靶向纳米生物复合物在癌细胞成像诊断分析、药物输送以及治疗中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤(癌症),是当今严重威胁人类健康的主要疾病之一,早期发现并及时治疗是治疗肿瘤的关键。目前的常规诊断方法灵敏度和特异性比较低,在肿瘤发生早期很难检测,大多数患者在被确诊时肿瘤细胞已发生浸润和转移,错过了治疗的有效时机。尽管近年来随着药物和治疗方法的不断革新,临床的治疗效果已经取得了很大的进步,但是目前有效的治疗方法依然是手术、放疗和化疗等传统方法。尤其是化疗,大量的研究集中在提高化疗的疗效上,因为化疗被认为是最有希望治愈癌症的方法。然而目前化疗遭遇了很多挑战,例如靶向输送效果差、强烈的毒副作用以及肿瘤细胞的耐药性等,难以达到预期的治疗效果。因此,发展灵敏度高、特异性强的早期诊断方法以及开发具有高的肿瘤靶向性、安全、有效、经济的抗肿瘤药物体系已经成为目前癌症研究的热点,对癌症的早期诊断和治疗有着重要的意义。
     基于纳米材料的荧光探针及药物载体已经被广泛地应用于生物化学领域,特别是肿瘤的成像诊断及治疗。这其中,金纳米粒子因具有良好的生物相容性使得其在生物标记、成像以及药物输送等方面引起了人们的广泛关注,基于纳米金的探针以及药物载体也已经被大量报道。然而目前的大多数探针只能检测一种肿瘤特异标记物,在肿瘤的诊断中常常会造成“假阳性”结果。而且药物载体不能根据肿瘤的实时发展状况可控地释放药物,为肿瘤患者提供合理的药物剂量,从而引起过多用药,造成了严重的毒副作用。此外,传统的单一疗法还不能取得令人满意的治疗效果,因此发展灵敏的、特异的新型纳米荧光探针对肿瘤细胞内的多种特异标记物诊断以及发展理性可控的药物载体靶向输送药物到肿瘤,并开展联合疗法来杀死肿瘤细胞已成为目前抗癌领域的研究热点。
     本论文基于生物相容性非常好的纳米金、分子信标、广谱抗癌药物阿霉素以及金纳米棒和光敏剂组装了一系列纳米荧光探针和纳米药物载体用于癌细胞的成像诊断分析,药物靶向输送、可控释放以及联合治疗等,主要包括:
     1、基于纳米金(AuNP)和分子信标(MB),将靶向识别乳腺癌细胞中特异肿瘤标记物(细胞周期蛋白D1 mRNA,cyclin D1 mRNA)的分子信标组装到纳米金上得到AuNP-MB,并将Dox物理地装载到AuNP-MB上,发展了一种新奇的纳米药物载体AuNP-MB(Dox)。AuNP-MB(Dox)对cyclin D1 mRNA高表达的癌细胞具有高选择性和特异性,可对癌细胞进行荧光成像诊断分析和药物靶向输送,能有效地杀死癌细胞,而对正常细胞无伤害。重要的是,AuNP-MB(Dox)可根据癌细胞中cyclin D1 mRNA的量可控地释放不同量的Dox,即Dox的释放量和cyclin D1 mRNA的表达水平是正相关的。这种肿瘤特异mRNA依赖的药物释放载体可根据癌细胞的实时发展状况来释放合理剂量的Dox,从而减少了过多用药造成的毒副作用。
     2、基于纳米金(AuNP)和双分子信标bi-MB(MB1,MB2),将靶向于乳腺癌细胞中两种特异肿瘤标记物的双bi-MB组装到AuNP上,发展了一种新奇的纳米双荧光探针AuNP-bi-MB。AuNP-bi-MB可对癌细胞中高表达的两种特异肿瘤mRNA(survivin mRNA,cyclin D1 mRNA)同时进行双色荧光成像及诊断分析,有效地避免了单一肿瘤mRNA检测技术中出现的“假阳性”结果,有利于肿瘤的早期诊断。重要的是可通过实时检测两种肿瘤特异mRNA的相对表达水平,来更加为明确肿瘤的发展状况,为肿瘤的有效治疗提供了可靠的信息。
     3、基于金纳米棒(GNR)、分子信标(MB)和光敏剂,MB可靶向识别乳腺癌细胞中的特异肿瘤标记物生存素(survivin)mRNA,首先在MB的一端上修饰了Ce6得到MB-Ce6,然后将MB-Ce6组装到金纳米棒上,得到多功能的光控纳米药物载体GNR-MB-Ce6。GNR-MB-Ce6可靶向识别癌细胞内的特异标记物survivin mRNA并对癌细胞进行荧光成像及诊断分析,然后在近红外光的照射下,Ce6释放出单线态氧杀死癌细胞,同时金纳米棒的光热效应也可以杀死癌细胞,从而对癌细胞进行联合治疗,避免了单一疗法的局限性。
Malignant tumor (cancer) has a reputation as a deadly disease, and successful cure of most cancers depends on early detection and timely treatment. It is difficult to discover tumor in the early stage, because of the relatively low sensitivity and specificity of conventional diagnostic methods. Usually, the undetected metastasis has already occurred in patients before initial diagnosis, which leads to missing the opportunity to cure disease. Although the clinical arsenal in treating cancer has been greatly extended in recent years with the application of new drugs and therapeutic modalities, the three main approaches still to be surgical resection, radiation, and chemotherapy. Most research focus on how to improve the efficacy of chemotherapy which is a promising approach in cancer therapy. The challenges encountered by chemotherapy make it still difficult to achieve the desired therapeutic effect, including untargeted transport, serious side effects on healthy tissue and drug resistance. Therefore, it is significant to develop simple, sensitive and effective detection approaches and targeted, safe, effective antitumor drugs system for cancer diagnosis and therapy.
     Fluorescent probes and drug carriers based on nano-materials has been widely used in biochemistry, especially in imaging diagnosis and treatment of cancer. The gold nanoparticle (AuNP) has an extraordinary intracellular stability and biocompatibility that makes it useful for intracellular imaging, molecular diagnostics and drug delivery. AuNP-based probes and drug carriers has been widely reported. However, most current probes detect usually a single tumor marker, which often result in "false positive" results for cancer diagnosis. The realease of drug from delivery carrier lacks the consistent correlations with tumor progression and usually results in unpredictable release, resulting in serious side effects. In addition, the single traditional therapy can not achieve satisfactory therapeutic effects. Thus, sensitive and specific fluorescent probes for simultaneous detecting several tumor markers, controlled and targeted drug carrier and combined antitumor therapy have become research focus in the field of cancer diagnosis and therapy.
     In this study, based on the biocompatible AuNP, molecular beacon (MB), antitumor Doxorubicin (Dox), the gold nanorod (GNR) and photosensitizer (PS), we developed a series of fluorescent nanoprobes and drug nano-carriers for cancer diagnosis and therapy as follows:
     1. We demonstrated an effective and controlled drug carrier for the delivery of Dox based on AuNP-MB. It could target cyclin D1 mRNA, which is a tumor mRNA of breast cancer. When MB bound selectively to cyclin D1 mRNA, fluorescent Dox released effectively from AuNP–MB(Dox) and induced apoptosis, which occurred in breast cancer cells (cyclin D1+) but not in normal cells (cyclin D1-). Significantly, the release of Dox was correlated positively with the quantities of tumor mRNA. This drug carrier released Dox according to various stages of tumor progression in a controlled manner which could decrease effectively side effects of Dox.
     2. Based on AuNP and bi-MB, we developed a bi-color fluorescence imaging agent AuNP-bi-MB to detect simultaneously intracellular tumor mRNAs in breast cancer. The AuNP was assembled with bi-MB which targeted specifically to two kinds of tumor mRNAs. This novel approach could prevent effectively“false positive”results and provide comprehensive and dependable information for early detection of cancer compared with single tumor mRNA testing. It would be beneficial to identify the stage of tumor progression and assess treatment decisions by real-time detection of relative expression level of tumor mRNAs in cancer cells.
     3. Based on GNR, MB and PS, we developed a light-triggered drug nano-carrier GNR-MB-Ce6 targeting survivin mRNA which is a tumor mRNA of breast cancer. GNR-MB-Ce6 was assembled by Ce6-labeled MB and GNR. GNR-MB-Ce6 could detect survivin mRNA and be used in cancer cell imaging. Under the irradiation of NIR light, Ce6 generated singlet oxygen as photodynamic theray (PDT) agent, GNR generated photothermal effect and damage cancer cell. Combination of PDT and photothermal effect could induce effectively apoptosis in cancer cell and avoid the limitations of single therapy.
引文
[1] Lee, S.W.; Mao, C.; Flynn, C. E.; Belcher, A. M. Ordering of Quantum Dots Using Genetically Engineered Viruses [J]. Science, 2002, 296(3): 892-895.
    [2] Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev., 2004, 104(1): 293-346.
    [3]邓永沛,赵红秋,江龙等.纳米金颗粒在仿生工程中的应用[G].中国基础科学,2000(9): 11-17.
    [4] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold solution [J]. Nat. Phys. Sci., 1973, 241(105): 20-22.
    [5] Feldherr C M, Marshall J M. The use of colloidalgold for studies of int racellular exchanges in the ameba chaos chaos [J]. The Journal of Cell Biol, 1962, 12 (3): 640-645.
    [6] Faulk W P; Taylor G M. An immunocolloid method for the electron microscope [J]. Immunochemistry, 1971, 8(11): 1081-1083.
    [7] Dixit V, Van den Bossche J, Sherman DM, et al. Synthesis and Grafting of Thioctic Acid-PEG-Folate Conjugates onto Au Nanoparticles for Selective Targeting of Folate Receptor-Positive Tumor Cells [J]. Bioconjugate Chem, 2006, 17(3): 603-609.
    [8] Chithrani DB, Dunne M, Stewart J, et al. Cellular Uptake and Transport of Gold Nanoparticles Incorporated in a Liposomal Carrier [J]. Nanomedicine, 2010, 6(1): 161-169.
    [9] Kamen BA, Smith AK. A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vivo[J]. Adv Drug Deliv Rev, 2004, 56(8): 1085-1097.
    [10] Sabharanjak S, Mayor S. Folate receptor endocytosis and trafficking [J]. Adv Drug Deliv Rev, 2004, 56(8): 1099-1109.
    [11] Prabaharan M, Grailer JJ, Pilla S, et al. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery [J]. Biomaterials, 2009, 30 (30): 6065-6075.
    [12] Huang X, Jain PK, El-Sayed IH, et al. Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of lmmunotargeted Gold Nanoparticles[J]. Photochemistry andPhotobiology, 2006, 82(2): 412-417.
    [13] Yang PH, Sun X, Chiu JF, et al. Transferrin-Mediated Gold Nanoparticle Cellular Uptake [J]. Bioconjug Chem, 2005, 16 (3): 494-496.
    [14] Kanstantin Sokolov, Michele Follen, J esse Aaron et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles [J]. Cancer Research, 2003, 63(9): 1999-2004.
    [15] Mirkin, C.; Letsinger, R.; Mucic, R.; Storhoff, J. A DNA-based method for rationally assembling nanoparticlesinto macroscope materials [J]. Nature, 1996, 382(6592): 607-609.
    [16] Elghanian, R.; Storhoff, J.; Mucic, R.; Letsinger, R.; Mirkin, C. Selective colorimetric detection of polynucleotidesbased on the distance-dependent opticalproperties of gold nanoparticles [J]. Science, 1997, 277(5329): 1078-1081.
    [17] Storhoff, J.; Lazarides, A.; Mirkin, C.; Schatz, G. What Controls the Optical Properties of DNA -Linked Gold Nanoparticle Assemblies? [J]. J. Am. Chem. Soc., 2000, 122(19): 4640-4650.
    [18] Dwight S. Seferos, Chad A. Mirkin. Nano-Flares: Probes for Transfection and mRNA Detection in Living Cells [J]. J. Am. Chem. Soc., 2007, 129(50): 15477-15479.
    [19] Andrew E. Prigodich, Dwight S. Seferos, Matthew D. Massich, David A. Giljohann, Brandon C. Lane, and Chad A. Mirkin. Nano-flares for mRNA Regulation and Detection [J]. ACS Nano, 2009, 3(8): 2147–2152.
    [20] Dan Zheng, Dwight S. Seferos, David A. Giljohann, Pinal C. Patel, and Chad A. Mirkin. Aptamer Nano-flares for Molecular Detection in Living Cells [J]. Nano Letters, 2009, 9(9): 3258-3261.
    [21] Nitin Nitin, David J. Javier, and Rebecca Richards-Kortum. Oligonucleotide-Coated Metallic Nanoparticles as a Flexible Platform for Molecular Imaging Agents [J]. Bioconjugate Chem., 2007, 18: 2090-2096.
    [22] David J. Javier, Nitin Nitin, Matthew Levy, Andrew Ellington, and Rebecca Richards-Kortum. Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging [J]. Bioconjugate Chem., 2008, 19: 1309-1312.
    [23] Young-wook Jun, Sassan Sheikholeslami, Daniel R. Hostetter, Cheryl Tajon, Charles S. Craik, and A. Paul Alivisatos. Continuous imaging of plasmon rulersin live cells reveals early-stage caspase-3 activation at the single-molecule level [J]. Proc Natl Acad Sci USA, 2009, 106(42): 17735-17740.
    [24] Anne Hamilton, Gabriel Hortobagyi. Chemotherapy: What progress in the last 5 years [J]. Journal of Clinical Oncology, 2005, 23(8): 1760-1775.
    [25] Mukherjee P, Bhattacharya R, Wang P, et al. Antiangiogenic properties of gold nanoparticles [J]. Clin Cancer Res, 2005, 11(9): 3530-3534.
    [26] Song M, Wang X, Li J, et al. Effect of surface chemistry modification of functional gold nanoparticles on the drug accumulation of cancer cells [J]. J Biomed Mater Res A, 2008, 86(4): 942-946.
    [27] Mahmood M, Casciano DA, Mocan T, et al. Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines [J]. J Appl Toxicol, 2010, 30(1): 74-83.
    [28] Agasti SS, Chompoosor A, You CC, et al. Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles [J]. J. Am. Chem. Soc., 2009, 131(16): 5728-5729.
    [29] Jin Y, Gao X. Spectrally Tunable Leakage-Free Gold Nanocontainers [J]. J. Am. Chem. Soc., 2009, 131(49): 17774-17776.
    [30] Yavuz MS, Cheng Y, Chen J. Gold nanocages covered by smart polymers for controlled release with near-infrared light [J]. Nature materials, 2009, 8(12): 935-939.
    [31] Dongkyu Kim, Yong Yeon Jeong,and Sangyong Jon. A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer [J]. ACS Nano, 2010, 4(7): 3689-3696.
    [32] Patrick O'Neal, Leon R. Hirsch, N. J. Halas et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles [J]. Cancer Letters, 2004, 209(2): 171-176.
    [33] Vladimir P. Zharov, Elena N. Galitovskaya, Carl Johnson et al.. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy [J]. Lasers in Surgery and Medicine, 2005, 37(3): 219-226.
    [34] Ivan H. El-Sayed, Xiaohua Huang, Mastofa A. El2Sayed. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles [J]. Cancer Letters, 2006, 239(1): 1-7.
    [35] Melancon MP, Lu W, Yang Z, et al.. In vitro and in vivo targeting of hollow goldnanoshells directed at epidermal growth factor receptor for photothermal ablation therapy [J]. Mol Cancer Ther, 2008, 7(6): 1730-1739.
    [36] S.T. Wang, K. J. Chen, T. H. Wu, H. Wang, W. Y. Lin, M. Ohashi,P. Yu. Chiou, H. R. Tseng. Photothermal Effects of Supramolecularly Assembled Gold Nanoparticles for the Targeted Treatment of Cancer Cells [J]. Angew. Chem. Int. Ed., 2010, 49: 1-6.
    [37] Visaria RK, Griffin RJ, Williams BW, et al.. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery [J]. Mol Cancer Ther, 2006, 5(4): 1014-1020.
    [38] Ren L, Huang XL, Zhang B, et al.. Cisplatin-loaded Au-Au2S nanoparticles for potential cancer therapy: Cytotoxicity, in vitro carcinogenicity, and cellular uptake [J]. J Biomed Mater Res A, 2008, 85(3): 787-796.
    [39] Ryan Huschka, Oara Neumann,Aoune Barhoumi,Naomi J. Halas. Visualizing Light-Triggered Release of Molecules Inside Living Cells [J]. Nano Lett., 2010, 10(10):4117-4122.
    [40] Balogh L, Nigavekar SS, Nair BM, et al. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models [J]. Nanomedicine, 2007, 3(4): 281-296.
    [41] Chithrani BD, Chan WC. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes [J]. Nano Letters, 2007, 7(6): 1542-1550.
    [42] Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage[J]. Small, 2009, 5(18): 2067-2076.
    [43] Cho WS, Kim S, Han BS, Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles [J]. Toxicol Lett, 2009, 191(1):96-102.
    [44] Hong Ying Jia, Yang Liu, Xue Ji Zhang, Lu Han, Li Bo Du, Qiu Tian, Yuan Chao Xu. Potential Oxidative Stress of Gold Nanoparticles by Induced-NO Releasing in Serum [J]. J. Am. Chem. Soc., 2009, 131: 40–41.
    [45] Bin Kang, Megan A. Mackey, and Mostafa A. El-Sayed. Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis [J]. J. Am. Chem. Soc., 2010, 132: 1517-1519.
    [46] Tyagi S; Kramer F R. Molecular beacons: Probes that fluoresce uponhybridization [J]. Nat. Biotechnol., 1996, 14(3): 303-308.
    [47] Timothy J, Drake.; Weihong, Tan. Molecular Beacon DNA Probes and their Bioanalytical Applications [J]. Applied Spectroscopy, 2004, 58(9): 269-279.
    [48] O. Noya; M. E. Patarroyo; F. Guzman; B. A. De Noya. Immunodiagnosis of Parasitic Diseases with Synthetic Peptides [J]. Curr. Protein Peptide Sci., 2003, 4(4): 299-308.
    [49] B, Solomon. Immunization Against Alzheimer’s Disease and Other Neurodegenerative Disorders [M]. 2003, 11.
    [50] J. Perlette; J. Li; X. Fang; S. Schuster, J. Lou; W. Tan. Novel DNA probes probes for detection and quantification of protein molecules [J]. Rev. Anal. Chem., 2002, 21(21): 1-14.
    [51] A. Tsourkas; G. Bao. Shedding light on health and disease using molecular beacons [J]. Brief in Func Gen and Pro, 2003, 1(4): 372-384.
    [52] K. Wang; J. Li; X. Fang; S. Schuster; M. Vicens; S. Kelley; H. Lou; J. J. Li; T. Beck; R. Hogrefe; W. Tan. [M]. Biomed. Photonics Handbook, 2003, 3(57): 57.
    [53] X. Fang; X. Liu; S. Schuster; W. Tan. Designing a Novel Molecular Beacon for Surface-Immobilized DNA Hybridization Studies [J]. J. Am. Chem. Soc., 1999, 121(12): 2921-2922.
    [54] N. Hamaguchi; A. Ellington; M. Stanton. Aptamer beacons for the direct detection of proteins [J]. Anal. Biochem., 2001, 294(2): 126-131.
    [55] J. J. Li; X. Fang ; W. Tan. Biochem. Molecular aptamer beacons for real-time protein recognition [J]. Biophys. Res. Commun., 2002, 292(1): 31-40.
    [56] M. Rajendran; A. D. Ellington. In vitro selection of molecular beacons [J]. Nucl. Acids Res., 2003, 31(19): 5700-5713.
    [57] Molenaar C et al. Linear 2' O-Methyl RNA probes for the visualization of RNA in living cells [J]. Nucleic Acids Res, 2001, 29: e89.
    [58] Santangelo PJ et al. Direct visualization of mRNA colocalization with mitochondria in living cells using molecular beacons [J]. J Biomed Opt, 2005, 10: 44025.
    [59] Tyagi S et al. Imaging native b-actin mRNA in motile fibroblasts [J]. Biophys J, 2004, 87: 4153-4162.
    [60]周海清,沈鹤柏,陈新斌等.分子信标的原理、应用及其研究进展[J].光谱实验室, 2004, 21(3): 417-422.
    [61] Dubertret B; Calame M; Libchaber A. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nat. Biotechnol., 2001, 19(4): 365-370.
    [62] Dustin J. Maxwell; Jason R. Taylor; Shuming Nie. Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules [J]. J. Am. Chem. Soc., 2002, 124(32): 9606-9612.
    [63] Shiping Song, Zhiqiang Liang, Juan Zhang, Lihua Wang, Genxi Li, and Chunhai Fan. Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis [J]. Angew. Chem. Int. Ed., 2009, 48(46): 8670–8674.
    [64]李军,王柯敏,谭蔚泓等.分子信标荧光探针用于抑癌基因ING1表达产物的定量测定[J].高等学校化学学报, 2004, 25(3): 421-424.
    [65] XH Peng, ZH Cao, JT Xia, GW Carlson, MM Lewis, WC Wood, and L Yang.Real-time Detection of Gene Expression in Cancer Cells Using Molecular Beacon Imaging: New Strategies for Cancer Research [J]. Cancer Res., 2005, 65(5): 1909-1917.
    [66] Zhao J et al.. Primary application study in early diagnosis of bladder cancer by survivin molecular beacons [J]. Urology, 2007, 70: 60-64.
    [67] Drake TJ et al. Stochasticity of manganese superoxide dismutase mRNA expression in breast carcinoma cells by molecular beacon imaging [J]. Chembiochem, 2005, 6: 2041-2047.
    [68] Lo PC et al. Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers [J]. J Med Chem, 2009, 52: 358-368.
    [69] Tsourkas. A.; Bao, G. Spectroscopic features of dual fluorescence/luminescence resonance energy-transfer molecular beacons [J]. Anal. Chem., 2003, 75(15), 3697-3703.
    [70] Santangelo, P.J.; Bao, G. Dual FRET molecular beacons for mRNA detection in living cells [J]. Nucl. Acids Res., 2004, 32(6): 57-65.
    [71] Pinpin Sheng; Weihong Tan. Design of a novel molecular beacon: modification of the stem with artificially genetic alphabet [J]. Chem. Commun., 2008, 41: 5128-5130.
    [72] Y-W Lin ; H-T Chang. Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon [J]. Nucl. Acids Res., 2008,36(19): 123-128.
    [73] Milan N. Stojanovic; Donald W. Landry.Catalytic Molecular Beacons [J]. Chem. Biochem., 2001, 2(6): 411-415.
    [74] Bratu DP ; Cha B J; Mhlanga M M , et al. Visualizing the distribution and transport of mRNAs in living cells [J]. Proc. Natl. Acad. Sci. USA, 2003, 100 (23): 13308-13313.
    [75] J. Chen, J. F. Lovell, P. C. Lo, K. Stefflova, M. Niedre, B. C. Wilson, G. Zheng. A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production [J]. Photochem. Photobiol. Sci., 2008, 7: 775-781.
    [76] J. F. Lovell, J. Chen, E. Huynh, M. T. Jarvi, B. C. Wilson, G. Zheng. Facile Synthesis of Advanced Photodynamic Molecular Beacon Architectures [J]. Bioconjugate Chem., 2010, 21: 1023-1025.
    [77] Yuan Gao, Guangming Qiao, Linhai Zhuo, Na Li, Ying Liu, Bo Tang. A Tumor mRNA-mediated Bi-Photosensitizer Molecular Beacon as an Efficient Imaging and Photosensitizing Agent [J]. Chem. Commun., 2011, advance article. DOI: 10.1039/C1CC10557D.
    [78] Dwight S. Seferos, Andrew E. Prigodich, David A. Giljohann, Pinal C. Patel, and Chad A. Mirkin. Polyvalent DNA Nanoparticle Conjugates Stabilize Nucleic Acids [J]. Nano Letters, 2009, 9(1): 308-311.
    [79] Andrew E. Prigodich, Ali H. Alhasan, and Chad A. Mirkin. Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles [J]. J. Am. Chem. Soc., 2011, 133: 2120–2123.
    [80] (英)R.J.B.金.癌生物学[M].北京:科学出版社,2002.
    [81] P. P. Mumbarkar, A. S. Raste, M. S. Ghadge. Significance of tumor markers in lung cancer [J]. Indian Journal of Clinical Biochemistry, 2006, 21 (1): 173-176.
    [82]董兴辉,丁振灿,张秀华.CEA、CA19 - 9、CA242、CA72 - 4在大肠癌中的应用价值探讨[J].放射免疫学杂志,2005, 18 (2): 127-128.
    [83]谢翠华,陆亚平.CA153在乳腺癌诊断和肿瘤分期中的应用[J].实用心脑肺血管病杂志, 2008, 16(11): 44-45.
    [84] CA125标志物与卵巢癌[J].国外医学临床生物化学与检验学分册, 1999, 20(6): 1.
    [85]汪欣,魏建威,赵素萍.甲胎蛋白异质体在肝细胞癌诊断中的应用研究[J].检验医学与临床, 2011, 8(3): 274-276.
    [86]刘智勇.血清PSA及其相关形式与前列腺疾病关系的研究[D].上海:第二军医大学, 2006.
    [87] J. G. Paez, P. A. J?nne, J. C. Lee, S. Tracy, H. Greulich, S. Gabriel, P. Herman, F. J. Kaye, N. Lindeman, T. J. Boggon, K. Naoki, H. Sasaki, Y. Fujii, M. J. Eck, W. R. Sellers, B. E. Johnson and M. Meyerson. EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy [J]. Science, 2004, 304: 1497-1500.
    [88] R. I. Nicholson, J. M. W. Gee and M. E. Harper. EGFR and cancer prognosis [J]. European Journal of Cancer, 2001, 37: 9-15.
    [89] R. Valtola, P. Salven, P. Heikkil?, J. Taipale, H. Joensuu, M. Rehn, T. Pihlajaniemi, H. Weich, R. deWaal and K. Alitalo. VEGFR-3 and Its Ligand VEGF-C Are Associated with Angiogenesis in Breast Cancer [J]. American Journal of Pathology, 1999, 154: 1381-1390.
    [90] S. Kenji, K. Hajime, Y. Koji, K. Kazuhiko, U. Yoshihide, M. Koichi, A. Masaaki, S. Yasuyuki, T. Arimichi, Y. Yoshio, S. Seiji. Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer [J]. Cancer Science, 2004, 95(4): 328–333.
    [91] J. Drevs1, U. Zirrgiebel, C. I. M. Schmidt-Gersbach, K. Mross, M. Medinger, L. Lee, J. Pinheiro, J. Wood, A. L. Thomas, C. Unger, A. Henry, W. P. Steward, D. Laurent, D. Lebwohl, M. Dugan and D. Marmé. Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials [J]. Ann Oncol, 2005, 16(4): 558-565.
    [92] D. R. Anderson, A. Grillo-López, C. Varns, K. S. Chambers, N. Hanna. Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin's B-cell lymphoma [J]. Biochem Soc Trans., 1997, 25(2): 705-708.
    [93] C. Gilles, M. Polette, J. Piette, C. Munaut, E. W. Thompson, P. Birembaut, J. M. Foidart. High level of MT-MMP expression is associated with invasiveness of cervical cancer cells [J]. International Journal of Cancer, 1996, 65(2): 209–213.
    [94] S. B. Kondapaka, R. Fridman, K. B. Reddy. Epidermal growth factor andamphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells [J]. International Journal of Cancer, 1997, 70(6): 722–726.
    [95] N. B. Liabakk, I. Talbot, R. A. Smith, K. Wilkinson, and F. Balkwill. Matrix Metalloprotease 2 (MMP-2) and Matrix Metalloprotease 9 (MMP-9) Type IV Collagenases in Colorectal Cancer [J]. Cancer Res., 1996, 56: 190-196.
    [96] D. A. Fishman, Y. Liu, S. M. Ellerbroek, and M. S. Stack. Lysophosphatidic Acid Promotes Matrix Metalloproteinase (MMP) Activation and MMP-dependent Invasion in Ovarian Cancer Cells [J]. Cancer Res., 2001, 61: 3194-3199.
    [97] K. D. Tew, A. Monks, L. Barone, D. Rosser, G. Akerman, J. A. Montali, J. B. Wheatley, D. E. Schmidt. Glutathione-associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program [J]. Mol. Pharmacol., 1996, 50: 149–159.
    [98] B. Taback, A. D. Chan, C. T. Kuo, P. J. Bostick, H. J. Wang, A. E. Giuliano and D. S. B. Hoon. Detection of Occult Metastatic Breast Cancer Cells in Blood by a Multimolecular Marker Assay [J]. Cancer Res., 2001, 61: 8845-8850.
    [99] D. Sidransky. Nucleic acid-based methods for the detection of cancer [J]. Science, 1997, 278: 1054-1058.
    [1] D. Morelli, S. Menard, M. I. Colnaghi, A. Balsari. Oral Administration of Anti-Doxorubicin Monoclonal Antibody Prevents Chemotherapy-induced Gastrointestinal Toxicity in Mice [J]. Cancer Res., 1996, 56: 2082-2085.
    [2] Daniel D. Von Hoff, M.D.; Maxwell W. Layard, Ph.D.; Peter Basa, B.S.; Hugh L. Davis, Jr., M.D.; Ann L. Von Hoff, M.A.; Marcel Rozencweig, M.D.; and Franco M. Muggia, M.D. Risk Factors for Doxorubicin-lnduced Congestive Heart Failure [J]., Ann. Intern. Med., 1979, 91: 710-717.
    [3] R. Tong , J. Cheng. Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles [J]. Angew. Chem. Int. Ed., 2008, 47: 4830-4834.
    [4] A. P. Griset, J. Walpole, R. Liu, A. Gaffey, Y. L. Colson, M. W. Grinstaff. Expansile Nanoparticles: Synthesis, Characterization, and in Vivo Efficacy of an Acid-Responsive Polymeric Drug Delivery System [J]. J. Am. Chem. Soc., 2009, 131: 2469-2471.
    [5] H. Cabral, M. Nakanishi, M. Kumagai, W. D. Jang , N. Nishiyama, K. Kataoka. A Photo-Activated Targeting Chemotherapy Using Glutathione Sensitive Camptothecin-Loaded Polymeric Micelles [J]. Pharm. Res., 2009, 26: 82-92.
    [6] Y. Lee, T. Ishii, H. Cabral, H. J. Kim, J. H. Seo, N. Nishiyama, H. Oshima, K. Osada, K. Kataoka. Charge-Conversional Polyionic Complex Micelles-Efficient Nanocarriers for Protein Delivery into Cytoplasm [J]. Angew. Chem. Int. Ed., 2009, 48: 5309-5312.
    [7] E. Soussan, S. Cassel, M. Blanzat, I. Rico-Lattes. Drug Delivery by Soft Matter: Matrix and Vesicular Carriers [J]. Angew. Chem. Int. Ed., 2009, 48: 274-288.
    [8] J. Chen, S. Chen, X. Zhao, L. V. Kuznetsova, S. S. Wong, I. Ojima. Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery [J]. J. Am. Chem. Soc., 2008, 130: 16778-16785.
    [9] Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X.Y. Chen, Q.W. Yang, D. W. Felsher, H. Dai. Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy [J]. Angew. Chem. Int. Ed. 2009, 48, 7668-7672.
    [10] K. C. Weng, C. O. Noble, B.P. Sternberg, F. F. Chen, D. C. Drummond, D. B.Kirpotin, D. H.Wang, Y. K. Hom, B. Hann, J. W. Park. Targeted Tumor Cell Internalization and Imaging of Multifunctional Quantum Dot-Conjugated Immunoliposomes in Vitro and in Vivo [J]. Nano Lett., 2008, 8: 2851-2857.
    [11] L. Linderoth, G. H. Peters, R. Madsen, T. L. Andresen. Drug Delivery by an Enzyme-Mediated Cyclization of a Lipid Prodrug with Unique Bilayer-Formation Properties [J]. Angew. Chem. Int. Ed., 2009, 48: 1823-1826.
    [12] D. V. Volodkin, A. G. Skirtach, H. Mo¨hwald. Near-IR Remote Release from Assemblies of Liposomes and Nanoparticles [J]. Angew. Chem. Int. Ed., 2009, 48: 1807-1809.
    [13] D. K. Chang, C. Y. Chiu, S. Y. Kuo, W. C. Lin, A. Lo, Y. P. Wang, P. C. Li, H. C. Wu. Antiangiogenic Targeting Liposomes Increase Therapeutic Efficacy for Solid Tumors [J]. J. Biol. Chem. 2009, 284: 12905-12916.
    [14] L. Linderoth, P. Fristrup, M. Hansen, F. Melander, R. Madsen, T. L. Andresen, G. H. Peters. Mechanistic Study of the sPLA2-Mediated Hydrolysis of a Thio-ester Pro Anticancer Ether Lipid [J]. J. Am. Chem. Soc., 2009, 131: 12193-12200.
    [15] M. Kester, Y. Heakal, T. Fox, A. Sharma, G. P. Robertson, T. T. Morgan, E. I. Altinoglu, A. Tabakovic, M. R. Parette, S. M. Rouse, V. Ruiz-Velasco, J. H. Adair. Calcium Phosphate Nanocomposite Particles for In Vitro Imaging and Encapsulated Chemotherapeutic Drug Delivery to Cancer Cells [J]. Nano Lett., 2008, 8: 4116-4121.
    [16] C. Farokhzad, S. Jon, A. Khademhosseini, T. N. Tran, D. A. Lavan, R. Langer. Nanoparticle-Aptamer Bioconjugates: A New Approach for Targeting Prostate Cancer Cells [J]. Cancer Res., 2004, 64: 7668-7672.
    [17] O. C.Farokhzad, J. Cheng, B. A. Teply, I. Sherifi, S. Jon, P. W. Kantoff, J. P. Richie, R. Langer. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo [J]. Proc. Natl. Acad. Sci. USA, 2006, 103: 6315-6320.
    [18] V. Bagalkot, O. C. Farokhzad, R. Langer, S. Jon. An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform [J]. Angew. Chem. Int. Ed. 2006, 45: 8149-8152.
    [19] V. Bagalkot, L. F. Zhang, E. L. Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, O. C. Farokhzad. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer [J]. Nano Lett., 2007, 7: 3065-3070.
    [20] C. Pestourie, B. Tavitian, F. Duconge. Aptamers against extracellular targets forin vivo applications [J]. Biochimie, 2005, 87: 921-930.
    [21] B. J. Hicke, A.W. Stephens, T. Gould, Y. F. Chang, C. K. Lynott, J.Heil, S. Borkowski, C. S. Hilger, G. Cook, S. Warren, P. G. Schmidt. Tumor targeting by an aptamer [J]. J. Nucl. Med., 2006, 47: 668-678.
    [22] J. O. McNamara 2nd, E. R. Andrechek, Y. Wang, K. D. Viles, R. E.Rempel, E. Gilboa, B. A. Sullenger, P. H.Giangrande. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras [J]. Nat. Biotechnol., 2006, 24: 1005-1015.
    [23] T. C. Chu, J. W. Marks 3rd, L. A. Lavery, S. Faulkner, M. G. Rosenblum, A. D. Ellington, M. Levy. Aptamer: Toxin Conjugates that Specifically Target Prostate Tumor Cells [J]. Cancer Res., 2006, 66: 5989-5992.
    [24] D. Sidransky. Nucleic Acid-Based Methods for the Detection of Cancer [J]. Science, 1997, 278: 1054-1058.
    [25] P. Fan, A. K. Suri, R.Fiala, D. Live, D. J. Patel. Molecular recognition in the FMN-RNA aptamer complex [J]. J. Mol. Biol., 1996, 258: 480-500.
    [26] J. B. Chaires, J. E. Herrera, M. J. Waring. Preferential binding of daunomycin to 5'ATCG and 5'ATGC sequences revealed by footprinting titration experiments [J]. Biochemistry, 1990, 29: 6145-6153.
    [27] C. A. Frederick, L. D. Williams, G. Ughetto, G. A. van der Marel, J. H. van Boom, A. Rich, A. H. Wang. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin [J]. Biochemistry, 1990, 29: 2538-2549.
    [28] P. Conlon, C.Y. J. Yang, Y. R. Wu, Y. Chen, K. Martinez, Y. Kim, N. Stevens, A. A. Marti, S. Jockusch, N. J. Turro, W. H. Tan. Pyrene excimer signaling molecular beacons for probing nucleic acids [J]. J. Am. Chem. Soc., 2008, 130: 336-342.
    [29] R. Jeselsohn, N. E. Brown, L. Arendt, I. Klebba, M. G. Hu, C. Kuperwasser, P. W. Hinds. Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis [J]. Cancer Cell, 2010, 17: 65-76.
    [30] S. Tyagi, D. P. Bratu, F. R. Kramer. Multicolor molecular beacons for allele discrimination [J]. Nat. Biotechnol., 1998, 16: 49-53.
    [31] B. Dubertret, M. Calame, A. J. Libchaber. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nat. Biotechnol., 2001, 19: 365-370.
    [32] C. Fan, S. Wang, J.W. Hong, G. C. Bazan, K.W. Plaxco, A. J. Heeger. Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to goldnanoparticles [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 6297-6301.
    [33] D. J. Maxwell, J. R. Taylor, S. Nie. Self-assembled nanoparticle probes for recognition and detection of biomolecules [J]. J. Am. Chem. Soc., 2002, 124: 9606-9612.
    [34] N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. R. Lytton-Jean, M. S. Han, C. A. Mirkin. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation [J]. Science, 2006, 312: 1027-1030.
    [35] D. S. Seferos, D. A. Giljohann, H. D. Hill, A. E. Prigodich, C. A. Mirkin. Nano-Flares: Probes for Transfection and mRNA Detection in Living Cells [J]. J. Am. Chem. Soc., 2007, 129: 15477-15479.
    [36] D. S. Seferos, D. A. Giljohann, N. L. Rosi, C. A. Mirkin. Locked nucleic acid-nanoparticle conjugates [J]. ChemBioChem, 2007, 8: 1230-1232.
    [37] D. S. Seferos, A. E. Prigodich, D. A. Giljohann, P.C. Patel, C. A. Mirkin. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids [J]. Nano Lett., 2009, 9: 308-311.
    [38] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature, 1996, 382: 607-609.
    [39] S. J. Park, T. A. Taton, C. A. Mirkin. Array-based electrical detection of DNA with nanoparticle probes [J]. Science, 2002, 295: 1503-1506.
    [40] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science, 1997, 277: 1078-1081.
    [41] K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan. Preparation and characterization of Au colloid monolayers [J]. Anal. Chem., 1995, 67: 735-743.
    [42] L. M. Demers, C. A. Mirkin, R. C. Mucic, R. A. Reynolds, R. L. Letsinger, R. Elghanian, G. Viswanadham. A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles [J]. Anal. Chem. 2000, 72: 5535-5541.
    [43] Y. Shen, H. Tang, Y. Zhan, E. Van Kirk, W. J. Murdoch. Degradable poly(beta-amino ester) nanoparticles for cancer cytoplasmic drug delivery [J]. Nanomedicine, 2009, 5: 192-201.
    [1] B. Taback, A. D. Chan, C. T. Kuo, P. J. Bostick, H. J. Wang, A. E. Giuliano, D. S. B. Hoon. Detection of Occult Metastatic Breast Cancer Cells in Blood by a Multimolecular Marker Assay: Correlation with Clinical Stage of Disease [J]. Cancer Res., 2001, 61: 8845-8850.
    [2] P. J. Santangelo, B. Nix, A. Tsourkas, G. Bao. Dual FRET Molecular Beacons for mRNA Detection in Living Cells. Nucleic Acids Research [J]. Nucleic Acids Research, 2004, 32(6): e57.
    [3] D. S. Seferos, D. A. Giljohann, H. D. Hill, A. E. Prigodich, C. A. Mirkin. Nano-flares: Probes for Transfection and mRNA Detection in Living Cells [J]. J. Am. Chem. Soc., 2007, 129: 15477-15479.
    [4] D. Sidransky. Nucleic Acid-Based Methods for the Detection of Cancer [J]. Science, 1997, 278: 1054-1058.
    [5] P. J. Bostick, S. Chatterjee, D. D. Chi, K. T. Huynh, A. E. Giuliano, R. Cote, D. S. Hoon. Limitations of Specific Reverse-transcriptase Polymerase Chain Reaction Markers in the Detection of Metastases in the Lymph Nodes and Blood of Breast Cancer Patients [J]. J. Clin. Oncol., 1998, 16: 2632-2640.
    [6] T. Sarantou, D. D. Chi, D. A. Garrison, A. J. Conrad, P. Schmid, D. L. Morton, D. S. Hoon. Melanoma-associated Antigens as Messenger RNA Detection Markers for Melanoma [J]. Cancer Res., 1997, 57: 1371-1376.
    [7] W. Symmans, J. Liu, D. Knowles, G. Inghirami. Breast Cancer Heterogeneity: Evaluation of Clonality in Primary and Metastatic Lesions [J]. Hum. Pathol., 1995, 26: 210-216.
    [8] S. Braun, F. Hepp, H. Sommer, K. Pantel. Tumorantigen Heterogeneity of Disseminated Breast Cancer Cells: Implications for Immunotherapy of Minimal Residual Disease [J]. Int. J. Cancer, 1999, 84: 1-5.
    [9] R. Jung, K. Peterson, W. Kruger, M. Wolf, C. Wagener, A. Zander. Detection of Micrometastasis by Cytokeratin 20 RT-PCR is Limited Due to Stable Background Transcription in Granulocytes [J]. Br. J. Cancer, 1999, 81: 870-873.
    [10]陈国珍,黄贤智,许金钩等.荧光分析法(第二版)[M].北京:科学出版社, 1990:93-134.
    [11] D. Hernández-Santos, M. B. González-García, A. Costa-García. Metal-nanoparticles based electroanalysis [J]. Electroanalysis, 2002, 14(18):1225-1235.
    [12] D. J. Javier, N. Nitin, M. Levy, A. Ellington. Aptamer-Targeted Gold Nanoparticles as Molecular-Specific Contrast Agents for Reflectance Imaging [J]. Bioconjugate Chem., 2008, 19: 1309-1312.
    [13] B. Kang, M. A. Mackey, M. A. El-Sayed. Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy [J]. J. Am. Chem. Soc., 2010, 132: 1517-1519.
    [14] Y. Song, X. Y. Xu, K. W. MacRenaris, X. Q. Zhang, C. A. Mirkin, T. J. Meade. Multimodal Gadolinium-Enriched DNA Gold Nanoparticle Conjugates for Cellular Imaging [J]. Angew. Chem. Int. Ed., 2009, 48: 9143-9147.
    [15] N. Nitin, D. J. Javier, R. Richards-Kortum. Oligonucleotide-coated Metallic Nanoparticles as a Flexible Platform for Molecular Imaging agents [J]. Bioconjugate Chem., 2007, 18: 2090-2096.
    [16] D. Kim, Y. Y. Jeong, S. Jon. A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer [J]. ACS Nano, 2010, 4: 3689-3696.
    [17] R. Huschka, O. Neumann, A. Barhoumi, N. J. Halas. Visualizing Light-Triggered Release of Molecules Inside Living Cells [J]. Nano Lett., 2010, 10: 4117-4122.
    [18] D. A. Giljohann, D. S. Seferos, P. C. Patel, J. E. Millstone, N. L. Rosi, C. A. Mirkin. Oligonucleotide Loading Determines Cellular Uptake of DNA-Modified Nanoparticles [J]. Nano Lett., 2007, 7: 3818-3821.
    [19] D. S. Seferos, A. E. Prigodich, D. A. Giljohann, P. C. Patel, C. A. Mirkin. Polyvalent DNA Nanoparticle Conjugates Stabilize Nucleic Acids [J]. Nano Lett., 2009, 9: 308-311.
    [20] J. Liu, Y. Lu. A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles [J]. J. Am. Chem. Soc., 2003, 125: 6642-6643.
    [21] C. D. Medley, J. E. Smith, Z. Tang, Y. Wu, S. Bamrungsap, W. H. Tan. Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells [J]. Anal. Chem., 2008, 80: 1067-1072.
    [22] L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization [J]. J. Am. Chem. Soc., 2000, 122: 9071-9077.
    [23] D. G. Thompson, A. Enright, K. Faulds, W. E. Smith, D. Graham. UltrasensitiveDNA Detection Using Oligonucleotide-Silver Nanoparticle Conjugates [J]. Anal. Chem., 2008, 80: 2805-2810.
    [24] J. M. Nam, C. S. Thaxton, C. A. Mirkin. Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins [J]. Science, 2003, 301: 1884-1886.
    [25] N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. R. Lytton-Jean, M. S. Han, C. A. Mirkin. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation [J]. Science, 2006, 312: 1027-1030.
    [26] D. S. Seferos, D. A. Giljohann, N. L. Rosi, C. A. Mirkin. Locked Nucleic Acid–Nanoparticle Conjugates [J]. ChemBioChem, 2007, 8: 1230-1232.
    [27] X. H. Peng, Z. H. Cao, J. T. Xia, G. W. Carlson, M. M. Lewis, W. C. Wood, L. Yang. Real-time Detection of Gene Expression in Cancer Cells Using Molecular Beacon Imaging: New Strategies for Cancer Research [J]. Cancer Res., 2005, 65: 1909-1917.
    [28] R. Jeselsohn, N. E. Brown, L. Arendt, I. Klebba, M. G. Hu, C. Kuperwasser, P. W. Hinds. Cyclin D1 Kinase Activity Is Required for the Self-Renewal of Mammary Stem and Progenitor Cells that Are Targets of MMTV-ErbB2 Tumorigenesis [J]. Cancer Cell, 2010, 17: 65-76.
    [29] K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan. Preparation and Characterization of Au Colloid Monolayers [J]. Anal. Chem., 1995, 67: 735-743.
    [30] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff. A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials [J]. Nature, 1996, 382: 607-609.
    [31] S. J. Park, T. A. Taton, C. A. Mirkin. Array-Based Electrical Detection of DNA with Nanoparticle Probes [J]. Science, 2002, 295: 1503-1506.
    [32] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles [J]. Science, 1997, 277: 1078-1081.
    [33] L. M. Demers, C. A. Mirkin, R. C. Mucic, R. A. Reynolds, R. L. Letsinger, R. Elghanian, G. Viswanadham. A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles [J]. Anal. Chem., 2000, 72: 5535-5541.
    [34] S. Song, Z. Q. Liang, J. Zhang, L. H. Wang, G. X. Li, C. H. Fan. Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNAAnalysis [J]. Angew. Chem. Int. Ed., 2009, 48: 8670–8674.
    [35] D. S. Seferos, A. E. Prigodich, D. A. Giljohann, P. C. Patel, C. A. Mirkin. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids [J]. Nano Lett., 2009, 9: 308-311.
    [36] C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, A. J. Heeger. Beyond Superquenching: Hyper-efficient Energy Transfer from Conjugated Polymers to Gold Nanoparticles [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 6297-6301.
    [37] D. J. Maxwell, J. R. Taylor, S. Nie. Self-assembled nanoparticle probes for recognition and detection of biomolecules [J]. J. Am. Chem. Soc., 2002, 124: 9606-9612.
    [38] W. H. Hoffman, S. Biade, J. T. Zilfou, J. Chen, M. Murphy. Transcriptional Repression of the Anti-apoptoticsurvivin Gene by Wild Type p53 [J]. J Biol Chem, 2002, 277: 3247-3257.
    [39] Y. L. Jia, G. R. Zhang, Y. L. Liu, Y. X. Hu, A. J. Liu. Impact of Cartilage Polysaccharide on Expression of CyclinD1 and p21 in Breast Cancer Cells [J]. China Cancer, 2007, 16: 436-438.
    [1] D. Pissuwan, S. Valenzuela, M. Cortle. Prospects for gold nanorod particles in diagnostic and therapeutic applications [J]. Biotechnol. Gen. Eng. Rev., 2008, 25, 93-112.
    [2] M. C. Daniel, D. Astruc. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev., 2004, 104(1), 293-346.
    [3] C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis [J]. J. Mater. Chem., 2002, 12: 1765-1770.
    [4] C. Johnson, E. Dujardin, S. Davis, C.Murphy, S. Mann. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis [J]. Journal of Materials Chemistry, 2002, 12, 1765-1770.
    [5] B. Nikoobakht, M. El-Sayed. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chem. Mater., 2003, 15, 1957-1962.
    [6] T. Hauck, A.Ghazani, W. Chan. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells [J]. Small, 2008, 4(1): 153-159.
    [7] B. C. Wilson, M. S. Patterson. The physics, biophysics and technology of photodynamic therapy [J]. Phys. Med. Biol., 2008, 53: R61-R109.
    [8] T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng. Photodynamic therapy [J]. J. Natl. Cancer Inst., 1998, 90: 889-905.
    [9] L. B. Josefsen, R. W. Boyle. Photodynamic therapy and the development of metal-based photosensitisers [J]. Met. Based Drugs, 2008, 276109-276133.
    [10] A. Vaidya, Y. Sun, T. Ke, E. Jeong, Z. Lu. Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment [J]. Magn. Reson. Med., 2006, 56: 761-767.
    [11] S. K. Pandey, A. L. Gryshuk, M. Sajjad, X. Zheng, Y. Chen, M. M. Abouzeid, J. Morgan, I. Charamisinau, H. A. Nabi, A. Oseroff, R. K. Pandey. Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy.A possible "see and treat" approach [J]. J. Med. Chem., 2005, 48: 6286-6295.
    [12] B. W. Henderson, D. A. Bellnier, W. R. Greco, A. Sharma, R. K. Pandey, L. A. Vaughan, K. R. Weishaupt, T. J. Dougherty. An in Vivo Quantitative Structure-Activity Relationship for a Congeneric Series of Pyropheophorbide Derivatives as Photosensitizers for Photodynamic Therapy [J]. Cancer Res., 1997, 57: 4000-4007.
    [13] H. Mojzisova, S. Bonneau, D. Brault. Structural and physico-chemical determinants of the interactions of macrocyclic photosensitizers with cells [J]. Eur. Biophys. J., 2007, 36: 943-953.
    [14] M. D. Savellano, T. Hasan. Photochemical targeting of epider- mal growth factor receptor: A mechanistic study [J]. Clin. Cancer Res., 2005, 11: 1658-1668.
    [15] S. K. Chang, I. Rizvi, N. Solban, T. Hasan. In Vivo Optical Molecular Imaging of Vascular Endothelial Growth Factor for Monitoring Cancer Treatment [J]. Clin. Cancer Res., 2008, 14: 4146-4153.
    [16] P. Mallikaratchy, Z. W. Tang, W. H. Tan. Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy [J]. ChemMedChem., 2008, 3: 425-428.
    [17] Y. Choi, J. R. McCarthy, R. Weissleder, C. H. Tung. Conjugation of a Photosensitizer to an Oligoarginine-Based Cell-Penetrating Peptide Increases the Efficacy of Photodynamic Therapy [J]. ChemMedChem., 2006, 1: 458-463.
    [18] K. Stefflova, H. Li, J. Chen, G. Zheng. Peptide-Based Pharmacomodulation of a Cancer-Targeted Optical Imaging and Photodynamic Therapy Agent [J]. Bioconjugate Chem., 2007, 18: 379-388.
    [19] G. Zheng, H. Li, M. Zhang, S. Lund-Katz, B. Chance, J. D. Glickson. Low-Density Lipoprotein Reconstituted by Pyropheophorbide Cholesteryl Oleate as Target-Specific Photosensitizer [J]. Bioconjugate Chem., 2002, 13: 392-396.
    [20] G. R. Reddy, M. S. Bhojani, P. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. E. L. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. A. Philbert, R. Kopelman, A. Rehemtulla, B. D. Ross. Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors [J]. Clin. Cancer Res., 2006, 12: 6677-6686.
    [21] J. Chen, K. Stefflova, M. J. Niedre, B. C. Wilson, B. Chance, J. D. Glickson, G. Zheng. Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation [J]. J. Am. Chem. Soc., 2004, 126: 11450-11451.
    [22] G. Zheng, J. Chen, K. Stefflova, M. Jarvi, H. Li, B. C. Wilson. Photodynamicmolecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation [J]. PNAS., 2007, 104: 8989-8994.
    [23] Y. Choi, R. Weissleder, C. H. Tung. Selective antitumor effect of novel protease-mediated photodynamic agent [J]. Cancer Res., 2006, 66: 7225-7229.
    [24] X. Zheng, U. W. Sallum, S. Verma, H. Athar, C. L. Evans, T. Hasan. Exploiting a bacterial drug-resistance mechanism: a light-activated construct for the destruction of MRSA [J]. Angew. Chem. Int. Ed., 2009, 48: 2148-2151.
    [25] J. Chen, J. F. Lovell, P. C. Lo, K. Stefflova, M. Niedre, B. C. Wilson, G. Zheng. A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production [J]. Photochem. Photobiol. Sci., 2008, 7: 775-781.
    [26] S. O. McDonnell, M. J. Hall, L. T. Allen, A. Byrne, W. M. Gallagher, D. F. O’Shea. Supramolecular Photonic Therapeutic Agents [J]. J. Am. Chem. Soc., 2005, 127: 16360-16361.
    [27] T. Tφring, R. Toftegaard, J. Arnbjerg, P. R. Ogilby, K. V. Gothelf. Reversible pH-Regulated Control of Photosensitized Singlet Oxygen Production Using a DNA i-Motif [J]. Angew. Chem. Int. Ed., 2010, 49: 7923-7925.
    [28] J. Chen, M. Jarvi, P. C. Lo, K. Stefflova, B. C. Wilson, G. Zheng. Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells [J]. Photochem. Photobiol. Sci., 2007, 6: 1311-1317.
    [29] Y. Koide, Y. Urano, A. Yatsushige, K. Hanaoka, T. Terai, T. Nagano. Design and Development of Enzymatically Activatable Photosensitizer Based on Unique Characteristics of Thiazole Orange [J]. J. Am. Chem. Soc., 2009, 131: 6058-6059.
    [30] T. Yogo, Y. Urano, A. Mizushima, H. Sunahara, T. Inoue, K. Hirose, M. Iino, K. Kikuchi, T. Nagano. Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer [J]. PNAS., 2008, 105: 28-32.
    [31] Z. Zhu, Z. W. Tang, J. A. Phillips, R. H. Yang, H. Wang, W. H. Tan. Regulation of singlet oxygen generation using single-walled carbon nanotubes [J]. J. Am. Chem. Soc., 2008, 130: 10856-10857.
    [32] L. Shi, B. Hernandez, M. Selke. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites [J]. J. Am. Chem. Soc., 2006, 128: 6278-6279.
    [33] Y. Liu, W. Chen, S. Wang, A. G. Joly. Mechanical perturbation-induced fluorescence change of green fluorescent protein [J]. Appl. Phys. Lett., 2008, 92: 043901-1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700