大气激光通信中正交频分复用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气激光通信(Atmospheric Laser Communication, ALC)是一种以大气为传输媒介,利用激光作为信号载体来实现点对点、点对多点和多点对多点间语音、数据、图像信息双向传输的通信技术,它在解决目前宽带网络通信中“最后一公里”问题和应急通信等方面有着良好的应用前景。
     在大气激光通信链路中,由于受到各种恶劣天气的影响,接收到的光信号能量会得到衰减。此外,大气湍流还会引起光信号强度和相位的随机起伏,导致系统误码率性能下降。因此,研究高性能的调制解调技术和信道编码技术已成为大气激光通信的重要课题之一。论文主要从以下几个方面进行了研究:
     1、目前正交频分复用(OFDM)技术并没有成功地运用到大气激光通信领域中,这主要是因为大气激光通信系统采用的是光强度调制,只能传送单极性实信号。鉴于这种情况,本文采用了一种非对称限幅光正交频分复用(Asymmetrically Clipped Optical OFDM, ACO-OFDM)技术,并把它运用到大气激光通信系统中。在大气湍流信道下,对该调制方案的性能进行了仿真研究,并和传统的光强度调制技术进行了性能比较。仿真结果表明在大气湍流(湍流强度为σsc2=0.2)环境下,非对称限幅光OFDM系统性能要分别比直流偏置光OFDM系统和OOK系统提高了4dB和6dB,并且它也是目前光功率效率最高的调制技术。
     2、在大气激光通信系统中,较高的峰值平均功率比(PAPR)不仅会对系统性能带来影响,还会对人眼或皮肤造成伤害。针对降低非对称限幅光OFDM系统高PAPR的问题,本文对目前已经提出的降低无线OFDM系统PAPR的方法进行了研究,结果发现所有这些方法都不能直接运用到非对称限幅光OFDM系统中,因此本文对这些方法进行了结构上的改进,并对其性能进行了研究仿真。此外,在综合现有算法优点的基础上,本文还提出了一种新的降低非对称限幅光OFDM系统PAPR的联合算法,通过仿真发现该联合算法可以获得近5dB的PAPR1性能改善,很好地降低了非对称限幅光OFDM系统的PAPR。
     3、由于非对称限幅光OFDM系统采用的是强度调制/直接检测,因此它与无线OFDM系统不同,系统只需要符号同步而不需要频率同步。根据非对称限幅光OFDM符号的特点,本文提出了一种适合于非对称限幅光OFDM系统的定时同步方法。与目前存在的定时同步方法相比,该定时同步方法的性能不依赖于训练符号的选取,并且训练符号可以随机生成。并在各种信道环境下对训练符号的自相关性进行了仿真研究,仿真结果表明该定时同步算法无论在向正确定时点的收敛速度上还是定时估计方差上,都要优于其它算法,并且在定时估计方差上可以得到近5dB的性能改善,大大提高了非对称限幅光OFDM系统定时估计精度。
     4、LDPC码是一种基于稀疏矩阵的线性分组码,其性能可以比Turbo码更逼近香农限。因此,本文将LDPC码作为信道编码应用到了大气激光通信系统中,并提出了将LDPC码和非对称限幅光OFDM强度调制相结合的系统方案,并在大气湍流信道中对该方案进行了仿真研究。仿真结果表明LDPC码具有优越的纠错性能,该方案对大气湍流引起的光强闪烁具有很强的抗干扰能力,可以满足大气激光通信系统的要求。此外,在相同误码率性能条件下,LDPC码还降低了平均发射光功率,这对平均发射光功率严格受限的大气激光通信无疑是至关重要的。
Atmospheric laser communication is a point to point and multipoint-to-multipoint communication technology, which transmits voice, data, image information in atmosphere by the use of laser as signal carrier. In recent years, this technology has received noticeable attention due to a variety of applications in overcoming the last-mile problem and emergency communications field.
     In atmospheric laser communication links, the received light signal energy is attenuated due to a variety of bad weather, and atmospheric turbulence causes fluctuations in both the intensity and the phase of the received light signal, impairing link performance. Therefore, the study of high performance modulation and channel coding technology for the atmospheric laser communication has become an important issue. All efforts are centered as follows.
     1、Orthogonal Frequency Division Multiplexing (OFDM) has not been used in practical atmospheric laser communication system. This is because OFDM signals are bipolar, while in atmospheric laser communication system that use intensity modulation (IM), only unipolar signals can be transmitted. Basing on this situation, we adopt asymmetrically clipped optical OFDM technology and apply it to the atmosphere laser communication system. For the case of an atmospheric turbulence channel, we compare asymmetrically clipped optical OFDM modulation and conventional optical intensity modulation techniques, and simulation results shows that the performance of asymmetrically clipped optical OFDM system has up to 4dB and 6dB improvement than DC biased optical OFDM and OOK in atmospheric turbulence (turbulence intensityσsc2= 0.2) channel. It has recently been shown that asymmetrically clipped optical OFDM is more efficient in terms of optical power than other optical modulation techniques.
     2、In atmospheric laser communication system, the high peak-to-average power ratio (PAPR) will not only have an impact on system performance, but also have damage to the human eye or skin. To solve high PAPR of asymmetrically clipped optical OFDM system, some solutions that have been proposed for wireless OFDM system have been studied. But all these methods can not be directly applied to the asymmetrically clipped optical OFDM system, because the asymmetrically clipped optical OFDM system signals are real. In this paper, these methods have been adapted, and performance of these methods is analyzed. In addition, basing on the advantages of existing algorithms, a new joint algorithm is presented. Simulations results show that the joint algorithm can achieve near 5dB performance improvement, and can reduce the PAPR of asymmetrically clipped optical OFDM system efficiently.
     3、In asymmetrically clipped optical OFDM, unlike RF-OFDM, no frequency synchronization is required because the signals used in asymmetrically clipped optical OFDM are intensity modulated. In this paper a new timing synchronization method designed for the characteristics of asymmetrically clipped optical OFDM is presented. Compared with existing synchronization methods, the performance of proposed timing synchronization method does not depend on the selection of the training symbols and training symbols can be randomly generated. The autocorrelation properties of the training symbol are studied in various channel conditions and simulation results show that the proposed method in terms of the convergence rate to right timing point or the variance on the timing estimation, is better than other algorithms, and the variance on the timing estimation can be close to 5dB performance improvement. Analysis and simulation results show that the new timing synchronization method is effective in asymmetrically clipped optical OFDM system.
     4、Low Density Parity Check Codes are linear block codes basing on sparse matrix, and the performance of LDPC is more near Shannon limit than turbo codes. Therefore, LDPC as channel coding is applied into the atmospheric communication system, and a new program in which LDPC is combined with asymmetrically clipped optical OFDM intensity modulation is proposed. The new program is simulated in the atmospheric turbulence channel. The simulation results show that LDPC codes have excellent error correction capabilities. The above scheme has strong anti-interference ability to light intensity fluctuation caused by atmospheric turbulence and can satisfy the need of atmospheric laser communication system. Under the same BER performance, LDPC can reduce the average transmitted optical power, which is very important in atmospheric laser communication system where the average optical power is strictly limited.
引文
[1]马瑛,霍大勇.光纤宽待接入的“最后一公里”.科技资讯,2007.4
    [2]空中的“最后一公里”.个人电脑,2003:127-129页
    [3]Limin Chang, Lu Song, Lijing Zhang. Design and realization of FEC-based RS code in the atmospheric laser communication system. Proc. SPIE, vol.7160,716038 (2008)
    [4]Ke Xu, Jin Wang, Yan Li. Error rate performance of atmospheric laser communica-tion based on bubble model. Proc. SPIE, vol.7516,751605 (2009)
    [5]Leitgeb E, Bregenzer J, Fasser P. Free space optics-extension to fiber-networks for the "last mile". Lasers and Electro-Optics Society,2002. LEOS 2002. The 15th Annual Meeting of the IEEE,2002, vol.2:459-460P.
    [6]Saquib Nazmus, Md. Sabbir Rahman Sakib, Apurba Saha et al. Free space optical connectivity for last mile solution in Bangladesh. Education Technology and Computer (ICETC),2010 2nd International Conference on,2010, vol.2:484-487P
    [7]S. Arnon. Optimization of Urban Optical Wireless Communication Systems.IEEE Trans. Wireless Commun.2003,vol.2:626-629P.
    [8]Davis C C, Smolyaninov 11, Milner S D. Flexible optical wireless links and networks. Communications Magazine, IEEE,2003,vol 41:51-57P
    [9]Kedar D, Arnon S. Urban optical wireless communication networks:the main challenges and possible solutions. Communications Magazine, IEEE,2004, vol 42:S2-S7P.
    [10]Shaikh R A, Basit A. Using point-to-point 1550nm laser for outdoor mobility. Infor-mation and Communication Technologies, ICICT'09 International Conference on. 2009,255-258P.
    [11]孙兴超.自由空间光通信中误码率的研究.贵州大学硕士论文.2009:8-9页
    [12]Demelenne B.Tolker-Nielson T, Guillen J C.SILEX Ground Segment Control Facilit-ies and Flight Operations.SPIE Free-Space Laser Communication Technologies. 1999,3615:2-1 OP.
    [13]Tolker-Nielson T, Demelenne B,Desplats E.In-orbit Test Results of the First SILEX Terminal.SPIE Free-Space Laser Communication Technologies.1999,3615:31-42P.
    [14]Planche G, Laurent B, Guillen J C.SILEX Final Ground Testing and In-figh Perfor-mance Assessment. SPIE Free-Space Laser Communication Technologies.1999, 3615:64-77P.
    [15]Tplker-Nielsen T, Oppenhauser G. In-orbit Test Result of an Operational Optical Intersatellite Link Between ARTEMIS and SPOT4, SILEX.SPIE Free-Space Laser Communication Technologies.2002,4635:1-15P.
    [16]Reyes M, Lopez P, Alonso A,et al. Preliminary Results of the In-orbit Test of ARTEMIS with the Optical Ground Station.SPIE Free-Space Laser Communication Technologies.2002,(4635):38-49P.
    [17]Arimoto Y,Toyoshima M,Toyoda M,et al.Preliminary Result on Laser Communication Experiment Using(ETS-VI).SPIE Proceedings.1995,2381:151-159P
    [18]Komukai,Toshibacho,Saiwaiku,et al.Performance Evaluation of Laser Communica-tion Equipment on Board the ETS-VI Satellite.SPIE Proceedings.1996,2699:52-60P
    [19]Toyoda M,Toyoshima M,Takahashi T.Ground to ETS-VI Narrow Laser Beam Trassmition.SPIE Proceedings.1996,(2699):71-80P
    [20]李翔.无线光传输系统研究.华中科技大学硕士论文.2007:6-7页
    [21]Wei Sun,Yong Ai, Jinling Yang et al. Miniaturization of the atmospheric laser communication APT system. Proc. SPIE, vol.5253,147 (2003)
    [22]丁德强.大气激光通信PPM调制解调系统设计.西安理工大学硕士论文.2005:8-9页
    [23]Isaac I Kim, Ron Stieger, Joseph A. Koontz.Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON protocol data using the TerraLink laser communication system. Optical Engineer,1998,37(12):3143-3155P
    [24]David L Panak, Mark A Doucet. Fiber coupled transceivers in point to point and point to multipoint optical wireless systems.Optical Wireless Communications Conference at ITCom,2001.
    [25]肖筱.浅谈自由空间光通信技术及其应用.通信技术,2009年42卷1期.
    [26]陈俊.基于turbo码的光无线通信系统研究.华中科技大学博士论文.2007:6-7页
    [27]李晓峰.星地激光通信连路原理与技术.国防工业出版社.2007:6-46页
    [28]舒首衡,闫娟娟,郑铮等.空间激光通信中湍流信道光束传输仿真.光散射报 2007,19(1):79-85P
    [29]王丽黎,柯熙政.湍流效应对光通信链路的影响研究与仿真.光散射报,2004,3(3)250-255页
    [30]Flecker B, Gebhart M, Sheikh Muhammad S, et al. Results of attenuation measure-ments for optical wireless Channels under dense fog conditions regarding different wavelengths. Proceedings of SPIE, Vol.6303,2006; 63030:1-11P
    [31]Leitgeb E, Sheikh Muhammad S, Flecker B. The influence of dense fog on optical wireless systems,analysed by measurements in Graz for improving the link reliability.Invited Paper, Proceedings of IEEE International Conference on Transparent Optical Networks, Nottingham, UK, June 2006; 154-159P.
    [32]F. de Fornel, M. AI Naboulsi, H. Sizun. Fog attenuation prediction for optical and in-frared waves, in Journal SPIE,2003.
    [33]Korevaar E, Kim I.I, Mc Arthur B. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications, in SPIE proceedings, vol.4124,2001.
    [34]Kalahnikova V, Willebrand H A, Mayhew L M. Wavelength and Altitude Dependence of Laser Beam Propagation in Dense Fog. Proc SPIE.2002, vol.4635:278-78P.
    [35]Muhammad S S, Kohldorfer P, Leitgeb E. Channel modeling for terrestrial free space optical links. Proceedings of 2005 7th International Conference, vol 1:407-41 OP
    [36]Sadot D, Melamed A, Kopeika N S. Effects of aerosol forward scatter on the long-and short-exposure atmospheric coherence diameter. Waves in Random Media, Oct. 1994.4(4):487-498P
    [37]Richlin J C, Davidson F M. Atmospheric Turbulence Effects on a Partially Coherent Gaussian Beam:Implications for Free-Space Laser Communication. JOSA A, 2002,19(9):1794-1802 P.
    [38]马东堂.大气激光通信中的多光束发射和接收技术研究.国防科学技术大学博士论文.2004:10-36页
    [39]顾德门.傅里叶光学导论.北京:科学出版社,1979.
    [40]Tatarskii V I. Wave Propagation in a Turbulent Medium. New York:McGraw-Hill book Company,1961
    [41]张逸新,迟泽英.光波在大气中的传输与成像.国防工业出版社.1997:8-41页
    [42]Fante R. Electromagnetic Beam Propagation in Turbulent Media, Proc. IEEE.1975, 63(12):1669-1692P
    [43]邓天平.自由空间光通信系统关键技术研究.华中科技大学博士论文.2007:17-38页
    [44]Strohbeln J W. Laser Beam Propagation in the Atmosphere. New York:Springer-Verlag,1978
    [45]Zhu X and Kahn J M. Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels. Communications, IEEE Transactions on.2003,Vol 51(3):509-516P
    [46]Hill R J, Frehlich R G, Otto W D. The probability distribution of irradiance scintillation. NOAA Technical Memo ERL ETL274, NOAA Environmental Research Laboratories, Boulder, CO(1996).
    [47]Andrews L C.An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere. J.Mod. Opt.39,1849-1853 P(1992).
    [48]Andrews L C, Phillips R L, Hopen C Y, et al. Theory of optical scintillation. J.Opt. Soc. Am,2004 A(16):1417-1429.
    [49]Churnside J H, Clifford S F. Log-normal Rician probabilitydensity function of optical scintillations in the turbulent atmosphere. J. Opt. Soc. Am. A 4,1923-1930P (1987).
    [50]Churnside J H, Frehlich R G. Experimental evaluation of lognormally modulated Rician and IK models of optical scintillation in the atmosphere. J. Opt. Soc. Am. A 6, 1760-1766P(1989).
    [51]Hill R J, Frehlich R G. Probability distribution of irradiancefor the onset of strong scintillation. J. Opt. Soc. Am. A 14,1530-1540P (1997).
    [52]Churnside J H, Hill R J. Probability density of irradiance scintillations for strong path-integrated refractive turbulence. J. Opt. Soc. Am. A 4,727-733 P(1987).
    [53]Jakeman E, Pusey P N.The significance of K-distributions in scattering experiments. Phys.Rev.Lett,2002(40):546-550P
    [54]Al-Habash M A, Andrews L C, Phillips R L. Mathematical Model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt.Eng,2001,40(8):1554-1562P
    [55]Miller W B, Ricklin J C, Andrews L C. Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam.J.Opt.Soc.Am.,2004 A(11):2719-2726
    [56]Uysal M, Li J. Error rate performance of coded free-space optical links over gamma-gamma turbulence channels.in Proceedings of IEEE International Conference on Communication ICC'04 (IEEE,2004), Vol.6:3331-3335P.
    [57]Wu Y, Caron B. Digital television terrestrial broading. IEEE Commun,1994, Mag.32, 46-52P
    [58]Pan Q, Green R J. Bit-error-rate performan of lightwave hybrid AM/OFDM systems with comparison with AM/QAM systems in the presence of clipping impulse noise. IEEE Photon.Technol. Lett,1996, vol 8,pp:278-280
    [59]Kim A, Hun Joo Y, Kim Y.60GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs. IEEE Trans. Commun. Electron. 2004, vol 50,pp:517-520
    [60]Wang Z,Giannakis G.B. Wireless multicarrier communications:where Fourier meets shannon. IEEE Signal Processing Magazine,May 2000,vol 47,pp:29-48
    [61]Keang Po.Ho, Kahn J.M. Transmission of analog signals using multicarrier modu-lation:a combined source-channel coding approach. IEEE Transaction on Commu-cations,Nov 1996,vol 44,pp:1432-1443
    [62]张天平.OFDM系统定时和频率同步技术的研究.天津大学硕士论文.2004:13-29页
    [63]佟学俭,罗涛.OFDM移动通信技术原理与应用.人民邮电出版社.2003:33-81页
    [64]王文博,郑侃.宽带无线通信OFDM技术.人民邮电出版社.2007:6-19页
    [65]Bertrand Muquet, Zhengdao Wang, Georgios B, et al. Cyclic prefixing or zero padding for wireless multicarrier transmission. IEEE Transactions on commun, Dec 2002,vol 50: 2136-2148P
    [66]Ohtsuki T. Multiple-subcarrier modulation in optical wireless communication. IEEE Commun. Mag, Mar 2003,vol 41:74-79P
    [67]Tanaka Y, Komine T, Haruyama S, et al. Indoor visible communication utilizing plural while LEDs as lighting. In Proc.IEEE PIMRC 2001, San Diego, CA,2001:81-85P
    [68]Armstrong J, Schmidt B J C. Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN. IEEE Commun.Lett, May,2008,vol 12: 343-345P
    [69]Armstrong J, Lowery A J. Power efficient optical OFDM. Electron. Mar 2006, Lett, vol 42:370-371P
    [70]Dardari D, Tralli V, Vaccari A. A theoretical characterization of nonlinear distortion effects in OFDM systems. IEEE Trans. Commun,48(10):1755-1764P
    [71]Jaime A. Anguita, Ivan B. Djordjevic, Mark A. Neifeld et al. Shannon capacities and error-correction codes for optical atmospheric turbulent channels. Journal of optical networking, Sep 2005, vol 4:586-601P
    [72]郭婷.OFDM系统中降低峰均功率比方法的研究.南京航空航天大学硕士论文.2007.
    [73]Tarokh V, Jafarkhani H. On the computation and Reduction of the Peak-to-Average Power Ratio in Multicarrier Communication. IEEE Trans. Commun, Jan,2000,48(1): 37-44P
    [74]Byoung Jo Choi, Ee-Lin Kuan, Lajos Hanzo. Crest-factor study of MC-CDMA and OFDM. In Proc. VTC, Amsterdam, the Netherlands, Sept 1999:233-237P
    [75]Mathias Friese. OFDM signals with low crest-factor. In Proc. IEEE Global Telecommun. Conf. Globecom'97, Nov 1997:290-294P
    [76]Shang-Kang Deng, Mao-Chao Lin. Recursive Clipping and Filtering with Bounded Distortion for PAPR Reduction. IEEE Transactions on Communications. 2007,55(1):227-230P
    [77]Armstrong J B. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering, Electron. Lett,38(5):246-247P, Feb.2002.
    [78]Friese M. On the degradation of OFDM-signals due to peak-clipping in optimally predistorted power amplifiers. IEEE Global Telecommnication Conference, 1998,2:939-944P
    [79]Hideki Ochiai, Hideki Imai. Performance analysis of deliberately clipped OFDM signals IEEE Transactions on communications, Jan,2002,50(1):89-101P
    [80]Wang T, Tjhung T T, Ng C S. Reduction of peak-to-average power ration of OFDM system using a companding technique. IEEE Transactions on Broadcasting, Sept 1999,vol45:303-307P
    [81]Huang X, Lu J.H, Zheng J.L,et al. Reduction of peak-to-average power ratio of OFDM signals with companding transform. IEE Electronics Letters,2001,vol 37:506-507P
    [82]Bauml R W, Fischer R F H, Huber J B. Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. IEE Electronics Letters, Oct 1996,32 (22):2056-2057P
    [83]Breiling M, Muller-Weinfurter S.H, Huber J.B. SLM peak-power reduction without explicit side information, IEEE Communications Letters, June 2001,5(6):239-241P
    [84]Tongzhou G, Robert J B, Chen Ning. Select mapping with monomial phase rotations for peak-to-average power ratio reduction in OFDM. IEEE 2004,66-70P
    [85]Dae-Woon Lim, Jong-Seon, Chi-Woo Lim et al. A new SLM OFDM scheme with low complexity for PAPR reduction. IEEE Signal Processing Letters,Feb 2005, 12(2):93-96P
    [86]Muller S H, Huber J B. OFDM with reduced peak-to-average power ratio by optimu-m combination of partial transmit sequences. Electro. Lett, Feb 1997,33(5):368-369P
    [87]Cimini L J, Sollenberger N R. Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Commun. Lett, Mar2000 vol.4:86-88P
    [88]Seung Hee Han, Jae Hong Lee. PAPR reduction of OFDM signals using a reduce complexity PTS technique. IEEE Signal Processing Letters, Nov 2004,11(11): 887-890P
    [89]Krongold B S, Jones D L. PAR reduction in OFDM via active constellation extension. IEEE Transaction on Broadcasting,Sept.2003,49(3):258-268P
    [90]Goebel B, Hellerbrand S, Haufe N, et al. PAPR reduction techniques for coherent optical OFDM transmission. Transparent Optical Networks,2009. ICTON'09.11th International Conference on.1-4P
    [91]Krongold B S, Yan Tang, Shieh W. Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM systems via active constellation extension. Optical Communication,2008. ECOC 2008,34th European Conference on. Sept 2008,1-2P
    [92]黄淑梅,朱瑾瑜,刘海燕.使用联合算法来降低OFDM系统的峰均比.计算机应用,Aug 2007,27(8):1874-1876页
    [93]洪善艳,张朝阳.用于降低OFDM系统峰均功率比的PTS-Clipping联合算法.电路与系统学报,2009.8,14(4):105-110页
    [94]Spetch M, Fechtel S A, Fock G et al. Optimum receiver design for wireless broad-band systems using OFDM-Part I. IEEE Trans. Commun,Nov 1999,vol 47:1668-1677P
    [95]Spetch M, Fechtel S A, Fock G et al. Optimum receiver design for wireless broad-band systems using OFDM-Part II. IEEE Trans. Commun,Apr 2001,vol.49:571-578P
    [96]张菊茜.OFDM系统关键技术研究.哈尔滨工程大学博士论文.2006:110-126页
    [97]Schmidl T M, Cox D C. Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun., Dec.1997, vol.45:1613-1621P
    [98]Minn H, Zeng M, Bhargava V K, On timing offset estimation for OFDM systems, IEEE Commun, July 2000, Lett, vol.4:242-244P
    [99]Park B, Cheon H, Kang C et al. A novel timing estimation method for OFDM systems, IEEE Commun. Lett, May 2003, vol.7:239-241P
    [100]Shuang Tian,Kusha Panta,Himal A Suraweera. A Novel Timing Synchronization Method for ACO-OFDM-Based Optical Wireless Communications. IEEE Transaction on wireless communications,2008, vol 7:4958-4967P
    [101]R. G. Gallager. Low-density parity-check codes. Information Theory, IRE Transatio-ns on.1962, vol 8:21-28P
    [102]Gallager R G. Low-Density Parity-Check Codes. Cambridge, MA:MIT Press,1963.
    [103]MacKay D J C, Neal R M. Near Shannon limit performance of low-density partity-chech codes. IEE Electronics Letters,1996,33:1645-1646P
    [104]MacKay D J C. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory, Mar.1999,45:399-432P
    [105]袁东风,张海刚LDPC码理论与应用.人民邮电出版社.2008:37-38页.
    [106]Richardson T, Urbanke R. Efficient Encoding of Low-density Parity-check Codes. IEEE Transaction on Information Theory, Feb.2001,vol 47:638-656P
    [107]马丕明.低密度校验码的理论及应用研究.山东大学博士论文.2005:45-52页
    [108]Fossorier M P C, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Trans. Commun, 1999,47:673-680P
    [109]Futaki H,Ohtsuki T. Low-density parity-check(LDPC) coded OFDM systems with MPSK. Vehicular Technology Conference,2002. VTC Spring 2002. IEEE 55th. vol.2 1035-1039P
    [110]Tanner R M. A recursive approach to low complexity codes. IEEE Trans. Inform. Theory, Sept.1981,27(5):533-547P
    [111]Wiberg N, Loeliger H A, Kotter R. Codes and Iterative Decoding on General Graphs. Euro. Transactions. Telecomm.1995,vol 6:513-525P
    [112]Jean Armstrong, Brendon J C Schmidt, Dhruv Kalra,et at. Performance of Asymmetrically Clipped Optical OFDM in AWGN for an Intensity Modulated Direct Detection System. Presented at IEEE Globecom 2006, San Francisco,2006.
    [113]Djordjevic, I.B,Vasic, B, Neifeld, M.A. LDPC coded OFDM over atmospheric turbulence channel. Lasers and Electro-Optics,2006 and 2006 Quantum Electronics and Laser Science Conference.2006:1-2P.
    [114]柯熙政,席晓莉.无线激光通信概论.北京邮电大学出版社.2003:1-27页
    [115]吴健,阳春平,刘建斌.大气中的光传输理论.北京邮电大学出版社.2005:127-147页
    [116]Higgins M D,Green R J,Leeson M S. A Genetic Algorithm Method for Optical Wireless Channel Control. Lightwave Technology Journal,2009,27(6):760-772P
    [117]Davis C C, Smolyaninov I I,Milner S D. Flexible optical wireless links and netwo-rks. Communications Magazine.2003,41(3):51-57P
    [118]You R, Kahn J M. Average Power Reduction Techniques for Multiple-Subcarrier Inten-sity Modulated Optical Signals. Communications, IEEE Transaction.2001,49 (12):2164-2171P
    [119]Wilson S G, Brandt-Pearce M, Qianling C,et al. Free-space optical MIMO transmission with Q-ary PPM, IEEE Trans. Commun.2005, vol.53:1402-1412P
    [120]Letzepis N, Holland I, Cowley W. The Gaussian free space optical MIMO channel with Q-ary pulse position modulation. IEEE Trans. Wireless Commun,2008, vol.7: 1744-1753P
    [121]Cvijetic N, Wilson S G, Brandt-Pearce M, Performance bounds for free-space optical MIMO systems with APD receivers in atmospheric turbulence,IEEE J. Sel. Areas Commun.2008, vol.26:3-12P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700