widyantoro S., Engdahl E.R., 1997, Evidence for deep mantle circulation from global tomography, Nature,386,578-584.
    
    Vera Schlindwein, Christian Bonnemann, Christian Reichert, et al , 2003, Three-dimensional seismic refraction tomography of the crustal structure at the ION site on the Ninetyeast Ridge, Indian Ocean, Geophys. J. Int,152,171-184.
    Vidale,J.E.,1988,Finite-difference calculation of travel times. Bull. Seis. Soc. America,78(6):2062-2076.
    White,D. J.,1989,Two-dimensionaI seismic refraction tomography, Geophys. J. Int,97,223-245.
    White,D. J.,Clowes R. M.,1990, Shallow crustal structure beneath the Juan de Fuca Ridge from 2-D seismic refraction tomography[J]. Geophys. J. Int.,100:349-367.
    Wiggins R A.,1972, The general linear inverse problem: implication of surface waves and free oscillations for earth structure. Reviews of Geophysics and Space Physics,10(1):251-285.
    Williamson,P. R.,1990. Tomographic inversion in reflection seismology, Geophys. J. Int.,100,255-274.
    Witten A., Gillette D. D., Sypniewski J., et al, 1992, Geophysical diffraction tomography at a dinosaur site, Geophysics,57 (1): 187-195.
    WoodhouseJ. H.,Dziewonski A. M.,1984. Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveforms,J. Geophys. Res., 89,5953-5986.
    Woodward M. J., 1992, Wave-equation tomography, Geophysics,57 (1):15-26.
    Yilmaz O. and Chambers R.E.,1984,Migration velocity analysis by wave-field extrapolation. Geophysics, 49(10), 1664-1674.
    Yin A, Harrison T M., 2000, Geologic evolution of the Himalayan-Tibetan orogen, J. Ann. Rev. Earth Planet, 28:211-280.
    Zelt C.A.,Smith R.B.,1992,Seismic traveltime inversion for 2-D crustal velocity structure, Geophys.J.Int. 108,16-34.
    Zelt C.A.,Hojka A.M., Flueh E.R.,et al, 1999, 3D simultaneous seismic refi'action and reflection tomography of wide-angle data from the central Chilean margin, Geophys.Res.Lett., 26,2577-2580.
    Zhang, J. and Yoksoz M. N.,1998, Nonlinear refraction traveltime tomography, Geophysics, 63(5), 1726-1737.
    Zhang Xian-Kang, 1989,Generalized inversion and its application in inverse scattering problems. Journal of Computational Mathematics, 7(4):374-382.
    Zhang Z. J.,Wang G. J., 2002, P-wave structure along 1100km long wide-angle seismic profile in the eastern Tibet, AGU, Japan.
    Zhao Ping,1996,An efficient computer program for wavefront calculation by the finite difference method, Computers & Geosciences,22(3):239-251.
    Zhao W. J., Nelson,K.D.,Project INDEPTH Team, 1993,Deep seismic reflection evidence for continental underthrusting beneath southern Tibet,Nature,366(9):557-559..
    Zhou H. W.,2003,Multiscale traveltime tomography. Geophysics, 68, 1639-1649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700