深空通信中微弱信号接收检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深空测控通信系统对在遥远的空间探测器进行通信、测量和控制,包括跟踪、遥测、指令控制和数传,对深空探测器的整个飞行过程进行测控以保证其飞行轨道的准确,并获取探测过程中的回传科学信息。本文在对深空测控系统通信体制的特点分析的基础上,研究了高增益信道编码和微弱信号的接收处理等关键技术提出了一系列适用于深空探测的信道编码和微弱信号接收的新方法。
     针对深空探测实际需求,提出了一种易于工程实现的Turbo码编译码算法。该方法采用线性拟合Log-Map算法有效逼近Log-Map算法,大大减少了计算量;应用二次置换多项式交织器,有效地解决了并行译码的访问冲突问题,缩短了Turbo码译码时延。该算法性能优良,算法简单,解交织与交织结构相同,所需存储空间少,易于硬件实现。
     综合EXIT图法和自适应微粒群优化(APSO)算法的优点,提出了一种基于EXIT图和APSO算法的非正则LDPC码度分布对优化方法。该方法设计了衡量EXIT曲线匹配程度的全局代价函数,并运用APSO算法对度分布对进行快速迭代优化,迭代过程中不需要固定CND曲线,可以获得EXIT曲线更加匹配的优化度分布对,以及更高的噪声门限。仿真结果表明,该方法在码结构优化方面有着很好的性能,且优化速度较高斯逼近法有了很大的提高。
     在针对围长的校验矩阵构造方法中,提出了一种新的QCE-PEG算法,给出了实现具体步骤和设计实例。该算法将构造过程分解,结合准循环扩展技术和渐进边增长构造方法的优点,既能满足度分布对的需要,又保证了平均围长尽可能大的要求,提高了LDPC编码的速度和性能。用该方法设计的中短长度非正则LDPC码,其性能优于渐进边增长方法构造的PEG码,且设计简单,编码快速,便于工程实现。
     为进一步提高LDPC纠错性能,在基于QCE-PEG构造校验矩阵基础上,研究了以LDPC码为水平码、单奇偶校验码为垂直码的LDPC-SPC联合编码技术,有效地降低了LDPC码的译码门限与误码平层,能够在较短码长就能达到在信噪比0.7dB下误比特率为10-5,大大减少存储空间,满足深空探测要求。
     为解决深空测控领域中低信噪比下微弱信号的捕获、跟踪问题,实现高精度测速、测距功能,设计了微弱信号接收机方案。采用二维捕获方案,并行捕获下行信号的多普勒频率和多普勒频率变化率;利用二阶锁频环和三阶锁相环联合工作方式进行载波跟踪。系统性能满足深空探测指标要求。
     最后对全文进行了总结,并对后续工作进行了展望。
The TT&C system of deep space exploration functions as telemetry, tracking and command for the faraway detector in space, which keeps a reliable commmunication and data transmission with the object so as to ensure the orbit accuracy and acquire the scientic information. Based on the analysis of the characteristic of a representative TT&C system, several new solution for its key technique such as high gain channel coding and weak signal detection is presented.
     A practical Turbo coding scheme using quadratic permutation polynomial (QPP) interleaver and linear Log-Map algorithm is presented. The adoption of linear Log-Map algorithm reduces the computation complexity sharply, and the application of QPP interleaver avoids the access collision problem in parallel decoding effectively. The algorithm has some advantages such as good performance, simple algorithm, the same structure for both interleaver and deinterleaver, few storage space and easy hardware implementation.
     Based on EXIT chart and APSO algorithm, a new method to optimize the degree distributions of irregular LDPC codes is proposed. An overall cost function is first designed to measure the matching extent of EXIT curves. Then the degree distributions are optimized iteratively by using the adaptive particle swam optimizer (APSO) algorithm. Such a procedure needs not to fasten the CND curve. Therefore, some new degree distributions with higher noise threshold are obtained. Simulation results show that the algorithm has a good performance to achieve optimal code structures, more effective than Gaussian Approximation in computation.
     To enable the practicability of the low density parity check codes, a QCE-PEG algorithm is presented, followed by the description of the implementation approach and a design case in detail. The algorithm divides the construction into two process, combining the quasi-cyclic extension method and progressive edge-growth technique. It has several advantages such as good degree distribution, long average girth, rapid encoding process and good performance. The irregular LDPC codes the algorithm constructed has good performance, simple and practicable.
     To improve the correcting error performance of LDPC code, the LDPC-SPC technique is introduced which based on the check matrix construction of QCE-PEG. It uses LDPC code as horizontal code and single parity code as vertical code. Thus it can not only fall the decoding threshold and error floor effectively, but also reaches BER less than 10-5, while SNR is 0.7dB with shorter frame length.
     To overcome the capturing and tracking problem of weak signal under the low SNR environment of deep space and to obtain the precise measurement for the speed and distance, a practical receiver scheme is designed. In the scheme, A 2D capture method was applied to capture both the Doppler frequency and Doppler variety rate of downlink signal in parallel mood. A 2-rank FLL associate with 3-rank PLL mode to track carrier is presented. Simulation and test results show that the system performance of our design can satisfy the requirement of deep space exploration.
     Finally, a summary of the whole paper is given and a prospect of the issues concerned in this field is also made from the author’s research perspective.
引文
[1]石书济.飞行器测控系统.北京:国防工业出版社,1999. 4-10
    [2]孙白波.对我航天测控体制的期望.遥测遥控.2000,4,21(4). 4-6
    [3]孙世贵.航天测控技术现状及其发展.测控技术.1995,5,14(2).3-5
    [4] Dixon R C. Spread spectrum systems. New York: John Wiley & Sons, 1984. 313-335.
    [5] Flikkema P G. Spread-spectrum techniques for wireless communication. IEEE Signal Processing Magazine.1997,5,14(5). 26-36.
    [6]吴海玲,郭树人,王莉.统一扩频测控体制的初步探讨.电讯技术. 2003,4,43(4). 72-76
    [7]朱平月.航空测控技术成果概述.测控技术.1998,3,17(3). 11-13
    [8]刘嘉兴.航天测控技术的过去、现在和未来.电讯技术. 1999,2,39(2). 1-7
    [9]冯贵年,于志坚.跟踪与数据中继卫星系统的现状和发展.中国航天. 2004,1,37(1). 16-19
    [10]赵业福.卫星测控网的技术发展.飞行器测控学报.2002,6,21(3). 1-4
    [11] Simon M, Omura J, Scholtz R. Spread spectrum communications. New York: McGraw-Hill Inc.1994. 2-15
    [12] Dolinar S. A new code for Galileo. TDA Progress Report 42-93. 1988,3. 83-96
    [13] Pollara F, Cheuang KM. Performance of concatenated codes using 8-bit R-S codes. TDA Progress Report 42-97. 1989,3. 9:194-201
    [14] Costello DJ, HagenauerJ, Imai H, et al. Applications of error-control coding. IEEE Transactions on Information Theory, 1998,10,44(6): 2531-2560
    [15] Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. IEEE International Conference on Communications. 1993,5. 1064-1070
    [16] Divsalar D, Pollara F. On the design of turbo codes. TDA Progress Report 42-123. 1995,11. 99-121.
    [17] Oscar Y. Takeshita. A New Metric for Permutation Polynomial Interleavers. IEEE International Symposium on Information Theory. 2006 ,7. 1983-1987
    [18] Benedetto S, Divsalar D, Montorsi G. Serial concatenation interleaved codes: performance analysis, design and iterative decoding. TDA Progress Report 42-126. 1996,8. 1-26
    [19] Divsalar D, Dolinar S, McEliece R J. Transfer function bounds on the performance of turbo codes. TDA Progress Report 42-122. 1995,8. 44-55
    [20] Ho MSC. Serial and Parallel Concatenated Turbo Codes. The University of South Australia: PhD Thesisi of School of Physics and Electronic Systems Engineering. 2000.
    [21] Takeshita O Y, Fossorier M P C, Costello DJ. A new technique for computing the weight spectrum of turbo codes. IEEE Communications Letters. 1999,8,3(8). 251-253.
    [22] Andrews K S, Heegard C,Kozen D. Interleaver design methods for turbo codes. IEEE International Symposium on Information Theory. 1998,8. 420-425
    [23] Blackert W J, Hall E K, Wilson S G. Turbo code termination and interleaver conditions. Electronics Letters. 1995,11,31(24). 2082-2083
    [24] Barbulescu A S, Pietrobon S S. Interleaver design for turbo codes. Electronics Letters. 1994,12,30(25). 2107-2108
    [25] Crozier S. New high-spread high distance interleavers for turbo codes. 20th Biennial Symposium on Communications. 2000,5. 3-7
    [26] Hokfelt J. On the design of turbo codes. Sweden: PhD Thesisi of Lund University. 2000,6.
    [27] Oscar Y, Takeshita. Permutation Polynomial Interleavers: An Algebraic-Geometric Perspective. IEEE transactions on information theory. 2007,6,53(6). 2116-2132
    [28] Brink S ten. Conergence behavior of interatively decoded parallel concatenated codes. http://www.inue.uni-stuttgart.de/publications/publications.htm
    [29] Gracie K, Crozier S, Hunt A. Performance of a low complexity turbo decoder with a simple early stopping criterion implemented on a SHARC processor. International Mobile Satellite Conference. 1999,6. 281-286
    [30] Shao R Y, Lin S, Forssorier M. Two simple stopping criteria for turbo decoding. IEEE transactions on communication. 1999,8,47(8). 1117-1120
    [31] Wu Yufei. Implementation of paralle and serial concatenated convolutional codes. PhD Dissertation of Virginia Polytechnic Institute and State University. 2000.4
    [32] Matache A, Dolinar S, Pollara F. Stopping rules for turbo decoders. TDA Progress Report 42-142. 2000,8. 1-22
    [33] Gallager R G. Low density parity-check codes. IRE transactions on information theory. 1962,1, 8(1). 21-28
    [34] Mackay DJC, Neal RM. Near Shannon limit performance of low-density parity check codes. Electronics Letters. 1996,8,32(18): 1645-1646
    [35] Luby M.G. Improved Low-Density Parity-Check Codes Using Irregular Graphs. IEEE Transactions on Information Theory. 2001,2,47(2). 285-298
    [36] Richardson T J. Design of Capacity Approaching Irregular Low-Density Parity-Check Codes. IEEE Transactions on Information Theory. 2001,2,47(2). 619-637
    [37]Spielman D A. Finding Good LDPC Codes. From Internet: spielman@math.mit.edu
    [38] Kou Y, Lin S. Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and New Result. IEEE Transactions on Information Theory. 2001, 11,47(7). 2711-2736
    [39] Ammar B, Honary B, Kou Y. Construction of Low Density Parity Check Codes: A Combinatoric Design Approach. IEEE Symposium on Information Theory. 2002,7. 311-315
    [40] Rosenthal J, Vontobel P. Constructions of regular and irregular LDPC codes using Ramanujangraphs and ideas from Margulis. IEEE International Symposium on Information Theory. 2001,6. 4-9
    [41] Shannon CE. A mathematical theory of communication. USA Bell Systematic Technical Journal. 1948,10,27(3). 379-423+623-656
    [42]毕成余.无线扩频系统中信道编码的研究.东南大学硕士论文. 2006.1
    [43]胡家佺.深空通信中Turbo码交织技术研究.西安电子科技大学硕士论文. 2008.4.
    [44]刘东华. Turbo码原理与应用技术.北京:电子工业出版社,2004.1
    [45]文红,符初生,周亮. LDPC码原理与应用.成都:电子科技大学出版社,2006.4
    [46]翟政安,罗伦,时信华.深空通信信道编译码技术研究.飞行器测控学报. 2005,6,24(3). 1-5
    [47]潘莉颖.深空通信中Turbo码编码器的研究.哈尔滨工业大学硕士论文. 2005.6
    [48]李会莲.深空通信中的多维Turbo码研究.西安电子科技大学硕士论文. 2008.1
    [49]将伟智.深空通信抗干扰编码技术研究.哈尔滨工业大学硕士论文. 2002.6
    [50]赵旦峰,董玉华,肖瑛.基于S交织算法的改进的交织器.现代电子技术. 2003,10,26(20). 12-14
    [51]刘星成,张光昭.一类新的Turbo码交织器设计.中山大学学报(自然科学版),2000,12,39 (6). 39-43
    [52]祈峰,王睦重. Turbo码最优周期交织器.北京航空航天大学学报,2000,8,26 (4). 381-384
    [53]窦中兆,雷湘. CDMA无线通信原理.北京:清华大学出版社,2004.2.
    [54] Benedetto S, Divsalar D, Montorsi G etc. Algorithm for continuous decoding of turbo codes. Electronics Letters. 1996,1,32,(4). 314-315
    [55] Giulietti A, Perre L, Strum M.Parallel turbo coding interleavers: avoiding collisions in accesses to storage elements. Electronics Letters. 2002,1,38(5).232-234
    [56] Oscar Y. Takeshita. On Maximum Contention-Free Interleavers and Permutation Polynomials over Integer Rings. IEEE Transactions on Information Theory. 2006,3, 52(3). 1249-1253
    [57] Jing Sun, Oscar Y. Takeshita. Interleavers for Turbo Codes Using Permutation Polynomials over Integer Rings. IEEE Transactions on Information Theory. 2005,1,51(1). 101-117
    [58] Jonghoon Ryu, Oscar Y. Takeshita. On Quadratic Inverse for Quadratic Permutation Polynomials over Integer Rings. IEEE Transactions on Information Theory. 2006,3,52(3). 1254-1260
    [59] Oscar Y. Takeshita. Permutation Polynomial Interleavers: An Algebraic-Geometric Perspective. IEEE Transactions on Information Theory. 2007,1,53(6). 2116-2132
    [60] Oscar Y. Takeshita. A New Metric for Permutation Polynomial Interleavers. IEEE Symposium on Information Theory. 2006,6. 1983-1987
    [61] Eirik Rosnes, Oscar Y. Takeshita. Optimum Distance Quadratic Permutation Polynomial-Based Interleavers for Turbo Codes. IEEE Symposium on Information Theory. 2006,6. 1988-1992
    [62] Yen-Lun Chen, Jonghoon Ryu, Oscar Y. Takeshita. A Simple Coefficient Test for Cubic Permutation Polynomials over Integer Rings. IEEE communications letters. 2006,7,10(7).549-551
    [63] Zhao H, Fan P. Simple method for generating mth-order permutation polynomials over integer rings. Electronics Letters, 2007,4,43(8). 449-451
    [64] Oscar Y. Takeshita, Daniel J. Costello. New Classes of Algebraic Interleavers for Turbo-Codes. IEEE Symposium on Information Theory. 1998.8. 419-423
    [65] Svirid Y. Weight distributions of Turbo codes. IEEE Symposium on Information Theory. 1995,9. 33-36
    [66] Benedetto S, Divsalar D, Montorsi G, et al. Analysis, design and iterative decodingof double serially concatenated codes with interleavers. IEEE Journal on Selected Areas in Communications. 1998,2,16(2). 231-244
    [67] Valenti M C. Iterative detection and decoding for wireless communications. PH D Dissertation. Bradley Dept of Elect & Comp. Virginia Tech. 1999,6
    [68] Dunscombe E, Piper F C. Optimal interleaving scheme for convolutional coding. Electronics Letters. 1989, 10,25(22). 1517-1518
    [69] Willenegger S. CDMA2000 physical layer: an overview. Journal of Communications and Networks, 2000, 1,2(1). 5-17
    [70] Ehtiati N, Soleymani M R, Sadjadpour H R. Joint Permutor Design for Multiple Turbo Codes, IEEE Vehicular Technolog Conference. 2004,9. 2302-2306
    [71] He C, Lentmaier M, Costello D J,et al. Joint Permutor Analysis and Design for Multiple Turbo Codes. IEEE Transactions on Information Theory. 2006,9, 52(9). 4068-4083
    [72] Huebner A, Zigangirov K, Costello D J, A New Cycle-Based Joint Permutor Design for Multiple Turbo Codes, IEEE Transactions on Communication, 2006,6,54(6). 961-965
    [73] Wesel R D , Cioffi J.M. Trellis code design for periodic interleavers. IEEE Communications Letters. 1999,4,3(4). 103-105
    [74] Yuan J, Vucetic B, Feng W. A code-matched permutor design for turbo codes. IEEE Transactions On Communication. 2002, 6,50(6). 926-937
    [75] Ehtiati N, Soleymani M R, Sadjadpour H R. Permutor design for multiple turbo codes. IEEE Electrical and Computer Engineering. 2003,5,3(5). 1605-1607
    [76]王晓丹,谢红. LDPC码的有效编码算法研究.舰船电子对抗. 2007.8,30(4). 80-82
    [77]张涛. IEEE802.16e中的LDPC码分析.北京电子科技学院学报.2007,4,15(2). 30-32
    [78]王单,童胜,李颖等. LDPC码的快速收敛译码算法.西安电子科技大学学报. 2005,2,32(1). 103-107
    [79]张长帅,宋黎定,刘泳.低密度奇偶校验码快速收敛译码算法研究.遥测遥控. 2007,8,28(3). 47-52
    [80]王锦山,袁柳清.一种新的LDPC译码算法及其硬件实现.电视技术.,2007,5,31(5). 19-21
    [81]林雪红,吴伟陵. LDPC码的改进译码算法.电路与系统学报. 2007,6,12(3).51-54
    [82]岳田,裴保臣. LDPC码的几种译码算法比较.无线电通信技术. 2006,8,32(4). 24-26
    [83]王单. LDPC码编译码算法研究.西安电子科技大学博士学位论文. 2006.4
    [84]王鹏. LDPC码的编译码原理及编码设计.西安电子科技大学硕士学位论文. 2004.1
    [85]尹晓琦. LDPC码编码及译码算法的研究.南京师范大学硕士学位论文. 2006.5
    [86]陈灵生.基于APSK(PSK)调制的LDPC码的译码算法.浙江大学硕士学位论文. 2006.5
    [87]杨兴丽. LDPC码译码算法研究.燕山大学硕士学位论文. 2004.3
    [88]徐华.对基于EXIT图的LDPC码的优化算法的改进.应用科学学报. 2007,25(2). 134-140
    [89] Fossorier M P C, Mihaljevic Miodrag, Imai Hideki. Reduced Complexity Iterative Decoding of Low-Density Parity-Check Codes Based on Belief Propagation. IEEE Transactions on Communication, 1999,5,47(5). 673-680
    [90] Hu XiaoYu, Eleftheriou Evangelos, Arnold Dieter-Michael, et al. Efficient Implementations of the Sum-Product Algorithm for Decoding LDPC Codes. GLOBECOM 2001 IEEE Global Telecommunications Conference, 2001,11,1. 1036-1041
    [91] Jia Minli, He Zunwen, Kuang Jingming, et al. LDPC Codes Irregular Modulation Based on Degree Distribution. IEEE International Conference onWireless Communications, Networking and Mobile Computing, 2007,9. 873-876
    [92] Chen Jinghu, Tanner R. Michael, Zhang Juntan, et al. Construction of Irregular LDPC Codes by Quasi-Cyclic Extension. IEEE Transactions on Information Theory. 2007,4,53(4).214-217
    [93] Yue Guosen, Lu Ben, Wang Xiaodong. Analysis and Design of Finite-Length LDPC Codes. IEEE Transactions On Vehicular Technology. 2007,5, 56(3). 1321-1332
    [94] Hu Xiao-Yu, Eleftheriou Evangelos, Arnold Dieter M. Regular and Irregular Progressive Edge-Growth Tanner Graphs. IEEE Transactions on Information Theory. 2005,1,51(1). 386-398
    [95] Richrdson T, Shokrollahi A, Urbanke R. Finite-length analysis of various low-density parity-check ensembles for the binary erasure channel. IEEEInternational Symposium on Information Theory. 2002,2.1-4
    [96] Davey M C. Error-correction using low-density parity-check codes. Ph.D. dissertation of University Cambridge. 1999,12
    [97] Luby M G, Mitzenmacher M, Shokrollahi MA, et al. Practical loss-resilient codes. Proceedings of the twenty-ninth annual ACM symposium on Theory of Computing . 1997,10. 150-159
    [98] Richardson T J, Shokrollahi M A, Urbanke R L. Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory. 2001,2,47(2). 619-637
    [99] Richardson T J, Urbanke R L. The capacity of low-density parity-check codes under message-passing decoding. IEEE Transactions on Information Theory. 2001,2 47(2).599-618
    [100] Chung S Y. On the construction of some capacity-approaching coding schemes. Ph.D. Dissertation of Massachusetts Institute of Technology, 2000,9
    [101] Chung SY, Forney G D, Richardson T J, et al. On the design of low-density parity-check codes within 0.0045dB of the Shannon limit. IEEE Communication Letters. 2001,2,5(2). 58-60
    [102] Chung S Y, Richardson T J, Urbanke R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Transactions on Information Theory. 2001,2,47(2). 657-670
    [103] Richardson T J and Urbanke RL , Multi-edge type LDPC codes. Workshop honoring Prof. Bob McEliece on his 60th birthday. 2002,5
    [104] Brink S ten. Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Communication. 2001,10,49(10). 1727-1737
    [105] Brink S ten. Convergence of multi-dimensional iterative decoding schemes. 35th Asilomar Conference on Signals, Systems and Computer. 2001,11,1. 270-274
    [106] Brink S ten, Kramer G, Ashikhmin A. Design of low-density parity-check codes for multi-antenna modulation and detection. IEEE Transaction on Communication. 2004,4,52(4). 670-678
    [107] Tuchler M, Hagenauer J. EXIT charts of irregular codes. Conference on Information Sciences and Systems. 2002,3.106-118
    [108] Hu Xiao-Yu, Eleftheriou Evangelos, Arnold Dieter-Michael, et al. Efficient implementation of the sum-product algorithm for decoding LDPC codes.Proceedings of IEEE GLOBECOM’01. 2001,11,2.25-29
    [109] Tian T, Jones C, Villasenor J D , et al. Construction of irregular LDPC codes with low error floors. IEEE International Conference on Communications. 2003,5,5. 3125-3129
    [110] Lan L, Tai Y Y, Chen L, et al. A trellis-based method for removing cycles from bipartite graphs and construction of low density parity check codes. IEEE Communication Letters, 2004,7,8(7). 443-445
    [111] Ramamoorthy A, Wesel R. Construction of short block length irregular low-density parity-check codes. IEEE International Conference on Communications. 2004,6,1. 410-414
    [112] Tanner R M. Spectral graphs for quasi-cyclic LDPC codes. IEEE International Symposium on Information Theory. 2001,6. 24-29
    [113] Tanner R M, Sridhara D, Fuja T. A class of group-structured LDPC codes. IEEE International Symposium on Communication Theory and Applications. 2001,7. 150-157
    [114] Tanner R M, Sridhara D, Sridharan A, et al. LDPC block and Convolutional Codes based on circulant matrices. IEEE Transanctions on Information Theory. 2004,12,50(12). 2966- 2984
    [115] Yazdani Mohammad R, Banihashemi Admir H. On construction of rate-compatible low-density parity-check codes. IEEE Commununication Letters. 2004,3,8(3). 159-161
    [116] Lin S, Yu P S. A hybrid ARQ scheme with parity retransmission for error control of satellite channels. IEEE Transactions on Communication, 1982,7,30(7). 1701-1719.
    [117] Ha genauer. Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Transactions on Communication. 1988,4,36(4). 389-400
    [118] Hu X, Fossorier M, Eleftheriou E. On the computation of the minimum distance of low-density parity-check codes. IEEE International Conference on Communications. 2004,6. 767-771
    [119] Brink S T. Design of serially concatenated codes based on iteratively decoding convergence. 2nd International Symposium on Turbo Codes and Related Topics, 2000,9. 319-322
    [120] Rusmevichientong P, Roy B V. An analysis of belief propagation on the turbo decoding graph with Gaussian densities. IEEE Transanctions on Information Theory. 2001,2,47(2). 745-765
    [121] Weiss Y, Freeman W T. Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Proceedings of Advances in Neural Information Processing Systems, 1999,12. 231-236
    [122] Tanner R M. A [155, 64, 20] sparse graph (LDPC) code. IEEE international symposium on Information Theory. 2000,6. 123-128
    [123] Rosenthal J, Vontobel P. Constructions of LDPC codes using Ramanujan graphs and ideas from Margulis. 38th Annual Allerton Conference on Communication, Control, and Computing. 2000,10. 248-257
    [124] Tanner RM. On quasi-cyclic repeat-accumulate codes. 37th Allerton Conference on Communication, Control, and Computing. 1999,10. 249-259
    [125] Fossorier M P C. Quasi-cyclic low density parity check codes. in Proc. IEEE international symposium on Information Theory. 2003,7. 150-151
    [126] Fan J L. Array codes as low density parity check codes. 2nd International Symposium on Turbo Codes and Related Topics.2000,9. 543–546
    [127] Stephen G. Wilson. Digital Modulation and Coding. Beijing: publishing house of electronics industry, 1998
    [128] Li P, Wu K Y. Concatenated tree codes: a low-complexity, high-performance approach. IEEE Transactions on Information Theory. 2001,2,47(2) .791-799
    [129] Brink S ten, Kramer G. Design of Low-Density Parity-Check Codes for Modulation and Detection. IEEE Transactions on Communications, 2004,4,52(4). 230-231
    [130] Li Dan, Gao Liqun, Lu Shun. Adaptive Particle Swarm Optimization Algorithm for Power System Reactive Power Optimization.American Control Conference. 2007,7. 11-13
    [131] http://lthcwww.epfl.ch/research/ldpcopt/
    [132] Pappala V S, Erlich I. A new approach for solving the unit commitment problem by adaptive particle swarm optimization. IEEE Power and Energy Society General Meeting, 2008,7. 420-424
    [133] Liva G, Chiani M. Protograph LDPC Codes Design Based on EXIT Analysis. Global Telecommunications Conference. 2007,11. 3250-3254
    [134] Saeedi H, Banihashemi A H. EXIT Charts of LDPC Codes over BIAWGN Channels with Imperfect Channel Estimation. 10th Canadian Workshop on Information Theory. 2007,6. 65-68
    [135] Xu Hua, Xu Cheng-qi, Kang Su-cheng. Threshold Determination of LDPC Codes for Turbo Equalization Based on EXIT Chart. IEEE International Conference on Communications, Circuits and Systems. 2006,6,2. 698– 701

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700