基于稀疏表示的光学遥感影像超分辨率重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像超分辨率重建是图像处理、摄影测量与遥感、计算机视觉等领域的一个经久不衰的研究主题。稀疏表示理论起源于视觉神经系统的研究,为图像处理提供了一个崭新的研究视角,近年来,已成为信号和图像处理领域的国际前沿和热点之一,引起学者的广泛关注。
     论文在国家科技基础条件平台“地球系统科学数据共享平台——长江三角洲科学数据共享平台”的支持下,以稀疏表示理论为指导,开展了其在光学遥感影像超分辨率重建中的应用方法研究,主要围绕稀疏表示理论中字典学习模型和算法、基于稀疏表示的遥感影像超分辨率重建模型和算法方面进行了深入研究。论文的主要研究内容与结论包括:
     (1)深入研究了遥感影像稀疏表示理论基础。阐述了稀疏表示理论的神经生理学背景,人类视觉系统的视觉特性为图像稀疏表示提供了直接生理依据,推动了图像稀疏表示理论的发展。分析了遥感影像的稀疏特性及其与超分辨率重建问题的关系,单幅遥感影像的超分辨率重建问题是典型的反问题,具有“不适定性”,通过引入稀疏先验约束,使得超分辨率重建问题可以稳定、唯一求解。探讨了稀疏先验约束的表达方法,深入研究了遥感影像的稀疏表示模型。分析了稀疏表示理论中字典的类型,分为基于解析式的字典和基于学习的字典。通过解析公式构造的字典,不需要矩阵乘法运算,具有快速的计算速度,而构造的原子较简单,自适应性较差。基于学习的字典,通过机器学习的方法,从训练样本中学习获得,具有较好的自适应性,能对各种特征的图像进行有效表示,但结构性较弱,计算复杂度较高。
     (2)深入研究了高、低分辨率字典对的学习方法。给出了一种联合字典对学习模型,通过将高、低分辨率字典进行链接,实现高、低分辨率字典对的同步学习。提出了一种基于MM (Majorization Minimization)方法的联合字典对学习算法,通过构造一个参数互相解耦的易于优化的代理函数,替代原来的参数互相耦合难以优化的目标函数,保证每一次迭代求解的值在局部范围内最优。研究了一种耦合学习字典对学习方法,通过在高、低分辨率特征块空间中分别学习高、低分辨率字典,保证了字典对具有相同的稀疏表示。在此基础上,提出了一种耦合稀疏字典对学习方法,将耦合思想推广到稀疏字典学习中,一方面保证了高、低分辨率稀疏字典对具有相同的稀疏表示,另一方面,使字典同时具有良好的自适应性和紧凑的结构。提出了一种松耦合稀疏字典对学习模型,通过在学习高、低分辨率稀疏字典的同时,学习它们之间的线性关系,将相同的稀疏表示这一严格要求进一步放松,使得高、低分辨率稀疏字典对之间的关系更加灵活。
     (3)对单幅光学遥感影像的超分辨率重建算法进行了深入研究。给出了一种基于联合字典对的超分辨率重建算法,将学习的高、低分辨率字典对作为先验知识用以指导其他影像的超分辨率重建。实验验证了稀疏先验约束的有效性,算法可为相同区域相同类型的低分辨率遥感影像的超分辨率重建提供有用的高频信息。研究了一种基于预分类联合字典对的遥感影像超分辨率重建算法。依据字典中原子之间的结构特征,通过改进的K均值聚类方法将原字典进一步分为多个子字典,将影像特征块的稀疏分解过程限制在一个原子数更少的学习字典子集中。实验表明该算法在保证重建质量的前提下,能提高算法50%左右的计算性能。
     研究了一种基于耦合学习字典对的遥感影像超分辨率重建算法,使字典学习和超分辨率重建两个过程在相同的特征空间中进行。实验验证了该方法的有效性,与基于联合字典对的超分辨率方法相比,两者重建结果较接近,差异很小,从侧面验证了联合字典对超分辨率方法中的空间差异性对重建结果的影响较小。在此基础上,提出了一种基于耦合稀疏字典对的超分辨率重建算法,保证了稀疏字典学习和超分辨率重建两个过程在相同的特征空间中进行,并使字典同时具有良好的自适应性和紧凑的结构。实验验证了该方法的有效性,与耦合学习字典超分辨率算法相比,重建效果更不理想,究其原因可能与基字典的构建有关。
     提出了一种基于松耦合稀疏字典对的遥感影像超分辨率重建算法,将学习的高、低分辨率稀疏字典及它们之间的线性映射关系一起作为先验知识,用以指导其他低分辨率遥感影像的超分辨率重建。通过定性分析和定量试验,与其他超分辨率方法相比,该方法的重建质量均取得一定提高。
Image super-resolution reconstruction is an enduring research topic in the fields of image processing, photogrammetry and remote sensing,and computer vision. Sparse representation theory, originated in the study of the visual nervous system, provides a new perspective for remote sensing image processing and causes widespread concern of scholars. It has become an international frontier and one of the focus in the fields of signal and image processing in recent years.
     This paper is supported by the national science and technology infrastructure "Data Sharing Infrastructure of Earth System Science——Data Sharing Infrastructure of Yangtze River Delta". Based on the sparse representation theory, this paper deeply studies on the super-resolution reconstruction methods of optical remote sensing image, and mainly revolves around two aspects of sparse representation theory, which includes dictionary learning model and algorithm, super-resolution reconstruction model and algorithm. The main contents and conclusions of the paper include:
     (1) The theoretical basis of remote sensing image sparse representation is studied. The neurophysiological background of sparse representation theory is expounded in this paper. The visual characteristics of human visual system provide a direct physiological basis for sparse representation of image, which promotes the development of image sparse representation theory. The relationship between the sparse characteristics of remote sensing image and its super-resolution reconstruction is analysised. The super-resolution reconstruction of single remote sensing image is a typical ill-posed problem. With sparsity as a prior for regularizing the ill-posed super-resolution problem, the problem can have a stable and unique solution. The expression methods of prior constraint of sparse are discussed and the sparse representation model of remote sensing image is studied. The types of dictionary in sparse representation theory is analyzed, which include analytical-based dictionary and learning-based dictionary. The analytical-based dictionary doesn't need matrix multiplication, which has a fast computing speed but poor adaptability for the atoms are simple. Learning-based dictionary is trained from training samples by the machine learning methods, which has good adaptability and can represent the images with various features. But learning-based dictionary has weak structure and higher computational complexity.
     (2) The high-and low-resolution dictionaries learning methods are deeply studied. A joint dictionary learning model is given. By jointly learning the high-and low-resolution dictionaries, the two dictionaries are learned synchronously. A learning algorithm based on majorization minimization method for the joint learning model is presented. In which the original objective function is replaced by a surrogate objective function which is updated in each optimization step and can be easily minimized. The parameters in the surrogate functions are decoupled, so that the surrogate function can be minimized element-wise. And the method can guarantee to find local minima in each optimization step. A coupled dictionary learning method is studied. The high-and low-resolution dictionaries are studied in the high-and low-resolution feature space, respectively. And the two dictionaries have the same sparse representation. Based on this, a coupled sparse dictionary learning method is proposed, which spread the coupled thinking into sparse dictionary learning. As a result, on one hand it can ensure high-and low-resolution dictionaries have the same sparse representation, on the other hand, the dictionaries have good adaptability and compact structure. A loosely-coupled sparse dictionary learning model is proposed, in which the high-and low-resolution sparse dictionaries are learned, and the linear relationship between them is learned synchronously. For the strict requirement of the same sparse representation is further relaxed, the relationship between high-and low-resolution sparse dictionaries is more flexible.
     (3) The super-resolution reconstruction algorithms of single optical remote sensing image are deeply studied. A super-resolution reconstruction algorithm based on joint dictionary is given. In which the high-and low-resolution dictionary are used as prior knowledge to tutor super-resolution reconstruction for other images. Experimental results demonstrate the effectiveness of the sparsity as a prior for patch-based super-resolution. The algorithm can supply useful high-frequency information for super-resolution reconstruction of low-resolution remote sensing images under same area with same kind. A super-resolution reconstruction algorithm of remote sensing image based on pre-classified joint dictionary is studied. According to structural feature among atoms, the original dictionary is divided into several sub-dictionaries using improved K-means clustering algorithm, therefore, the sparse decomposition process of image patches is limited in a subset of learned dictionary with fewer number atoms. Experimental results show that the computation performance can be improved by50%, and the reconstruction quality can be assured, too.
     A super-resolution reconstruction algorithm of remote sensing image based on two coupled dictionaries is given, in which dictionary learning process and super-resolution reconstruction process are under the same feature space. Experimental results demonstrate the effectiveness of the algorithm. Compared with the super-resolution reconstruction algorithm based on joint dictionary, the reconstruction results of the two algorithms are close to each other, the difference between them is small. Which demonstrates the spatial difference has little influence on reconstruction results of the algorithm based on joint dictionary in another way. Based on this, a super-resolution reconstruction algorithm based on two coupled sparse dictionaries is proposed. On one hand, learning process of sparse dictionary and super-resolution reconstruction are ensured under the same feature space. On the other hand, the learned dictionaries not only has good adaptability but also has compact structure. Experimental results show the effectiveness of the algorithm. But the reconstruction effect is not ideal compared to the previous algorithm. After some analysis, the reason may be in association with construction of basic dictionary.
     A super-resolution reconstruction algorithm of remote sensing image based on two loosely-coupled sparse dictionaries is proposed. High-and low-resolution sparse dictionaries and the linear mapping relationship between them are conducted as prior knowledge for regularizing image super-resolution. Experimental results demonstrate that the loosely-coupled sparse dictionary learning method can outperform the joint dictionary learning method and the coupled dictionary learning method both quantitatively and qualitatively.
引文
[1]李德仁.浅论21世纪遥感与GIS的发展[J].东北测绘,2002,25(4):3-5.
    [2]徐青.遥感影像融合与分辨率增强技术[M].北京:科学出版社,2007.
    [3]孙显,付琨,王宏琦.高分辨率遥感图像理解[M].北京:科学出版社,2011.
    [4]E.F.萨宾.遥感原理及解译.杨廷槐,等译.北京:地址出版社,1981.
    [5]J.L. Harris. Diffraction and Resolving Power. Journal of the Optical Society of America[J],1964,54(7):931-936.
    [6]J.W.Goodman.Introduction to Fourier Optics[M].New YoukrMcGraw Hill, 1968.
    [7]H.C. Andrews, B.R. Hunt. Digital Image Restoration[M]. Englewood CliffS, NJ:Prentiee Hall,1977.
    [8]R.Y. TSAI, T.S. HUANG. Multiframe image restoration and registration[J]. Advances in Computer Vision and Image Processing,1984,(1):317-339.
    [9]张宝成.声全息成像超分辨率处理[J].声学学报,1985,10(4):231-239.
    [10]B.R. Hunt. Super-resolution of images:algorithms, PrineiPles, performanee[J]. International Journal of Imaging Systems and Teehoology,1995(6):297-304.
    [11]M.S. Aiam, J.G. Bognar, R.C.Hardie, et al. Infrared image registration and high-resolution reconstruetion using multiple translationally shifted aliased video frames[J]. IEEE Transactions on lnstrum.Meas.,2000,49:915-923.
    [12]S. Thurnhofer,M. Lightstone, S.K. Mitra. Adaptive interpolation of images with application to interlaced-to-progressive conversion[A]. In:Proceedings of SPIE Visual Communications and Image Processing. Cambridge, Massachusetts, USA,1993,2094:614-625.
    [13]S. Thurnhofer, S.K. Mitra. Edge-enhanced image zooming[C]. In:SP1E Proceedings of the European Signal Processing Conference,Grenoble,France, 1996:1445-1448.
    [14]X. Li, M.T. Orchard. New edge-directed interpolation[J]. IEEE Trans. Image Process,2001,10(10):1521-1527.
    [15]N. Yokoya, K. Yamamoto. Fractal-based analysis and interpolation of 3D natural surface shapes and their application to terrain modeling computer vision[J]. Graphics and Image Processing,1989,46(1):284-302.
    [16]田岩,田金文,柳健,et al超分辨率技术的实现——一种改善的小波插值方法[J].中国图形学报,2003,8(12):1422-1425.
    [17]何宇清,侯正信.基于全相位沃尔什内插核的图像插值[J].中国图象图形学报,2007,12(10):1865-1868.
    [18]郭昌.小波变换与HMT模型的图像插值算法.中山大学学报(自然科学版),2012,51(3):55-59.
    [19]A.M. Tekalp, M.K. Ozkan, M.I. Sezan. High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration[C]. IEEE International Conference on Acoustics,Speech,and Signal Processing,San Francisco,1992,3:169-172.
    [20]E. Kaltenbacher, R.C. Hardie. High Resolution Infrared Image Reconstruction Using Multiple, Low Resolution, Aliased Frames[C]. Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton,1996,2:702-709.
    [21]S.P. Kim, N.K. Bose, H.M. Valenzuela. Recursive reeonstruction of high resolution image from noisy under-sampled multi-frames[J].IEEE Transactions on AcoustieS,Speech and Signal Processing,1990,38(6):1013-1027.
    [22]S.P. Kim, W.Y. Su. Recursive high-resolution reconstruction of blured multi-frame images[C].Proeeeding of the IEEE Int.Conf. on Aeousties Speeeh and Signal Proeessing, Toronto.Canada,1991,4:2977-2980.
    [23]S.P. Kim, W.Y. Su. Recursive high-resolution reconstruction of blurred multi-frame images[J].IEEE Transactions on Image Processing,1993,2(4):534-539.
    [24]S.H. Rhee, M.G Kang. Discrete cosine transform based regularized high-solution image reconstruction algorithm[J].Optical Engineering,1999,38(8): 1348-1356.
    [25]郝鹏威.数字图像空间分辨率改善的方法研究[D].北京:中国科学院遥感应用研究所,1997.
    [26]潘明海,刘永坦,赵淑清.基于傅里叶变换的超分辨率快速谱估计算法[J].电子技术应用,1999,11:49-50.
    [27]N.K. Bose, H.C. Kim, H.M. Valenzuela.Recursive total least squares algorithms for image rconstruction from noisy undersampled multiframes[J]. Multimensional Systems and Signal Processing,1993,4(3):253-268.
    [28]K. Sauer, J. Allebach. Iterative Reconstruction of Band-limited Images from Non-uniformly Spaced Samples[J].IEEE Trans Circuits Syst,1987,34:1497-1505.
    [29]D. Keren, S. Peleg, R. Brada. Image sequence enhancement using subpixel displacements[C].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1988,742-746.
    [30]H. Ur, D. Gross. Improved resolution from sub-pixel shifted pictures[J], CVGIP:Graphical Models and Image Processing,1992,54(2):181-186.
    [31]T. Komatsu, K. Aizawa,T. Igarashi,et al. Signal-processing based method for acquiring very high resolution image with multiple cameras and its theoretical analysis[J]. IEE Proceedings Communications,1993,140(1):19-24.
    [32]D.T. Sandwell. Biharnionic spline interpolation of Geo-3 and Seasat altimeter data[J].Geophysical Research Letters,1987,14(2):139-142.
    [33]R. FranLke. Smooth interpolation of scattered data by local thin plate splines[J]. Comput. Math. APPI,1982,8(4):273-281.
    [34]谭兵,徐青,等.小波超分辨率重建算法及其在SPOT影像中的应用[J].测绘学报,2004,33(3):233-238.
    [35]B.R. Frieden, H.G. Aumann.Image reconstruction from multiple 11-D scans using filtered localized projection[J].Applied Optics,1987,26(3):223-226.
    [36]M. Irani, S. Peleg. Improving resolution by image registration[J].CVGIP: Graphical Models and Image Processing,1991,53:231-239.
    [37]郭伟伟,章品正.基于迭代反投影的超分辨率图像重建[J].计算机科学与探索,2009,3(3):321-329.
    [38]覃凤清,何小海,等.一种基于子像素配准视频超分辨率重建方法[J].光电子激光,2009,20(7):972-976.
    [39]张永育,李翠华,等.基于Keren改进配准算法的IBP超分率重建[J].厦门大学学报(自然科学版),2012,51(4),686-690.
    [40]D.C. Youla, H. Webb. Image restoration by the method of convex projections: part I, theory[J]. IEEE Transactions on Medical Imaging,1982,2:81-94.
    [41]H. Stark, P. Oskoui. High resolution image reeovery from image-plane arrays, using convex Projeetions[J]. J. OPt. Soe. Am. A,1989,6:1715-1726.
    [42]M. Tekalp, M.K. Ozkan,M.I. Sezan.High-resolution image reconstruction from lower-resolution image sequences and space varying image restoration[C]. IEEE International Conference on Acousics,Speech and Signal Processing, 1992,3:169-172.
    [43]B.K. Gunturk, Y. Altunbasak, R.M. Mersereau. Super-Resolution Reconstruction of Compressed Video Using Transform-Domain Statistics[J]. IEEE Transactions on image processing,2004,13(1):33-43.
    [44]黄华,孔玲莉,等.基于凸集投影和线过程模型的超分辨率图像重建[J].西 安交通大学学报,2003,37(10):1059-1062.
    [45]朱翔,袁杰,都思丹.基于JPEG序列的图像重建[J].电子与信息学报,2007,29(8):1841-1844.
    [46]肖创柏,段娟,禹晶.序列图像的POCS超分辨率重建方法[J].北京工业大学学报,2009,35(1):108-113.
    [47]张砚,徐昆,李勇.基于外存和凸集投影法的遥感图像超分辨率方法[J].清华大学学报(自然科学版),2010,50(10):1743-1746,1756.
    [48]张砚,李先颖,满益云.基于凸集投影法和复数小波包域的遥感图像上采样研究[J].计算机学报,2011,34(3):482-488.
    [49]R.R. Sehultz, R.L. Stevenson.A bayesian approach to image expansion for mproved definition[J].IEEE Transactions on Image Processing,1994,3(2):233-242.
    [50]R.C. Hardie,K.J. Bamard,E.E. Armstrong. Joint MAP registrationan high-resolution image estimation using a sequence of undersampled image [J].IEEE Transaetions on Image Processing,1997,6:1621-1633.
    [51]P. Cheeseman, B. Kanefsky,et al. Super-resolved surface reconstruction from multiple images[R]. NASA Ames Research Center, Moffett Field,CA,Tech. ReP.FIA-94-12,1994.
    [52]B.R. Hunt, P.J. Sementilli. Description of a Poisson imagery super-resolution algorithm[A].Astronomical Data Analysis Software and System I,Worrall D.M., Biemserger C., Barnes J., Eds., Astronomical Society of the Pacific, San Franeisco, Calif, USA,1992,25:196-199.
    [53]P.J. Sementilli, M.S. Nadar, B.R. Hunt. Poisson MAP super-resolution estimator with smoothness constraint[A].In:Proceedings of SPIE Neural and Stochastic Methods in Image and Signal Processing 11,1993,2032:2-13.
    [54]GK. Chantas, N.P. Galatsanos, N.A. Woods. Super-Resolution Based on Fast Registration and Maximum a Posteriori Reconstruction[J]. IEEE Transactions on Image Processing,2007,16(7),1821-1830.
    [55]S.P. Belekos, N.P. Galatsanos, A.K. Katsaggelos. Maximum a Posteriori Video Super-Resolution Using a New Multichannel Image Prior[J]. IEEE Transactions on Image Processing,2010,19(6):1451-1464.
    [56]L.J. Karam, N.G Sadaka, et al. An Efficient Selective Perceptual-Based Super-Resolution Estimator[J].IEEE Transactions on Image Processing,2011,20(12): 3470-3481.
    [57]D. Wallach, F. Lamare, et al. Super-Resolution in Respiratory Synchronized Positron Emission Tomography[J].IEEE Transactions on Medical Imaging, 2012,31(2):438-448.
    [58]韩华,王洪剑,彭思龙.基于局部结构相似性的单幅图像超分辨率算法[J].计算机辅助设计与图形学学报,2005,17(5):941-947.
    [59]韩玉兵,吴乐南.基于自适应滤波的视频序列超分辨率重建[J].计算机学报,2006,29(4):642-647.
    [60]王静,章世平,等.基于MAP估计的遥感图像频域校正超分辨率算法[J].东南大学学报,2010,40(1):84-88.
    [61]鲜海滢,傅志中等.基于非冗余信息的超分辨率算法[J].电波科学学报,2012,27(2):216-221.
    [62]M.Elad, A.Feuer. Restoration of a single superresolution image from several blurred,noisy and undersampled measured images[J].IEEE Transactions on Image Processing,1997,6(12):1646-1658.
    [63]苏秉华,金伟其.基于POCS-MPMAP合成算法的超分辨率图像复原[J].光子学报,2003,32(4):502-504.
    [64]M. Irani,S. Peleg.Motion analysis for image enhancement,resolution,occlusion, and transparency[J]. Journal of Visual Communication and Image Representation,1993,4(4):324-336.
    [65]M. Irani, S. Peleg.Super resolution from image sequences[C]. Piscataway,NJ, USA:In Proceedings of International Conference on Pattern Recognition,1990, 115-120.
    [66]B.C. Tom, A.K. Katsaggelos. Reconstruction of a high resolution image from registration and restoration of low resolution images[C].Proceedings of IEEE International Conference on Image Processing,1994,553-557.
    [67]M. Elad, Y. Hel-Or. A Fast Super-Resolution Reconstruction Algorithm for Pure Translational Motion and Common Space-Invariant Blur[J]. IEEE Transactions on Image Processing,2001,10(8):1187-1193.
    [68]陈华,金伟其.基于小波包分析的三维宽场显微图像复原方法[J].北京理工大学学报,2006,26(1):72-75.
    [69]A.J. Patti, M. Sezan, A.M Tekalp.A New Motion Compensated Reduced Order Model Kalman Filter for Space-Varying Restoration of Progressive and Interlaced Video[J].IEEE Transactions on Image Processing,1998,7(4):543-554.
    [70]M. Elad, A. Feuer. SuPer-Resolution Restoration of Image Sequence Adaptive Filtering Approach[J].IEEE Transactions on Image Processing,1999,8(3):387-395.
    [71]M. Elad, A. Feuer. Super-resolution reconstruction of image sequences[J]. IEEE Transactions on Pattern Anal. Machine Intelli.,1999,21,(9):817-834.
    [72]M. Elad, A. Feuer. Super-resolution reconstruction of continuous image sequences[C].International Conference on Image Processing, Kobe, Japan, 1999:459-463.
    [73]M.S. Alam, J.G. Bognar, et al. Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames[J]. IEEE Transactions on Instrumentation Measurement,2000,49(5):915-923.
    [74]T.A. Stephenson,T. Chen. Adaptive Markov Random Fields for Example-Based Super-Resolution of Faces[J]. Journal on Applied Signal Processing,2006,1-11.
    [75]W.T. Freeman, E.C. Pasztor, O.T. Carmichael. Learning low-levelvision[J]. International Journal of Computer Vision,2000,40:25-47.
    [76]W.T. Freeman,T.R. Jones,E.C. Pasztor. Example-based super-resolution[J]. IEEE Computer Graphics and Applications,2002,22(2):56-65.
    [77]卓力,王素玉,李晓光.图像/视频的超分辨率复原[M].北京:人民邮电出版社,2011.
    [78]C.M. Bishop,A. Blake,B. Marthi. Super-resolution enhancement of video[C]. International Conference on Artificial Intelligence and Statistics,2003.
    [79]G. Qiu.Interresolution Loop-up table for improved spatial magnification of image[J]. Journal of Visual Communication and Image Representation,2000, 11:360-373.
    [80]K. Su,Q. Tian,et al.Neighborhood issue in single-frame image super-resolution [C]. IEEE International Conference on Multimedia and Expo,2005:1-4.
    [81]Y.W. Tal,W.S. Tong,C.K. Tang. Perceptually-inspired and edge-directed color image super-resolution[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006,2:1948-1955.
    [82]Q. Wang,X. Tang,H. Shum.Patch based blind image super resolution[C]. Proc. of the Tenth IEEE International Conf. on Computer Vision,Beijing,China, 2005.
    [83]H. Chang,D.Y. Yeung,Y. Xiong.Super-resolution through neighbor embedding [C].IEEE Computer Society Conference on Computer Vision Pattern Recognition, Washington, DC USA:IEEE Computer Society,2004,1:275-282.
    [84]T. Chan, J. Zhang. An improved super-resolution with manifold Learning and Histogram Matching[C]. Proceedings of IAPR International Conference on Biometric,Springer Verlag,2006:756-762.
    [85]J. Qiao, J. Liu. Joint blind super-resolution and shadow removing[C]. IEICE-Transactions on Information and Systems,2007,E90-D(12):2060-2069.
    [86]S. Baker, T. Kanade. Limits on super-resolution and how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9): 1167-1183.
    [87]A.A. Efros,W.T. Freeman. Image quilting for texture synthesis and transfer[C]. 28th annual conference on Computer graphics and interactive techniques,New York:ACM Press,2001:341-346.
    [88]A. Hertzmann, C.E. Jacobs, et al.Image Analogies[C]. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics,Los Angeles,2001:327-340.
    [89]J. Yang, J. Wright,T. Huang,et al. Image super-resolution as sparse representation of raw image patches[C].IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC USA,IEEE Computer Society,2008: 1-8.
    [90]J. Yang, J. Wright, T. S. Huang,et al. Image super-resolution via sparse representation[J]. IEEE Trans. Image Process.,2010,19(11):1-8.
    [91]R. Zeyde, M. Elad, M. Protter. On single image scale-up using sparse-representations[C].7th International Conference on Curves and Surfaces, Avignon, France,2012,711-730.
    [92]W.S. Dong, L. Zhang, et al. Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization[J].IEEE Transactions on Image Processing,2011,20(7):1838-1857.
    [93]N. Kulkarni,P. Nagesh,et al. Understanding Compressive Sensing and Sparse Representation-Based Super-Resolution[J]. IEEE Transactions on Circuits and system for video technology,2012,22(5):778-789.
    [94]浦剑,张军平.基于词典学习和稀疏表示的超分辨率方法[J].模式识别与人工智能,2010,23(3):335-340.
    [95]孙玉宝,韦志辉,等.多形态稀疏性正则化的图像超分辨率算法[J].电子学 报,2010,38(12):2898-2903.
    [96]李民,李世华,等.非局部联合稀疏近似的超分辨率重建算法[J].电子与信息学报,2011,33(6):1407-1412.
    [97]练秋生,张伟.基于图像块分类稀疏表示的超分辨率重构算法[J].电子学报,2012,40(5):920-925.
    [98]金炜,符冉迪,叶明.过完备字典稀疏表示的云图超分辨率算法[J].遥感学报,2012,16(2):275-285.
    [99]A.Y. Yang,J. Wright,Y. Ma,et al.Feature selection in face recognition:a sparse representation perspective[R].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007.
    [100]J. Wright, A.Y. Yang,et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31 (2):210-227.
    [101]甘俊英,肖娟.加权SRC算法在伪装人脸识别中的应用[J].系统工程理论与实践,2011,31(2):124-128.
    [102]贾旭,催建江,等.基于手背静脉图像多特征稀疏表示的身份识别[J].仪器仪表学报,2011,32(10):2267-2274.
    [103]殷飞,焦李成.基于旋转扩展和稀疏表示的鲁棒遥感图像目标识别[J].模式识别与人工智能,2012,25(1):89-95.
    [104]胡正平,宋淑芬.基于类别相关近邻子空间的最大似然稀疏表示鲁棒图像识别算法[J].自动化学报,2012,38(9):1420-1427.
    [105]M. Elad,M. Aharon. Image denoising via learned dictionaries and sparse representation[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Washington,DC USA,2006,1:895-900.
    [106]肖泉,丁兴号,等.基于自适应超完备稀疏表示的图像去噪方法[J].仪器仪表学报,2009,30(9):1886-1890.
    [107]孙玉宝,韦志辉,等.稀疏性正则化的图像泊松去噪算法[J].电子学报,2011,39(2):285-290.
    [108]何艳敏,甘涛,等.基于稀疏表示的两级图像去噪[J].电子与信息学报,2012,34(9):2268-2272.
    [109]王国栋,阳建宏,等.基于自适应稀疏表示的宽带噪声去除算法[J].仪器仪表学报,2011,32(8):1819-1823.
    [110]刘帅奇,胡绍海,肖扬.基于稀疏表示的Shearlet域SAR图像去噪[J].电子与信息学报,2012,34(9):2110-2115.
    [111]M.J. Fadili, J.L. Starck,F. Murtagh.Inpainting and zooming using sparse representations[J]. The Computer Journal,2007,52(1):64-79.
    [112]J. Mairal.M. Elad,G Sapiro.Sparse representation for color image restoration [J]. IEEE Transactions on Image Processing,2008,17(1):53-69.
    [113]Z. Xu, J. Sun.Image inpainting by patch propagation using patch sparsity[J]. IEEE Transactions on Image Processing,2010,19(5):1153-1165.
    [114]G. Peyre. Sparse modeling of textures[J]. Journal of Mathematical Imaging and Vision,2009,34(1):17-31.
    [115]李民,程建,等.非局部学习字典的图像修复[J].电子与信息学报,2011,33(11):2672-2678.
    [116]K.Engan,S.O. Aase,J.H. Husoy.Method of optimal Directions for Frame Design[C].Proceedings of the Acoustics,Speeeh,and Signal Processing,1999, 5:2443-2446.
    [117]M. Aharon,M. Elad,A.M. Bruckstein.The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Trans. Signal Process.,2006,54(11):4311-4322.
    [118]J. Mairal,F. Bach,et al.Online dictionary learning for sparse coding[C]. Proceedings of the 26th Annual International Conference on Machine Learning,New York, USA,2009:689-696.
    [119]F. Attneave. Some informational aspects of visual perception [J]. Psychol. Rev.1954,61(3):183-193.
    [120]D.H. Hubel. Single unit activity in striate cortex of unrestrained cats[J]. The Journal of Physiology,1959,147(2):226-238.
    [121]H.B. Barlow. Possiblep principles underlying transformation of sensory messages[C]. Sensory Communieation,NewYork,MIT Press,1961:217-234.
    [122]H.B. Barlow. The coding of sensory messages[M]. In Thorpe and Zangwill, Current Problems in Animal Behaviour, chapter XIII, Cambridge University Press,1959:330-360.
    [123]H.B. Barlow. Single units and sensation:a neuron doctrine for perceptual psychology[J].Perception,1972,1 (4):371-394.
    [124]J.G. Daugmann. Two-dimensional spectral analysis of cortical receptive field profile[J]. Visio Research,1980,20(10):847-856.
    [125]D. Marr,E. Hildreth.Theory of edge detection[J].Proceedings of the Royal Society of London. Series B,Biological Scienees,1980,207(1167):187-217.
    [126]S. Mareelja. Mathematical description of the responses of simple cortical cells[J]. Journal of the Optical Society of America,1980,70(11):1297-1300.
    [127]D.J. Field. Relations between the statistics of natural images and the response properties of cortical cells[J]. Journal of Optical Society of America,A 1987, 4(12):2379-2394.
    [128]D.J. Field. What the goal of sensory coding?[J]. Neural Computation,1994, 6(4):559-601.
    [129]B.A. Olshausen, D.J. Field. Emergence of simple-cell receptive field properties by learning a sparse code of natural images[J].Nature,1996,381: 607-609.
    [130]D.L. Donoho, X. Huo.Uncertainty principles and ideal atomic decomposition[J].IEEE Transactions on Information Theory,2001,47(7):2845-2862.
    [131]M. Elad, A.M. Bruckstein. A generalized uncertainty principle and sparse representation in pairs of bases[J].IEEE Transactions on Information Theory, 2002,48(9):2558-2567.
    [132]J.A. Tropp. Greed is good:Algorithmic results for sparse approximation[J]. IEEE Transaction on Information Theory,2004,50(10):2231-2242.
    [133]E. Candes, J. Romberg, T. Tao. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
    [134]D.L. Donoho. Compressed sensing[J]. IEEE Transaction on Information Theory,2004,54(4):1289-1306.
    [135]J. Hadamard. Lectures on the Cauchy problem in linear partial differential Equations[M].Yule University Press,1923.
    [136]S. Mallat著,杨力华,戴道清等译.信号处理的小波导引(原书第二版)[M].北京:机械工业出版社,2002.
    [137]J.L. Starck, M. Elad, D.L. Donoho. Redundant multiscale transforms and their application for morphological component Separation[J].Advances in Imaging and Electron Physics,2004,132:287-348.
    [138]U. Grenander, A. Srivastava. Probability models for clutter in natural images[J], IEEE Trans.PAMI,2001,23(4):424-429.
    [139]王光新.基于稀疏约束正则化模型的图像提高分辨率技术研究[D].长沙:国防科学技术大学,2008.
    [140]S.S. Chen, D.L. Donoho, M.A. Saunders. Atomic decomposition by basis pursuit[J].SIAM,2001,43(1):129-159.
    [141]D.L. Donoho. For most large underdetermined systems of equations, the minimal 11-norm near-solution approximates the sparsestnear-solution[J]. Communications on Pure and Applied Mathematics,2006,59(7):907-934.
    [142]S. Mallat, Z. Zhang.Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [143]Y. Pati,R. Rezaiifar,P. Krishnaprasad.Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition[C]. Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, 1993,1:40-44.
    [144]D. Needell,R. Vershynin.Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J].IEEE Journal of Selected Topics in Signal Processing,2010,4(2):310-316.
    [145]T.T. Do, L. Gan, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C].42nd Asilomar Conference on Signals, Systems and Computers,2008:581-587.
    [146]D.L. Donoho,Y. Tsaig, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[M].Technical Report, Department of Statistics,Stanford University,2006:1-39.
    [147]R. Zdunek, A. Cichocki. Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals[J].IEEE Transaction on Image Processing,2008,56(10):4752-4761.
    [148]L. Rebollo-Neira,D. Lowe. Optimized orthogonal matching pursuit approach [J].IEEE Signal Processing Letters,2002,9(4):137-140.
    [149]Donoho D L. For most large underdetermined systems of equations, the minimal 11-norm near-solution approximates the sparsestnear-solution[J]. Communications on Pure and Applied Mathematics,2006,59(7):907-934.
    [150]S.S. Chen, D.L. Donoho, M.A. Saunders. Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,2001,43(1):129-159.
    [151]M.A.T. Figueiredo,R.D. Nowak,S.J. Wright. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(4): 586-597.
    [152]S.J. Kim,K. Koh, et al.An interior-point method for large-scale 11-regularized least squares[J].IEEE Journal on Selected Topics in Signal Processing,2007, 1(4):606-617.
    [153]E.J. Candes, J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions[J].Foundations of Computational Mathematics,2005,6(2):227-254.
    [154]GH. Mohimani,M. Babaie-Zadeh,C. Jutten.A fast approach for overcomplete sparse decomposition based on smoothed L0 norm[J].IEEE Transactions on Signal Processing,2009,57(1):289-301.
    [155]R. Zdunek,A. Cichocki.Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals[J].IEEE Transaction on Image Processing,2008,56(10):4752-4761
    [156]D. Angelosante,G.B. Giannakis.RLS-weighted lasso for adaptive estimation of sparse signals[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,Washington,DC USA,2009:3245-3248.
    [157]R. Bracewell.The Fourier transform and its application[M].McGraw Hill, 1965
    [158]I. Daubechies.Ten lectures on wavelets[M].SIAM,Philadelphia,1992.
    [159]焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(12):1975-1981.
    [160]E.J. Candes.Ridgelets:theory and applications[D].California,Stanford Univ., 1998.
    [161]E.J. Candes,D.L. Donoho.Curvelets-A surprisingly effective nonadaptive representation for objects with edges[M].Curves and Surfaces, Nashville, Vanderbilt University Press,2000:105-120.
    [162]M.N. Do,M. Vetterli.The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Trans.Image Process.,2005,14 (12):2091-2106.
    [163]E.L. Pennec.,S. Mallat.Sparse geometric image representation with bandelets [J].IEEE Trans. Image Process.,2005,14(4):423-438.
    [164]M. Yaghoobi, T. Blumensath, M. E. Davies. Dictionary learning for sparse approximations with the majorization method[J].IEEE Transactions,2009, 57(6):2178-2191.
    [165]I. Daubechies, M. Defrise, C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J].Communications on Pure and Applied Mathematics,2004,57(11):1413-1457.
    [166]R. Rubinstein, M. Zibulevsky, M. Elad. Double sparsity:learning sparse dictionaries for sparse signal approximation[J].IEEE transactions on signal processing,2009,58(2):1553-1564.
    [167]A.M. Bruckstein, D.L. Donoho, M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images[J].SIAM Rev.,51(1):34-81,2009.
    [168]T. Cootes,G. Edwards,C. Taylor.Active appearance mode[C].ECCV,1998:484-498.
    [169]X. Tang,X. Wang.Face sketch synthesis and recognition[C].ICCV,2003:687-694.
    [170]B. Efron,T. Hastie,I. Johnstone, et al.Least angle regression[J].The Annals of statistics,2004,32(2):407-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700