基于边界保持块约束叠后波阻抗及叠前AVA三参数同步反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震反演是地震勘探中的关键技术,论文分别对叠后及叠前地震数据反演方法及算法展开研究。在分析现有主要地震方法的基础上,针对地震反演这一非线性、非唯一性问题,提出一种基于边界保持块约束为核心思想的地震反演方法。利用该方法对叠后及叠前资料分别构造出反演的非线性系统方程,同时为求解该方程,对共轭梯度算法及模拟退火等算法的实现展开了研究。建立了利用叠后及叠前资料以边界保持块约束反演方法以及局部优化的改进共轭梯度算法和模型分块交叉移动的学习型模拟退火全局优化算法的地震反演理论体系。
     回顾了常用的地震方法并对其进行了大致的分类。论文对叠前和叠后资料的反演都是基于褶积公式,归纳总结Zoeppritz方程及其近似公式,从而选取适合的近似公式来实现地震反演。
     在介绍离散线性\拟线性反演问题及以概率的观点来反演问题基础上,应用一种新的正则化的技术来解决地震反演问题。地震反射系数具有稀疏特性,同时反射系数往往不是高斯分布的,边界保持块约束的思想正是基于此,通过目标函数里加入一势函数来实现。最后形成对地震波阻抗(密度等)模型呈块特征且具有边界保护特性的反演理论。
     地震反演是非线性问题,且模型参数非常多,算法的运行效率是我们要最为关注的,论文选取共轭梯度算法这一局部优化技术,从标准的共轭梯度算法出发,应用一种杂交形式的算法来解决地震反演问题。全局优化技术介绍了模拟退火及粒子群算法。
     对叠后地震波阻抗反演这一特定问题,就反演方法及其算法展开了研究。首先从简单的地震道线性褶积公式出发,推导出了其共轭梯度递推方程;因反演问题的非唯一性,非线性,推导出了稀疏反演系统非线性方程的共轭梯度解;为直接反演出绝对波阻抗,从常规的目标函数出发推导出混合范数波阻抗反演方法及共轭梯度解;利用边界保持块约束思想,还提出用对数波阻抗来描述反射系数,并推导出利用对数波阻抗来构造基于边界保持的块约束非线性系统方程及其共轭梯度算法递推方程,使反演分辨率更高。
     研究了利用叠前AVA资料进行地震纵波阻抗、横波阻抗及密度三参数同步反演的共轭梯度解问题。采用的正演模型分别为Fatti.AVA褶积公式和Hampson褶积公式。Hampson基于横波阻抗及密度都与纵波阻抗之间存在一定的统计关系,并将这种关系引入Fatti. AVA褶积公式中,这对实际反演非常有益,能减少叠前反演的非唯一性。利用边界保持块约束思想,建立了基于两种褶积公式的边界保持块约束反演目标函数,并推导了其共轭梯度递推方程,建立了叠前AVA同步反演理论。
     最后针对地震反演的多维、非线性等特性,对两种全局优化的反演算法展开了研究,并在此基础上,提出了一种新的改进的针对地震反演的全局优化反演算法,即模型分块交叉移动学习型模拟退火算法。新的算法在两个方面提出了改进,一方面是对模型扰动公式的改进,在模型扰动项里而加入一项学习项,该学习项会使扰动向优化方向移动的功能;另一方面是对模拟退火算法的性能会随着模型量的增加而变差的情况,提出了针对地震反演分块交叉移动的方法来加快模拟退火向最优的收敛速度。最后实现了边界保持块约束地震叠后波阻抗反演及AVA三参数同步反演。
Seismic inversion is a key technique of seismic exploration. Method and algorithm of seimic inversion had been studied in this paper, the seismic datum were Post-stack data and Pre-stack data. Current main seismic methods had been analyzed, a seismic inversion method based edge preserving blocky constrain had been developed, the method's object is to over the shortcomings of non-uniqueness and nonlinear problem. The nonlinear inversion system equations of post-stack data and pre-stack data had been established by using upper method. To obtain the solution of inversion equations, the conjugate gradient algorithm and simulated annealing algorithm had been studied. Finally, the seismic invesion theory system had been established by using improved conjugate gradient algorithm and divided block model moves across new simulated annealing algorithm based edge preserving blocky constrain idea.
     Common current seismic inversion methods had been reviewed and classified in this paper. Because the inversion was basted convolution model, the Zoeppritz equation and its approximation equation were introduced and analyzed also, and the suited equation was found for the inversion.
     In introducing the discrete linear\quasi linear inversion problems and the inverse problem based on probability point of view, a new regularization theory was proposed to solve the problem of seismic inversion. With sparse feature of seismic reflection coefficient, while the reflection coefficient is often not the Gaussian distribution, respectively, the idea of edge preserving blocky constrains was formed. The new inversion was found by adding the potential function into the objective function; finally, inversion theory of protection boundary was formed in seismic impedance (density) model in blocks.
     Inversion problem is nonlinear, and the number of model parameters is very large, the efficiency of the algorithm is that we must concern. The conjugate gradient method was selected as the local optimization technique, from the standard conjugate gradient algorithm, this paper indruced an algorithm with hybrid form, intended to solve the inversion problem. This paper described the simulated annealing and particle swarm algorithm in global optimization technique aslo.
     In this paper, post-stack seismic acoustic impedance inversion method and algorithm were studed. Firstly, from the simple linear seismic convolution model, a recursive equation of the conjugate gradient was derived. Due to the non-uniqueness and nonlinear of inverse problems, this chapter derived recursive equation of conjugate gradient solution, solving nonlinear sparse spike inversion.For the absolute seismic impedance inversion, the objective function under the general mixed norm, impedance inversion method and conjugate gradient solution were studied; by using the idea of based on edge preserving blocky constrain, this paper also using logarithmic impedance to describe the reflection coefficient, and firstly, derived nonlinear system equations and conjugate gradient algorithm. The method of inversion has higher resolution.
     This paper studied three-parameter (P-wave impedance, S-wave impedance and density) simultaneous inversion of the conjugate gradient solution by using prestack seismic AVA data. The forward model is applied to, respectively, the Fatti.AVA convolution model and Hampson convolution model, Hampson convolution model based on statistical relationship exists among P-wave impedance and density, P-wave impedance and S-wave impedance. The introduction of such a relationship in Hampson convolution model, which is of practical significance to the actual inversion, prestack inversion can reduce the non-uniqueness. Based on the idea of edge preserving blocky constrain, firstly, this paper established AVA simultaneous inversion's nonlinear system equations and recursive equation of conjugate gradient algorithm according to two convolution model.
     Finally, in view of multi-dimensional and nonlinear of seismic inversion, two kinds of global optimization algorithm were studied, on this basis, a new global optimization algorithm was proposed for seismic inversion. This improved algorithm was called divided block model moves across simulated new annealing algorithm. The new algorithm is proposed to improve in two ways, one is the improvement of the model perturbation formula, which in the model by adding a disturbance term study entry, the learning item to make the move disturbed the function of the optimization; other is the model was divided to many blocks and block moved by the way of cross block in appling the simulated annealing algorithm. By doing this, the algorithm will accelerate the optimal convergenc speed of inversion. Finally, based the idea of edge preserving blocky constrain, the new algorithm was carried out to Post-stack seismic inversion and AVA simultaneous inversion.
引文
[1]王家映.地球物理反演理论.北京:高等教育出版社,2002.
    [2]杨文采.地球物理反演的理论与方法.北京:地质出版社,1996.
    [3]Backus,G.E.,and Gilbert,J.F. Numerical application of a formulism for geophysical problem. Geophys.J.R.astr.Soc.1967,13(1-3):247-276.
    [4]Backus,G.E.,and Gilbert,.J.F. The resolving power of gross earth data. Geophys.J.R. astr.Soc,1968,16(2):169-205.
    [5]Backus,G.E.,and Gilbert,J.F. Uniqueness in the inversion of inaccurate gross earth data. Phil.Trans. Roy. Soc. London, Ser. A,1970,266(1173):123-192.
    [6]Wiggins,R.A. The generalized linear inverse problem:Implication of surfacewaves and free oscillations for earth structure. Rev.Geophys. Space Phys,1972,10(1):251-285.
    [7]Jackson,D.D. Interpretation of inaccurate, insufficient, and inconsistent data. Geophys.J.R.astr.Soc.,1972,28(2):97-109.
    [8]Parker, R.L. understanding inverse theory. Ann, Rev. Earth Planet, Sci, 1977,5(1):35-64.
    [9]刘海飞.直流激电反演中的线性与非线悱方法研究电阻率:[博士学位论文].长沙:中南大学,2007.
    [10]Tikhonov A. N., Arsenin V. Y. Solution of ill-posedproblems. New York: wiley,1977.
    [11]艾伯特.塔兰托拉.反演理论—数据拟合和模型参数估计.刘福田译,北京:学术出版社,1989.
    [12]Kirkpatrick S, Gelatt C P and Vecchi M P. Optimization by simulated annealing. Science,1983,220(4598):671-680.
    [13]Ingber L. Very fast simulated Re-Annealing. Mathl. Comput. Modelling, 1989,12(8):967-973.
    [14]Goldberg D.E. Genetic algorithms in search, optimization and machine learning. Boston. MA:Addison-Wesley Publishing Company,1989.
    [15]袁曾任.人工神经元网络及其应用.北京:清华大学出版社,1999.
    [16]Kennedy J,Eberhart R C. Particle swarm optimization. Proceeding., IEEE International Conference on Neural Networks,1995,(4):1942-1948.
    [17]李丽,牛奔.基于MCPSO算法的BP神经网络训练.深圳大学学报:理工 版,2009,(2):147-150.
    [18]敬荣中,鲍光淑,陈绍裘.地球物理联合反演研究综述.地球物理学进展,2003,18(3):535-540.
    [19]Latimer R B, Davison R, van Riel P. An interpreter's guide to understanding and working whith seismic-derived accoustic impedance data. The Leading Edge,2000,19(3):242-256.
    [20]Lindseth R O. Synthetic sonic logs-a process for stratigraphic interpretations. Geophysics,1978,44(1):3-26.
    [21]Cooke D A,Schneider W A. Generalized linear inversion of reflection seismic data. Geophysics,1983,48(6):665-676.
    [22]Russell B H,Hampson D P. A comparison of post-stack seismic inversion. 61th SEG Annual Meeting,Expanded Abstracts,1991:876-878.
    [23]杨文采.地震道的非线性混沌反演-理论和数值试验.地球物理学报,1993,36(3):376-386.
    [24]周竹生,周熙襄.宽带约束反演方法.石油地球物理勘探,1993,28(5):523-535
    [25]周竹生,赵荷晴.广义共轭梯度算法.物探与化探,1996,20(5):351-357.
    [26]周竹生,何继善,陆江南.地球物理反问题中的随机反演理论.物探化探计算技术,1997,19(4):289-297.
    [27]李宏兵.具有剔除噪音功能的多道广义线性反演.石油物探,1996,35(4):11-17.
    [28]林小竹,杨慧珠.有井多道反演.石油物探,1999,38(4):44-50.
    [29]卢占武,韩立国,波阻抗反演技术研究进展.世界地质2002,21(4):372-377.
    [30]马国东.波阻抗处理技术研究及应用.中国煤田地质,2001,13(2):65-67.
    [31]马劲风,王学军.测井资料约束的波阻抗反演中的多解性问题.石油与天然气地质,1999,20(1):7-10.
    [32]杨小萍,董春荣.地震反演技术在储层建模中的作用.西安石油学院学报(自然科学版),2000,15(6):912.
    [33]马劲风,许升辉等,地震道反演面临的问题与进展.石油与天然气地质,2002,23(4):321-325.
    [34]Connolly P. Elastic impedance. The Leading Edge,1999,18(4):438-452.
    [35]Whitcombe D N,Connolly P A,Reagan R L,et al. Extended elastic impedance for fluid and lithology prediction.70th SEG Annual Meeting, Expanded Abstracts,2000.63-67.
    [36]Savic M,MastersR,Sena A, et al. Elastic impedance inversion in practice.70th SEG Annual Meeting, Expanded Abstracts,2000.689-692
    [37]Cambois G. AVO and elastic impedance.70th SEG Annual Meeting, Expanded Abstracts,2000.1953-1956.
    [38]Subhashis M, Xuri H, et al. Hybrid seismic inversion:A reconnaissance tool for deepwater exploration. The Leading Edge,2000,19(11):1230-1237.
    [39]Goodway, W., Chen, T., Downton, J. Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters: "Lambda*Rho", "Mu*Rho" and "Lambda/Mufluid stack" from P and S Inversions. Ann. Mtg., Can Soc. Expl. Geophys., Abstracts,1997.148-151.
    [40]Gray, D., and Andersen, E. Application of AVO and inversion to formation properties. World Oil,221, July,2000.85-90.
    [41]Ma, X. Q. Global joint inversion for the estimation of acoustic and shear impedances from AVO derived P-and S-wave reflectivity data. First Break, 2001,19(10):557-566.
    [42]Buland, A. and Omre, H. Bayesian linearized AVO inversion. Geophysics, 2003,68(1):185-198.
    [43]Hampson, D.P., Russell, B.H., and Bankhead, B. Simultaneous inversion of pre-stack seismic data. Ann. Mtg. Abstracts, SEG,2005.1633-1637.
    [44]Misra, S., and Sacchi, M. D. Nonlinear One dimensional prestack seismic inversion with edge preserving smoothing filter. Extended abstract, EAGE 69th conference and exhibition, London, United Kingdom,2007.26-30.
    [45]Misra, S.. and Sacchi, M. D. Global optimization with model space preconditioning:Application to AVO inversion. Geophysics,2008,73(5): 71-82.
    [46]赵政璋,赵贤正,王英民.储层地震预测理论与实践.北京:科学出版社,2005.
    [47]陈建江.AVO三参数反演方法研究:[博士学位论文].山东:中国石油大学,2007.
    [48]Bortfeld, R. Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves. Geophysical Prospecting, 1961,9(4):485-502.
    [49]Aki, K., and Richards, P.G. Quantitative Seismology,2nd Edition. W.H. Freeman and Company,2002.
    [50]Shuey, R.T. A simplification of the Zoeppritz equations. Geophysics, 1985,50(4):609-614.
    [51]Smith G C and Gidlow P M. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting,1987,35(9):993-1014.
    [52]Vern R, Hilterman F. Lithology color-coded seismic sections:The calibration of AVO crossplotting to rock properties. The Leading Edge,1995,14 (8):847-853.
    [53]Gidlow P M,Smith G C, Vail P J. Hydrocarbon detection using fluid factor traces,a case study:How useful is AVO analysis? Joint SEG/EAEG summer research workshop,Technical Program and Abstracts,1992.78-89.
    [54]Goodway B, Chen T, Downton J. Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters.67th Annual International SEG meeting, Expanded abstracts,1997.183-186.
    [55]Xu Y, Bancroft J C. AVO case study:Extraction of Lame's parameters from vertical component seismic data. Presented at Geotriad'98, Canada, 1998.350-351.
    [56]Gray D. Bridging the gap:using AVO to detect changes in fundamental elastic constants. Ann Internet Expanded Abstract of 59th SEG Mtg,1999. 852-855.
    [57]Yang hua Wang. Approximations to Zoeppritz equation and their use in AVO analysis. Geophysics,1999,64(6):1920-1927
    [58]郑晓东Zoeppritz方程的近似及其应用.石油地球物理勘探,1991,26(2):129144.
    [59]杨绍国,周熙襄Zoepritz方程的级数表达式及近似.石油地球物理勘探,1994,29(4):399-412.
    [60]Knott C G. On the reflection and refraction of elastic wave with seismological application. Phil Mag 5th ser,1899.64-97.
    [61]Zoeppritz K. On the reflection and penetration of seismic waves through unstable layers. Goettinger Nachr,1919.66-84.
    [62]Gelfand, V., et al. Seismic Lithologic Modeling of Amplitude-versus-offset Data. Proceedings of the 56th Annual Meeting of the SEG,1986.334-336.
    [63]Fatti, J.L., Smith, G.C., Vail, P.J., Strauss, P.J., Levitt, P.R. Detection of gas in sandstone reservoirs using AVO analysis:a 3D Seismic Case History Using the Geostack Technique. Geophysics,1994,59(9):1362-1376.
    [64]傅淑芳,朱仁益.地球物理反演问题.北京:地震出版社,1997.
    [65]G.E.Forsythe, M.A.Malcolm, C.B.Moler著,计九三译.计算机数值计算方法.北京:清华大学出版社,1987.
    [66]Ulrych. T. J., Sacchi. M. D., Woodbury, A. Tutorial:A Bayes tour of inversion. Geophysics,2001,66(1):55-69.
    [67]Charbonnier P, Fraud L B, Aubert G, et al. Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing,1997,6(2):298-311.
    [68]Carrie F. Youzwishen. Non-linear sparse and blocky constraints for seismic inverse problems:[M. Sc. thesis]. Edmonton:University of Alberta,2001.
    [69]A H吉洪诺夫,B(?)阿尔先宁著,王秉忱译.不适定问题的解法.北京:地质出版社,1979.
    [70]Carrie F. Youzwishen. Non-linear sparse and blocky constraints for seismic inverse problems:[M. Sc. thesis]. Edmonton:University of Alberta,2001.
    [71]Geman D, Reynolds G. Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(3):367-383.
    [72]Bouman C, Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Processing,1993, 2(7):296-310.
    [73]Molina, R., Nunez, J., Cortijo, F. J., Mateos, J. Image restoration in Astronomy:A Bayesian perspective. IEEE Signal Proc.Mag.2001,18(2): 11-29.
    [74]Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from poisson data using Gibbs priors. IEEE Trans.Med. Image. 1990,MI-8(6):194-202
    [75]Portniaguine, O. and Zhdanov, M. S. Focussing geophysical inversion images. Geophysics,1999,64(3):874-887.
    [76]Barone, P. Fast deconvolution by a two-step method. SIAM Journal of Sci. Comp,1999,21(3):883-899.
    [77]张宏兵,杨长春.正则参数控制下的波阻抗约束反演.地球物理学报,2003,46(6):827-834.
    [78]张宏兵,杨长春,尚作萍等.基于软约束模式的波阻抗反演.地球物理学进展,2006,21(3):837-844
    [79]张宏兵,尚作萍,杨长春等.波阻抗反演正则参数估计.地球物理学报,2005,48(1):181-188.
    [80]张罗磊,于鹏,王家林.光滑模型与尖锐边界结合的MT二维反演方法.地球物理学报,2009,52(6):1625-1632.
    [81]Hongbing Zhang, Zuoping Shang, Changchun Yang. A non-linear regularized constrained impedance inversion. Geophysical Prospecting,2007,55(6): 819-833.
    [82]AI-Baali M. Deseent property and global convergence of the Fletcher-Reeves method with inexact line seareh. IMA Journal of Numerical Analysis,1985, 5(1):121-124.
    [83]Fletcher R. Practical method of optimization, vol Ⅰ:unconstrained optimization,2nd edition. New York:Wiley,1987.
    [84]LIU Y, STORY C.Efficient generalized conjugate gradient algorithms Part 1: Theory. JOTA,1991,69:129-137.
    [85]Dai Y, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property. SI AM Journal on Optimization,1999,10(1):177-182.
    [86]戴域虹,袁亚湘.共轭梯度法.上海:科学技术出版社,1999.
    [87]林穗华,黄海.一种新的杂交共轭梯度算法.广西科学,2007,14(4):378-380,385.
    [88]Huang H, Wei Z X, Yao S W. The proof of the sufficient descent condition of the Wei-Yao-Liu conjugate gradient method under the strong Wolfe-Powell line search. Applied Mathematics and Computation,2007,189(2):1241-1245.
    [89]D.Touati, C.Storey. Efficient hybrid conjugate gradient techniques. JOTA, 1990,64(2):379-397.
    [90]Gilbert J C, Nocedal J. Global convergence properties of conjugate gradient methods for optimization. SIAM J Optimization,1992,2(1):21-42.
    [91]Dai Y H, Yuan Y An efficient hybrid conjugate gradient method for unconstrained optimization. Annals of Operation Rsearch,2001,103(1):33-47.
    [92]姚姚.地球物理反演基本理论与应用方法.北京:中国地质大学出版社,2002.
    [93]Rothman. D. H. Nonlinear inversion, statistical mechanics, and residual statics estimation. Geophysics,1985,50(12):2784-2796.
    [94]Rothman, II. H. Automatic estimation of large residual statics corrections. Geophysics,1986,51(2):332-346.
    [95]H.H Szu, R.L Hartley. Fast simulated annealing. Physics Letters.1987, 122(3-4):157-162.
    [96]J.W. Green, K.J. Supowit. Simulated annealing without rejected moves. IEEE Trans, On Computer-Aided Design,1986,5(1):221-228.
    [97]D.S. Johnson, C.R. Aragon, L.A. Mcgeoch etc. Optimizaton by simulated annealing:An experimental evaluaton. Part I, AT&T Bell Laboratories, Murray Hill (NJ),1987.
    [98]C. Sechen. VLSI placement and global routing using simulated annealing. Kluwer Academic,1988.
    [99]P.J.M. Van Laarhoven, E.H.L. Aarts. Simulated annealing:Theory and applications. Springer,1 edition,1987.
    [100]Stoffa P. L. and Sen M. K. Nonlinear multi-parameter optimization using genetic:inversion of plane wave seismograms. Geophysics,1991,56(11): 1794-1810.
    [101]姚姚.地球物理非线性反演模拟退火法的改进.地球物理学报,1995,38(5):643-650.
    [102]刘鹏程,纪晨,Stephen H. Hartzell改进的模拟退火—单纯形综合反演方法.地球物理学报,1995,38(2):199-1346.
    [103]康立山,谢云,尤矢勇等.非数值并行算法—模拟退火算法.北京:科学出版社,1994.
    [104]何军.解优化问题的退火回火算法.武汉大学学报,并行计算专刊,1991.43-48.
    [105]姚姚.蒙特卡洛非线性反演方法及应用.北京:冶金工业出版社,1997.
    [106]纪震,廖惠连,吴青华.粒子群算法及应用.北京:科学出版社,2009.
    [107]李丽,牛奔.粒子群优化算法.北京:冶金工业出版社.2009
    [108]Y. Shi, R. Eberhart. Parameter Selection in Particle Swarm Optimization. Proceedings of the Annual Conference on Evolutionary Programm, San Diego.1998.591-600.
    [109]Y. Shi, R. Eberhart. Fuzzy adaptive particle swarm optimization. In Proc. IEEE Int. Conf. Evolutionary Computation,2001.1 (1):101-106.
    [110]J.Kennedy, R.Mendes. Population Structure and Particle Swarm Performance. Proceedings of the IEEE Congress on Evolutionary Computation. Piscatawat. NJ,2002.1671-1675.
    [111]Angeline, P. J. Using Selection to Improve Particle Swarm Optimization, IEEE International Conference on Evolutionary Computation, Anchorage, Alaska,1998.84-89.
    [112]L. L. Li, L. Wang, L. Liu. An effective hybrid PSO-SA strategy for optimization and its application to parameter estimation. Applied Mathematics and Computation,2006,179(1):135-146.
    [113]Eberhart, R. C., Hu, X. Human tremor analysis using particle swarm optimization. Proc. Congress on Evolutionary Computation, Washington, DC, Piscataway, NJ:IEEE Service Center,1999.1927-1930.
    [114]D Srinivasan .Traffic incident detection using particle swarm optimization. Proceedings of the 2003 IEEE Swarm Intelligence Symposium SIS03 Cat No03EX706,2003.144-151
    [115]易远元.地震波阻抗反演的粒子群算法实现.石油天然气学报,2007,29(3):79-81.
    [116]蔡涵鹏,贺振华,黄德济.基于粒子群优化算法波阻抗反演的研究与应用.石油地球物理勘探,2008,,13(5):535-539.
    [117]聂茹,岳建华,邓帅奇.地震波阻抗反演的免疫粒子群算法.中国矿业大学学报,2010,39(5):733739.
    [118]严哲,顾汉明.量子行为的粒子群算法在叠前AVO反演中的应用.石油地球物理勘探,2010,45(4):516-519.
    [119]周竹生,何继善,张赛民.井地联合约束随机反演方法及应用研究技术报告.湖南省科技进步二等奖,2005.
    [120]马劲风,王学军,赵圣亮等.波阻抗初值选择与地震道反演的多解性.石油地球物理勘探,1999,341(3):332-340.
    [121]Walker, C., Ulrych, T. J. Autoregressive recovery of the acoustic impedance. Geophysics,1983,48(10):1338-1350.
    [122]Buland, A., and Omre, H. Bayesian linearized AVO inversion. Geophysics. 2003,68(1):185-198.
    [123]Simmons, J.L. Backus, M.M. Waveform-based AVO inversion and AVO prediction-error. Geophysics,1996,61 (6):1575-1588.
    [124]A. Bruun, C. Rau Schi(?)tt, G. Marsden, J. Bown. Pre-Stack Simultaneous AVO Inversion on the South Arne Chalk Field, Danish North Sea. Expanded Abstracts of 67th EAGE Conference and Exhibition.2005. H030.
    [125]Contreras A, Torres-Verdin C. Kvien K, ET al. AVA stochastic inversion of pre-stack seismic data and well logs for 3D reservoir modeling. Expanded Abstracts of 67th EAGE Conference and Exhibition.2005. F014.
    [126]Castagna, J.P., Batzle, M.L., and Eastwood, R.L. Relationship between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics,1985,50(4):571-581.
    [127]Gardner, G. H. F., Gardner, L. W. and Gregory, A. R. Formation velocity and density-The diagnostic basics for stratigraphic traps. Geophysics, Soc. of Expl. Geophysics,1974,39(6):770-780.
    [128]Press, F. Earth models obtained by Monte-Carlo inversion. Journal of Geophysical Research,1968,73(1):5223-5234.
    [129]Wiggins, R. A. Minimum entropy deconvolution. Geoexploration,1978, 16(1):21-35.
    [130]Jin, S., and Madiriaga, R. Nonlinear velocity inversion by a two-step Monte Carlo method. Geophysics,1994,59(4):577-590.
    [131]Ma, X, Q. Simultaneous inversion of prestack seismic data for rock properties using simulated annealing. Geophysics,2002,67(6):1877-1885.
    [132]Varela, O. J., Tomes-Verdin, C, Sen, M. K. Enforcing smoothness and assessing uncertainty in non-linear one dimensional prestack seismic inversion. Geopphsical Prospecting,2006,54(3):239-259.
    [133]杨午阳.模拟退火叠前AVA同步反演方法.地球物理学进展,2010,25(1):219-224.
    [134]刘全新,方光建.利用模拟退火算法实现地震叠前反演.岩性油气藏,2010,22(1):87-92.
    1135] Brian T. Luke. Simulated Annealing Cooling Schedules. http://members.aol.com/btluke/simanfl.htm.
    [136]纪震,周家锐,廖惠连.智能单粒子优化算法.计算机学报,2010,33(3):556-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700