大型草食动物采食对植物多样性与空间格局的响应及行为适应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物、植物界面(plant-animal-interface)上的家畜采食(herbivore foraging)是草地放牧系统的核心特征。作为动物与植物生产的一个关键因素,采食影响草地植被结构,决定草地资源转化效率。动物采食行为无论对放牧生态学和草地生态学都是极其重要的研究内容。天然草地放牧家畜所面临的采食环境是极其复杂的,这种复杂性不仅表现植物在时空尺度上的高度异质性(heterogeneity)和多样性(diversity)变化,也体现植物空间分布格局(spatial pattern)变化。由此,本论文以大型草食家畜——绵羊作为研究对象,基于动物营养学和生态学两个角度,从影响动物采食行为的动物体本身因素、植物个体因素,到植物群落的空间因素,系统地研究了放牧绵羊本身的动物体状态(饥饿与营养经历),植物物种多样性、以及植物种群的空间分布和植物群落空间关系对家畜采食的影响;基于对动物采食行为本身的复杂性认识,本研究不仅考虑动物采食选择的结果,同时进行动物采食选择过程的分析,全面深入地揭示动物的食性选择策略,探讨放牧家畜对复杂多变采食环境的适应机制。这些研究不仅能发展动物采食理论,同时对于恢复或维持生物多样性、保护草地生态系统的服务功能、维持草地放牧系统的稳定性,有效地进行草地放牧管理,推动草地畜牧业发展都具有极其重要的理论价值与实际指导意义。
     本研究采用一系列严格的试验设计及分析技术,包括舍饲自助餐试验、人工模拟草地放牧试验,以及大量的实验室分析测试、试验数据统计与比较分析,获得了以下重要研究成果:
     (1)不同饥饿程度(零饥饿、半饥饿、中度饥饿、高度饥饿和极度饥饿)及不同采食经历对绵羊采食影响的试验研究表明,动物体状态显著影响绵羊的采食行为。饥饿状态下,绵羊的采食量、采食时间和采食速度都明显高于非饥饿状态下,饥饿状态对绵羊的食性选择无显著影响;动物对某种食物的偏食性强度明显受其对该食物的采食经历影响,即动物具有明显的部分偏食性(partial preference),当采食某种食物一段时间后,动物会产生明显的食性转移;这种短期食物回避(transient food aversion)强烈地受动物对该食物的持续接触时间(duration of exposure)影响,动物对某一食物接触持续的时间越长,对其产生的饱腻感越强,因此,对该物种偏食性强度降低的幅度就越大,即,转移回避的强度越大。
     (2)采用舍饲自助餐实验,开展了不同植物物种多样性(2种、4种、6种、8种)水平下的绵羊短期采食调控(即,四个采食阶段0-0.5 h、0.5-1 h、1-1.5 h、1.5-2 h的采食行为)试验。研究结果显示,不同植物多样性显著影响绵羊的采食调控模式。在较低物种多样性条件下,绵羊的采食模式表现为:随着采食的进行,其采食量和采食速率逐渐降低;在较高植物物种多样性条件下,随着采食的进行,绵羊表现为维持持续较高的食欲状态;进一步分析表明,动物饥饿是刺激动物采食的重要内源因素,随着采食的进行,即饱腹的增加,饥饿的刺激作用逐渐减弱,相反,植物多样性是刺激动物采食的重要外源因素,随着采食的进行,植物多样性的刺激作用逐渐增强。内源因素和外源因素之间的相互补偿使动物在整个采食过程中维持较高的食欲。因此,维持较高的植物多样性是刺激动物食欲(appetite)、提高动物采食动力(motivation to eat)的重要因素。
     (3)通过对不同植物多样性水平下,绵羊偏食性的餐变异(连续采食16餐)分析发现,随着可选择植物物种数的增加,绵羊具有不同的食性选择模式。在较低植物多样性条件下,绵羊偏食性的时间模式是稳定的、趋向确定性的,随着植物多样性的增加,食性选择模式为多变的、趋向随机的,即,动物的采食策略表现为由确定性采食(deterministic foraging)向随机性采食(stochastic foraging)的变化过程。随着植物多样性的增加,动物采食模式的变化是对复杂采食环境的适应性采食策略,高多样性条件下的随机性采食是动物对多样化食物资源行为适应进化的结果。草食动物对变化植物多样性的行为响应具有重要的生态意义,高多样性条件下的动物随机性采食策略可能更有利于维持草地植物多样性;相反,在较低植物多样性条件下,动物的采食不利于其多样性的维持,因此,植物多样性与动物采食间具有一种弱的正反馈关系。本研究结果进一步表明,提高草地植物多样性能够降低动物的采食选择,从而有利于放牧动物对草地植物的均匀利用,进而保护草地植物多样性。
     (4)采用“嵌套式物种丢失法”(nested species loss approach)进行了草地植物多样性变化对动物采食性能的影响研究。研究发现,植物多样性的增加显著提高了绵羊的营养物质(能量和蛋白质)摄入量,进而提高了动物生产性能。随着物种多样性的逐渐增加,绵羊的采食量表现出一个逐渐显著增加的模式;绵羊总是偏于采食一个多样化的日粮(diet),这种偏食强度甚至要优于动物最喜食的物种;随着可利用物种数的增加,动物采食选择获得的日粮质量(即日粮营养物质浓度)仅有微小的变化。因此,多样化日粮对动物随意食物采食量(voluntary food intake)的刺激作用是提高动物营养获取、改善其生产性能的关键,这说明,在普遍低质的天然草地,提高和保护草地植物物种多样性能够作为促进动物采食性能的重要措施。该结果对于放牧草地管理以及动物生产都具有极其重要的理论价值,也从一个新的视角证明了保护草地植物多样性的重要意义。
     (5)在生物多样性的生态系统功能认识的理论假说基础上,针对草地植物多样性对草食动物的生产性能的作用结果,提出了“干扰选择模型”(Disturbance selection model)。该模型的要点是:草地较高的植物多样性,通过调节动物营养平衡、毒素稀释和口味调节等作用,显著地提高动物的采食量和营养物质摄入量,从而提高动物的生产性能;高植物多样性同时也降低动物进行食性选择的能力,增加采食选择的成本,对动物的采食选择带来了干扰;植物多样性对动物采食性能的作用依赖于这两个正、负作用间的权衡(trade-off)。同时,在最高植物多样性条件下,植物多样性对动物产生的正作用减弱,负作用增强,因此,植物多样性有利于提高草食动物的生产性能,但过高的多样性对动物采食的作用结果并不是最佳的。该模型的提出不仅有利于提高我们对植物多样性的生态系统功能的深入认识和理解,而且,对放牧家畜生产与草地管理方面也具有重要的理论价值。
     (6)采用人工模拟放牧试验法,检验了不同植物(高、中、低偏食物种)的空间分布特征(聚集或随机分布)对绵羊采食选择影响。试验结果表明,植物空间分布特征显著地影响放牧动物的采食选择。草食动物对偏食物种的选择性采食结果依赖于偏食物种本身的空间分布、非偏食物种的空间分布,以及整个采食区域内食物资源的总体空间分布特征。偏食物种本身的空间分布对其采食的影响依赖于动物的采食策略,当偏食物种为聚集分布时,集中区域采食策略(area-concentrated foraging strategy)有利于动物的采食成功,而随机点取样策略(random-point-sampling strategy)不利于采食;相反,当偏食物种为随机分布时,随机点取样策略有利于其采食成功,而集中区域采食策略不利于采食;当整个食物资源的空间分布特征趋于聚集分布时,动物通常采取集中区域采食策略,而趋于随机分布时,动物则通常采取随机点取样策略。由此推论,当某一植物种群的空间分布模式与整个采食区域食物资源分布的空间特征相一致时,动物将更容易采食到该物种。此外,非偏食物种的聚集分布总是有利于动物寻找采食偏食物种,而草地低质非偏食物种的随机分散分布能够显著降低动物对偏食植物种的采食,从而更好地抑制草食动物的放牧选择性,有利于草地植物多样性保护,提高草地群落稳定性。
     (7)通过人工模拟放牧试验,研究了植物空间关系对绵羊采食选择的影响,分析了植物对动物采食的联合防御效应(associational plant defense)。结果表明,不同模式的植物空间邻居关系显著影响动物对偏食物种以及所有植物物种的采食。当不同植物物种之间在多个斑块存在复杂的邻居关系时,偏食植物物种能够最有效地防御动物采食;当植物物种之间所构成的空间关系模式迫使草食动物仅在一个尺度下做采食决策时,植物通常不能够有效地防御动物对偏食物种的采食;误导或干扰动物进行食性选择的能力从而达到防御动物采食的目的是植物采取的一种极端空间防御策略,因为这种策略过度地限制了动物对所有植物的总采食量;而直接迫使动物被动地降低选择性是植物采取的一种折衷的、最佳的空间防御策略,这种防御策略不仅有助于维持草地植物物种多样性及其功能,同时有利于草地生态系统中动、植物的稳定共存。
     本研究通过对大型草食动物在不同草地植物多样性背景下的采食行为响应、不同植物种群的空间分布模式和植物物种间的空间邻居关系对动物采食选择影响,以及动物体本身的采食调控规律等深入系列的研究,获得了对草地家畜采食行为的深入理解和进一步认识:放牧家畜具有极其复杂的选择性采食行为,这种复杂的采食行为是对草地复杂采食环境的适应进化结果,草食动物的适应性采食行为(adaptive foraging behaviour)是决定草地生态过程的关键因素,具有重要的生态意义;动物采食对草地的反馈作用结果强烈地依赖于草地植物本身的复杂结构,草地植物的复杂性与多样性是确保草地动、植物之间互惠与稳定共存的重要基础。本研究从动物采食行为的视角进一步证实了草地植物多样性在生态系统中的重要作用以及保护草地植物多样性的重要性。
Foraging of grazing livestock which occurred at plant-animal-interface is central in grazed grassland systems. The foraging behaviour defines a cardinal link between primary and secondary productivity, and affects the structure of the plant community and the utilized efficiency of grassland resources. The foraging behavior of grazing animals is an important issue in grazing ecology and grassland ecology. The foraging environment with which the grazing herbivores are confronted is highly complex in the grasslands. The grazing rangeland exhibits not only high variations in hetereogenity and diversity in space and time, but also diversity of spatial distribution pattern of plants. In this paper, we tested the effects of animal state including fasting and diet experience, plant species diversity, plant spatial distribution and spatially neighbouring relationships on sheep foraging behavior, from the perspective of animal nutrition and ecology. Based on the cognitions on the complexity of herbivore diet selection (i.e. internal state of animal was not static), we examined not only outcome of herbivore diet selection, but also process of diet selection, which will benefit to obtain deep insight into herbivore foraging strategies. The adaptive mechanism of grazing animals to complex foraging environment was discussed in conclusion. Experimental and theoretical work on herbivore foraging is of great importance for development of foraging theory, as well as maintaining biodiversity, and protecting the service functioning of grassland ecosystems, sustaining the stability of grazing grassland systems, effectively managing the grassland and developing stocking raising in grassland.
     Combining the artificially simulated grazing experiments, indoor cafeteria trials with analyses of experimental data, we obtained the important results and conclusions as follows. 1) We examined the effects of animal fasting (no fasting, half fasting, intermediate fasting, high fasting and over fasting treatment) and food experience on sheep foraging in indoor feeding trials. The results showed that foraging behavior of sheep strongly depended on the animal state. The fasted sheep exhibited significantly higher food intake, foraging time and intake rate than non-fasted ones. However, no effects of fasting on diet selection by sheep were detected. Food preference was significantly affected by recent dietary experience of herbivore, and animal exhibited partial preference. Sheep preferred alternatives to forages they have consumed recently. The food aversion was stronger as the exposuring time increased.
     2) We studied the short-term regulation of sheep foraging at four foraging phase within meal (0-0.5 h, 0.5-1 h, 1-1.5 h, 1.5-2 h) in response to altered plant diversity (2, 4, 6 and 8 species richness levels) using a indoor cafeteria trial. Kinetics of food intake was modified as plant species richness increased. At lower plant diversity, intake of sheep was highest at the beginning and then decreased continuously as satiation proceeded until satiety. At higher plant diversity, sheep maintained high and constant food intake as satiation proceeded at all times. Fasting was an important endogenous factor affecting herbivore feeding motivation, and effects of fasting decreased as satiation proceeding. Plant diversity was an important exogenous factor, and the diversity effects significantly increased with time. The complementary effects of endogenous and exogenous factors made herbivore maintain high appetite in the whole process of foraging. We therefore concluded that plant diversity can stimulate motivation to eat by sheep and obtain high food intake.
     3) Herbivore adopted different foraging strategies based on an evaluation of the fitness consequences of alternative behaviors to altered plant diversity. The result of process of diet selection showed that there was a trend in diet selection of sheep from being a deterministic process at low species richness to a stochastic process as plant richness increases. We suggested that the stochastic foraging pattern in complex situation with high species diversity may be a successful and optimal foraging strategy, which may be an evolutionary consequence for diversified plant resources. The changes in sheep foraging pattern as plant diversity increases implied that there was a weak positive feedback between plant diversity and herbivore foraging, and that the foraging strategy by sheep in the more diverse environments may be beneficial in conserving grassland diversity.
     4) We examined responses in foraging performance of sheep to change in plant species richness by using a nested species loss approach in an indoor cafeteria trial with six species richness levels (1, 2, 4, 6, 8 and 11 species). Plant diversity significantly improved nutrient intake (energy and protein) of sheep (presumably improving animal performance). Sheep preferred a diverse diet even over single species diets of the most preferred species. The diet quality selected by sheep had a slight change as the available number of plant species increased. Thus, stimulating effect of diet mixing for voluntary food intake of sheep was the most critical factor improving animal nutrient intake. The asymptotic relationship between plant species richness and voluntary food intake by sheep indicated that increasing plant species richness is a key factor to achieve maximum intake and improve performance of herbivores in the generally low-quality grasslands
     5) We proposed the Disturbance Selection Model for explaining plant species richness effects on herbivore performance. The central concept is that increase in number of plant species in grassland, will increase forage consumption by each large herbivore and enhance nutrient intake by modifying nutrient balance, toxin dilution and taste modulation. Higher plant species richness simultaneously intensifies herbivore diet switching frequency, and weakens the herbivore’s ability to select food, thereby increasing foraging cost and disturbing the herbivore’s selection of plant. The consequence of change in plant species richness for large herbivore performance depends on the trade-off between positive and negative effects. At highest plant species richness, the positive effects weaken and negative effects strengthen. The model may be useful in better understanding the relationships between plant diversity and ecosystem functioning, and informing management of large herbivores on rangelands where biodiversity conservation, as well as sustainable and profitable animal production, are required.
     6) The effects of plant spatial distributions on sheep foraging was examined by an artificially simulated grazing experiments by using three species with five combinations of clumped and random distribution patterns. The results showed that herbivore foraging success for preferred species depended on spatial distribution of both preferred and less preferred species as well as overall spatial characteristics of the whole food patches resulting in alteration of herbivore foraging strategy. Clumped distribution of less preferred species was always beneficial for herbivore to search and consume preferred species, while random distribution of less preferred species reduces herbivore consumption of preferred species. On the other hand, effects of spatial distribution of the preferred species on its consumption were dependent on herbivore foraging strategy. When the spatial distribution of a preferred species was clumped, the area-concentrated foraging strategy benefited its consumption. In contrast, when the spatial pattern of a preferred species was random or dispersed, the random-point-sampling benefited its consumption. We therefore concluded that herbivores can obtain higher benefits from the preferred species when there was a consistent spatial pattern between the preferred species and the entire food resources. We suggested that the dispersion of the low quality and non-preferred species in grassland may reduce herbivore’s consumption of highly preferred species, thus better resisting selective grazing.
     7) We studied the effects of spatial neighboring relationship on sheep foraging in a manipulative experiment, where three natural plant species with different palatability was allocated to three same-size patches on the basis of different neighborhoods. We found that close spatial relationships between plant species significantly affected herbivore foraging. When there was a complex neighbor relationship of species at multiple patches in a community, the preferred species can most effectively defend against herbivory. Plants can not effectively defend themselves against herbivory if the constituted spatial pattern between plant species only compelled herbivore to make foraging selection at one scale. High complexity of spatial neighborhood resulted in herbivores passively reducing selectivity, thereby reducing the probability of damage to palatable plants in the community, or making inaccurate judgments in foraging selectivity between and within patches, thereby reducing the vulnerability of palatable plants and even the whole plant community to being eaten. We suggested that compelling herbivores to passively reduce the magnitude of foraging selectivity by establishing spatially complex neighborhoods between plant species was a compromise and optimal spatial strategy by plants to battle consumption by herbivores. This contributed not only to maintenance of plant species diversity but also to a stable coexistence between herbivores and plants in grassland ecosystems.
     Based on the above obtained outcomes from our experiments, we aquired the further knowledge and insights into foraging behaviour of grazing herbivore. We concluded that diet selection of grazing herbivore was high complex, and was an adaptive and evolutionary consequence for complex and diversified plant resources. The adaptive foraging behaviour of herbivore was an important determinant factor affecting ecological process of grassland, which was paramount ecological significance. We argued that the feedback effects of herbivore foraging on the structure of the plant community, plant diversity and ecosystem function of grassland, strongly depended on the complex structure of plant community itself. We therefore suggested that high complexity and diversity of grassland plant community was one of the most important conditions to ensure large generalist herbivore–plant‘mutualisms’and stable coexistence. This study further emphasized the importance for protecting grassland plant diversity.
引文
[1] Newman J A, Parsons A J, Thornley H M, et al. Optimal diet selection by a generalist grazing herbivore[J]. Funct Ecol, 1995, 9: 255-268.
    [2] Crawley M J. Herbivory: The Dynamics of Animal-Plant Interactions[M]. Oxford, UK: Blackwell Scientific Publications, 1983.
    [3] Forbs T D A. Researching the plant-animal interface: The investigation of investigative behavior in grazing animals[J]. J Anim Sci, 1988, 66: 2369-2379.
    [4]王德利.植物与草食动物之间的协同适应及进化[J].生态学报, 2004, 24(11): 2641-2648.
    [5] Brown D G. Beetle folivory increases resource availability and alters plant invasion in monocultures of goldenrod[J]. Ecology, 1994, 75: 1673-1683.
    [6]尚玉昌.行为生态学[M].北京:北京大学出版社, 2001.
    [7] Stephens D W, Krebs J R. Foraging theory[M]. Princeton, N J: Princeton University Press, 1986.
    [8] Hodgson J, Illius A. The ecology and management of grazing systems[M]. Wallingford: CAB International, 1996.
    [9] Coughenour M B. Spatial components of plant-herbivore interactions in pastoral, ranching, and native ungulate ecosystems[J]. J Range Manage, 1991, 44: 530-542.
    [10] Hjalten J, Danell K, Lundberg P. Herbivore avoidance by association: vole and hare utilization of woody plants[J]. Oikos, 1993, 68: 125-131.
    [11] Agrawal A A, Lau J A, Hamb?ck P A. Community heterogeneity and the evolution of interactions between plants and insect herbivores[J]. Q Rev Biol, 2006, 81: 349-376.
    [12] Adler P B, Raff D A, Lauenroth W K. The effect of grazing on the spatial heterogeneity of vegetation[J]. Oecologia, 2001, 128: 465-479.
    [13] Clarke J L, Welch D, Gordon I J. The influence of vegetation pattern on the grazing of heather moorland by red deer and sheep. I. The location of animals on grass/heather mosaics[J]. J Appl Ecol, 1995, 32: 166-176.
    [14] WallisDeVries M F. Effects of resource distribution patterns on ungulate foraging behaviour: a modelling approach[J]. Forest Ecol Manage, 1996, 88: 167-177.
    [15] Illius A W, O'Connor T G. Resource heterogeneity and ungulate population dynamics[J]. Oikos, 2000, 89: 283-294.
    [16] Oom S P, Hester A J, Elston D A, et al. Spatial interaction models: from human geography to plant-herhivore interactions[J]. Oikos, 2002, 98: 65-74.
    [17] Palmer S C F, Hester A J, Elston D A, et al. The perils of having tasty neighbors: grazing impacts of large herbivores at vegetation boundaries[J]. Ecology, 2003, 84: 2877-2890.
    [18]王岭,王德利.放牧家畜食性选择机制研究进展.应用生态学报[J]. 2007, 18(1): 205-211.
    [19] Forbes J M, Mayes R W. Food choice[M]. In: Freer M, Dove H eds. Sheep Nutrition. New York: CAB International. 2002, 59.
    [20] Vallentine J F. Grazing Management[M]. New York: Academic Press. 2001.
    [21] Mayland H F, Shewmaker G E. Plant attributes that affect livestock selection and intake[M]. In: Launchbaugh K L, Sanders K D, Mosley J C. eds. Grazing Behavior of Livestock and Wildlife. University of Idaho Moscow. 1999.
    [22] Gomez J M, Zamora R. Thorns as induced mechanical defense in a long-lived shrub (Hormathophylla spinosa, Cruciferae)[J]. Ecology, 2002, 83(4): 885-890.
    [23] Jung H J G, Batzli G O. Nutritional ecology of microtine rodents: effect of plant extracts on thegrowth of Arctic microtines[J]. J Mammal, 1981, 62: 386-392.
    [24] Lindroth R L, Batzli G. Plant phenolics as chemical defences: effects of natural phenolics on survival and growth of prairie voles (Microtus ochragaster)[J]. J Chem Ecol, 1984, 10: 229-244.
    [25] Lindroth R L, Batzli G O, Avildsen S I. Lespedeza phenolics and penstemon alkaloids: effect on digestion efficiencies and growth of voles[J]. J Chem Ecol, 1986, 12: 713-728.
    [26] Thomes D W, Sanson C, Bergeron J M. Metabolic cost associated with the ingestion of plan phenolics by Microtus pennsylvanicus[J]. J Mammal, 1988, 69: 512-515.
    [27] Feeny P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars[J]. Ecology, 1970, 51: 565-581.
    [28] Wang J, Provenza F D. Dynamics of preference by sheep offered foods varying in flavors, nutrients, and a toxin[J]. J Chem Ecol, 1997, 23: 275-288.
    [29] McArthur C, Robbins C T, Hagerman A E, et al. Diet selection by a ruminant generalist browser in relation to plant chemistry[J]. Can J Zool, 1993, 71: 2236-2243.
    [30] Dearing D M, Cork S. Role of detoxification of plant secondary compounds on diet breadth in a mammalian herbivore (Trichosurus vulpecula)[J]. J Chem Ecol, 1999, 25: 1205-1219.
    [31] Wiggins N L, McArthur C, McLean S, et al. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum[J]. J Chem Ecol, 2003, 29:1423-1440.
    [32] Athanasiadou S, Kyriazakis I. Plant secondary metabolites: antiparasitic effects and their role in ruminant production systems[J]. P Nutr Soc, 2004, 63: 631-639.
    [33] Molan A, Waghorn G C, Min B R, et al. The effect of condensed tannins from seven herbages on Trichostrongylus colubriformis larval migration in vitro[J]. Folia Parasit, 2000, 47: 39-44.
    [34] Molan A P, Duncan A, Barry T N, et al. Effects of condensed tannins and sesquiterpene lactones extracted from chicory on the viability of deer lungworm larvae[J]. Proc New Zealand Soc Anim Prod, 2000, 60: 26-29.
    [35] Ungar E D, Noy-Meir I. Herbage intake in relation to availability and sward structure: grazing processes and optimal foraging[J]. J Appl Ecol, 1988, 25: 1045-1062.
    [36] Barbara M B, Martin S, Karin E H. Importance of alternative food resources for browsing by roe deer on deciduous trees: The role of food availability and species quality[J]. Forest Ecol Manag, 2006, 226: 248-255.
    [37] Dumont B, Carrere P, Hour P D. Foraging in patchy grasslands: diet selection by sheep and cattle is affected by the abundance and spatial distribution of preferred species[J]. Anim Res, 2002, 51: 367-381.
    [38] Cooper S D B, Kyriazakis I, Oldham J D. The effect of late pregnancy on the diet selections made by ewes[J]. Livest Prod Sci, 1994, 40: 263-275.
    [39] Edwards G R, Newman J A, Parsons A J, et al. Effects of the scale and spatial distribution of the food resource and animal state on diet selection: an example with sheep[J]. J Anim Ecol, 1994, 63: 816-826.
    [40] Newman J A, Penning P D, Parsons A J, et al. Fasting affects intake behaviour and diet preference of grazing sheep[J]. Anim Behav, 1994, 47: 185-193.
    [41] Owens M K, Karen L, Launchbaugh K L, et al. Pasture characteristics affecting spatial distribution of utilization by cattle in mixed brush communities[J]. J Range Manage, 1991, 44: 118-123.
    [42] Smith M A, Rodgers J D, Dodd J L, et al. Declining forage availability effects on utilization and community selection by cattle. J Range Manage, 1992, 45: 385-395.
    [43] Bailey D W, Sims P L. Association of food quality and locations by cattle[J]. J Range Manage, 1998, 51: 2-8.
    [44] Berteaux D, Crete M, Huot J, et al. Food choice by white-tailed deer in relation to protein and energy content of the diet: a field experiment[J]. Oecologia, 1998, 115: 84-92.
    [45] Illius A W, Clark D A, Hodgson J. Discrimination and patch choice by sheep grazing grass-clover swards[J]. J Anim Ecol, 1992, 61: 183-194.
    [46] Kyriazakis I, Oldham J D. Diet selection in sheep: the ability of growing lambs to select a diet that meets their crude protein (nitrogen×6.25) requirements[J]. Br J Nutr, 1993, 69: 617-629.
    [47] Scott L L, Provenza F D. Lambs fed protein or energy imbalanced diets forage in locations and on foods that rectify imbalances[J]. Appl Anim Behav Sci, 2000, 68: 293-305.
    [48] Provenza F D. Postingestive feedback as an elementary determinant of food preference and intake in ruminants[J]. J Range Mange, 1995, 48:2-17.
    [49] Richter C P. Total self-regulatory functions in animals and human beings[J]. Harvey Lecture Series, 1943, 38: 61-103.
    [50] Blair-West J R, Denton D A, Mckinley M J, et al. Behavioral and tissue responses to severe phosphorus depletion in cattle[J]. Am J Physio, 1992, 263: 656-663.
    [51] Hughes B O. Appetites for specific nutrients[M]. In: Boorman KN, Freeman BM eds. Food Intake Regulation in Poultry. Proc 14th Poul Sci Symp. Edinburgh: British Poultry Science. 1979, 141-169.
    [52] Owen J B. Genetic aspects of appetite and feed choice in animals[J]. J Agric Sci, 1992, 119: 151-155.
    [53] Launchbaugh K L, Walker J W, Taylor C A. Foraging behavior: experience or inheritance[M]. In: Launchbaugh KL, Sanders KD, Mosley JC eds. Grazing Behavior of Livestock and Wildlife. Moscow: Idaho Forest Wildlife Range Exp Sta, Univ Idaho. 1999. 28-35.
    [54] Nolte D L, Mason J R, Lewis S L. Tolerance of bitter compounds by an herbivore, Cavia porcellus[J]. J Chem Ecol, 1994, 20: 303-308.
    [55] Beaver E D, Willliams J E, Miller S J, et al. Influence of breed and diet on growth, nutrient digestibility, body composition and plasma hormones of Brangus and Angus steer[J]. J Anim Sci, 1989, 67: 2415-2425.
    [56] Villalba J J, Provenza F D. Preference for flavored wheat straw by lambs conditioned with intraruminal administrations of sodium propionate[J]. J Anim Sci, 1996, 74: 2362-2368.
    [57] Villalba J J, Provenza F D. Preference for flavored wheat straw by lambs conditioned with intraruminal infusions of acetate and propionate[J]. J Anim Sci, 1997, 75: 2905-2914.
    [58] Villalba J J, Provenza F D. Preference for flavoured foods by lambs conditioned with intraruminal administration of nitrogen[J]. Br J Nutr, 1997, 78: 545-561.
    [59] Villalba J J, Provenza F D. Preference for wheat straw by lambs conditioned with intraruminal infusions of starch[J]. Br J Nutr, 1997, 77: 287-297.
    [60] Villalba JJ, Provenza FD. Nutrient-specific preferences by lambs conditioned with intraruminal infusions of starch, casein, and water[J]. J Anim Sci, 1999, 77: 378-387.
    [61] Villalba J J, Provenza F D. Discriminating among novel foods: effects of energy provision on preferences of lambs for poor-quality foods[J]. Appl Anim Behav Sci, 2000, 66: 87-106.
    [62] Villalba J J, Provenza F D. Polyethylene glycol influences selection of foraging location by sheep consuming quebracho tannin[J]. J Anim Sci, 2002, 80: 1846-1851.
    [63] Burritt E A, Provenza F D. Food aversion learning: conditioning lambs to avoid a palatable shrub (Cercocarpus montanus)[J]. J Anim Sci, 1989, 67: 650-653.
    [64] Kronberg S L, Muntifering R B, Ayers E L, et al. Cattle avoidance of leafy spurge: A case of conditioned aversion[J]. J Range Manage, 1993, 46: 364-366.
    [65] Landau S, Silanikove N, Nitsan Z, et al. Short-term changes in eating patterns explain the effects of condensed tannins on feed intake in heifers[J]. Appl Anim Behav Sci, 2000, 69: 199-213.
    [66] Ralphs M H, Provenza F D, Pfister J A, et al. Conditioned food aversion: from theory to practice[J]. Rangelands, 2001, 23: 14-18.
    [67] Ralphs M R. Persistence of aversions to larkspur in naive and native cattle[J]. J Range Manage, 1997, 50: 367-370.
    [68] Duncan A J, Young S A. Can goats learn about foods through conditioned food aversions and preferences when multiple food options are simultaneously available[J]. J Anim Sci, 2002, 80: 2091-2098.
    [69] Kyriazakis I, Tolkamp B J, Emmans G. Diet selection and animal state: an integrative framework[J]. P Nutr Soc, 1999, 58: 765-772.
    [70] Provenza F D, Pfister J A, Cheney C D. Mechanisms of learning in diet selection with reference to phytotoxicosis in herbivores[J]. J Range Mange, 1992, 45: 36-45.
    [71] Provenza F D, Lynch J J, Burritt E A, et al. How goats learn to distinguish between novel foods that differ in postingestive consequences[J]. J Chem Ecol, 1994, 20: 609-624.
    [72] Provenza F D. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands[J]. J Anim Sci, 1996, 74: 2010-2020.
    [73] Burritt E A, Provenza F D. Ability of lambs to learn with a delay between food ingestion and consequences given meals containing novel and familiar foods[J]. Appl Anim Behav Sci, 32: 1991, 179-189.
    [74] Edwards G R, Newman J A, Parsons A J. The use of spatial memory by grazing animals to locate food patches in spatially heterogeneous environments: an example with sheep[J]. Appl Anim Behav Sci, 1996, 50: 147-160.
    [75] Gillingham M P, Bunnell F L. Effects of learning on food selection and searching behavior of deer[J]. Can J Zool, 1989, 67: 24-32.
    [76] Laca E A. Spatial memory and food searching mechanisms of cattle[J]. J Range Manage, 1998, 51: 370-378.
    [77] Benhamon S. Spatial memory and searching efficiency[J]. Anim Behav, 1994, 47: 1423-1433.
    [78] Johnson R A. Learning memory and foraging efficiency in two species of desert seed-harvester ants[J]. Ecology, 1991, 72: 1408-1419.
    [79] Howery L D, Bailey D W, Ruyle G B, et al. Cattle use visual cues to track food locations[J]. Appl Anim Behav Sci, 2000, 67: 1-14.
    [80] Scott C B, Provenza F D, Banner R E. Dietary habits and social interactions affect choice of feeding location by sheep[J]. Appl Anim Behav Sci, 1995, 45: 225-237.
    [81] Garc?a J, Holder M D. Time, space and value[J]. Hum Neur, 1985, 4: 81-89.
    [82] Cibils A F, Howery L D, Ruyle G B. Diet and habitat selection by cattle: the relationship between skin- and gut-defense systems[J]. Appl Anim Behav Sci, 2004, 88: 187-208.
    [83] Baumont R, Dulphy J P, Jailler M. Dynamic of voluntary intake, feeding behavior and rumen function in sheep fed three contrasting types of hay[J]. Ann Zootech, 1997, 46: 231-244.
    [84] Baumont R, Prache S, Meuret M, et al. How forage characteristics influence behaviour and intake in small ruminants: a review[J]. Livest Prod Sci, 2000, 64:15-28.
    [85] Pyke G H. Optimal foraging theory: a critical review[J]. Ann Rev Ecol, 1984, 15: 523-575.
    [86] Stephens D W, Krebs J R. Foraging Theory[M]. Princeton: Princeton University Press, 1986.
    [87] Distel R A, Laca E A, Griggs T C, et al. Patch selection by cattle: Maximization of intake rate in horizontally heterogeneous pastures[J]. Appl Anim Behav Sci, 1995, 45: 11-21.
    [88] Illius A W, Gordon I J, Elston D A, et al. Diet selection in goats: A test of intake-rate maximization[J]. Ecology, 1999, 80(3): 1008-1018.
    [89] Perry G, Pianka E R. Animal foraging: past, present and future[J]. Trends Ecol Evol, 1997, 12(9): 360-364.
    [90] Schoener T. Theory of feeding strategies[J]. Annu Rev Ecol Syst, 1971, 2: 369-404.
    [91] Allen M S. Physical constraints on voluntary intake of forages by ruminants[J]. J Anim Sci, 1996, 74: 3063-3075.
    [92] Fisher D S. A review of a few key factors regulating voluntary feed intake in ruminants[J]. Crop Science, 2002, 42(5): 1651-1655.
    [93] Illius A W, Jessop N S. Metabolic constraints on voluntary intake in ruminants[J]. J Anim Sci, 1996, 74: 3052-3062.
    [94] Charnov E L. Optimal foraging, the marginal value theorem[J]. Theo Popul Biol, 1976, 9: 129-136.
    [95] Laca E A, Distel R A, Criggs T C, et al. Field test of optimal foraging with cattle: the marginal value theorem successfully predicts patch selection and utilization[C]. Proc 17th Int Grassl Congr, 1993, 709-710.
    [96] Demment M W, Laca E A. The grazing ruminant: models and experimental techniques to relate to sward structure and intake[C]. World Conf Anim Prod, 1993, 439-460.
    [97] Bazely D R. Foraging behavior of sheep (Ovis aries L.) grazing on swards of perennial ryegrass (Lolium perenne L.)[D], Ph. D. Thesis, Oxford University, 1988.
    [98] Roguet C, Prache S, Petit M. Feeding station behavior of ewes in response to forage availability and sward phenological stage[J]. Appl Anim Behav Sci, 1998, 56: 187-201.
    [99] Green R F. Stopping rules for optimal foragers[J]. Am Nat, 1984, 123: 30-40.
    [100] Iwasa Y, Higashi M, Yamamura N. Pre-distribution as a factor determining the choice of optimal foraging strategy[J]. Am Nat, 1981, 117: 710-723.
    [101] Bailey D W, Gross J E, Laca E A, et al. Mechanisms that result in large herbivore grazing distribution patterns[J]. J Range Manage, 1996, 49(5): 386-400.
    [102] Wang D L, Han G D, Bai Y G. Interactions between foraging behavior of herbivores and grassland resources in the eastern Eurasian steppes[C]. In: Mcgilloway D A. ed. Grassland: a Global Resource. Netherlands: Wageningen Academic Press. 2005, 97-110.
    [103] Forbes J M. Minimal total discomfort as a concept for the control of food intake and selection[J]. Appetite, 1999, 33: 171.
    [104] Forbes J M. Consequences of feeding for future feeding[J]. Comp Biochem Physio, 2001, 128: 461-468.
    [105] Forbes J M, Provenza F D. Integration of learning and metabolic signals into a theory of dietary choice and food intake[M]. In: Cronje P. ed. Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. UK: CAB International. 2000, 3-19.
    [106] Parsons A J, Dumont B. Spatial heterogeneity and grazing processes[J]. Anim. Res, 2003, 52: 161-180.
    [107] Senft R L, Coughenour M B, Bailey D W, et al. Large herbivore foraging and ecological hierarchies[J]. Bioscience, 1987, 37: 789-795.
    [108] Kotliar N B, Wiens J A. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity[J]. Oikos, 1990, 59: 253-260.
    [109] WallisDeVries, M F, Daleboudt C. Foraging strategy of cattle in patchy grassland[J]. Oecologia, 1994, 100: 98-106.
    [110] Wilmshurst J F, Fryxell J M, Hudsonb R J. Forage quality and patch choice by wapiti (Cervus elaphus)[J]. Behav Ecol, 1995, 6: 209-217.
    [111] Searle K R, Hobbs N T, Shipley L A. Should I stay or should I go? patch departure decisions by herbivores at multiple scales[J]. Oikos, 2005, 111: 417-424.
    [112] De Knegt H J, Hengeveld G M, Langevelde F van, et al. Patch density determines movement patterns and foraging efficiency of large herbivores[J]. Behav Ecol, 2007, 18: 1065-1072.
    [113] Bazely D R. Rules and cues used by sheep foraging in monocultures[M]. In: Hughes R N. ed. Behavioural Mechanisms of Food Selection. Berlin: Spring-Verlag, 1990. 344-366.
    [114] Illius A W, Clark D A, Hodgson J. Discrimination and patch choice by sheep grazing grass-clover swards[J]. J Anim Ecol, 1992, 61: 183-194.
    [115] Chapman D F, Parsons A J, Cosgrove G P, et al. Impacts of spatial patterns in pasture on animal grazing behavior, intake, and performance[J]. Crop Sci, 2007, 47(1): 399-415.
    [116] Hester A J, Gordon I J, Baillie G J, et al. Foraging behaviour of sheep and red deer within naturalheather/grass mosaics[J]. J Appl Ecol, 1999, 36: 133-146.
    [117] Dumont B, Maillard J F, Petit M. The effect of the spatial distribution of plant species within the sward on the searching success of sheep when grazing[J]. Grass Forage Sci, 2000, 55: 138-145.
    [118] Hassall M, Tuck J M, Smith D B, et al. Effects of spatial heterogeneity on feeding behavior of Porcellio scaber (Isopoda: Oniscidea)[J]. Eur J Soil Biol, 2002, 38: 53-57.
    [119] Belsky A J. Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities[J]. J Veg Sci, 1992, 3: 187-200.
    [120] Collins S L, Knapp A K, Briggs J M, et al. Steinauer EM. Modulation of diversity by grazing and mowing in native tallgrass prairie[J]. Science, 1998, 280: 745-747.
    [121] Proulx M, Mazumder A. Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems[J]. Ecology, 1998, 79: 2581-2592.
    [122] Marion G, Swain D L, Hutchings M R. Understanding foraging behavior in spatially heterogeneous environments[J]. J Theor Biol, 2005, 232: 127-142.
    [123] Milchunas D G, Lauenroth W K. Quantitative effects of grazing on vegetation and soils over a global range of environments[J]. Ecol Monogr, 1993, 63: 327-366.
    [124] Olff H, Ritchie M E. Effects of herbivores on grassland plant diversity[J]. Trends Ecol Evol, 1998, 13:261-265.
    [125] Bakker E, Ritchie M E, Olff H, et al. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size[J]. Ecol Lett, 2006, 9: 780-788.
    [126] Olff H, Ritchie M E, Prins H H T. Global environmental controls of diversity in large herbivores[J]. Nature, 2002, 415: 901-904.
    [127] Anderson V J, Briske D D. Herbivore-induced species replacement in grasslands: is it driven by herbivory tolerance or avoidance[J]. Ecol Appl, 1995, 5: 1014-1024.
    [128] Frank D A. The interactive effects of grazing ungulates and aboveground production on grassland diversity[J]. Oecologia, 2005, 143: 629-634.
    [129] Siemann E, Tilman D, Haarstad J, et al. Experimental tests of the dependence of arthropod diversity on plant diversity[J]. Am Nat, 1998, 152: 738-750.
    [130] Knops J M H, Tilman D, Haddad N M, et al. Effects of plant species richness on invasion dynamics, disease outbreaks, and insect abundances and diversity[J]. Ecol Lett, 1999, 2: 286-293.
    [131] Symstad A J, Siemann E, Haarstad J. An experimental test of the effect of plant functional group diversity on arthropod diversity. Oikos, 2000, 89: 243-253
    [132] Haddad N M,Tilman D, Haarstad J, et al. Contrasting effects of plant richness and composition on insect communities: a field experiment[J]. Am Nat, 2001, 158: 17-35.
    [133] Andow D A. Vegetational diversity and arthropod population response[J]. Annu Rev Entomol, 1991, 36: 561-586.
    [134] Koricheva J, Mulder C P H, Schmid B, et al. Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grassland[J]. Oecologia, 2000, 125: 271-282.
    [135] Otway S J, Hector A, Lawton J H. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J Anim Ecol, 2005, 74: 234-240.
    [136] Root R. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (I. Brassica oleracea) [J]. Ecol Monogr, 1973, 43: 95-124.
    [137] Harmon J P, Hladilek E E, Hinton J L, et al. Herbivore response to vegetational diversity: spatial interaction of resources and natural enemies[J]. Popul Ecol, 2003, 45: 75-81.
    [138] Scherber C, Mwangi P N, Temperton V M, et al. Effects of plant diversity on invertebrate herbivory in experimental grassland[J]. Oecologia, 2006, 147: 489-500.
    [139] Naeem S. Species Redundancy and Ecosystem Reliability. Conserv Biol, 1998, 12: 39-45.
    [140] Bernays E A, Bright K L, Gonzalez N, et al. Dietary mixing in a generalist herbivore: tests of two hypotheses[J]. Ecology, 1994, 75: 1997-2006.
    [141] Pennings S C, Nadeau M T, Paul V J. Selectivity and growth of the generalist herbivore Dolabella auricularia feeding upon complementary resources[J]. Ecology, 1993, 74: 879-890.
    [142] Pfisterer A B, Diemer M, Schmid B. Dietary shift and lowered biomass gain of a generalist herbivore in species-poor experimental plant communities[J]. Oecologia, 2003, 135: 234-241.
    [143] Aarssen L W. High productivity in grassland ecosystems: Effected by species diversity or productive species? [J]. Oikos, 1997, 80: 183-184.
    [144] Huston M A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity[J]. Oecologia, 1997, 110: 449-460.
    [145] Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science, 1997, 277: 1300-1302.
    [146] Hagele B F, Rowell-Rahier M. Dietary mixing in three generalist herbivores: nutrient complementation or toxin dilution[J]. Oecologia, 1999, 119: 521-533.
    [147] Bengtsson J. Which species? what kind of diversity? which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function[J]. Appl Soil Ecol, 1998, 10: 191-199.
    [148] Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[J]. Funct Ecol, 2002, 16: 545-556.
    [149] Van Ruijven J, Berendse F. Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms[J]. PNAS, 2005, 102(3): 695-700.
    [150]杨凤.动物营养学全国高等农业院校教材[M].北京:农业出版社, 1991.
    [151] Ralphs M H, Provenza F D. Social facilitation and learned food aversion[J]. Proc Nutr Soc, 1999, 58: 813-820.
    [152] Parsons A J, Newman J A, Penning P D, et al. Diet preference of sheep: effects of recent diet, physiological state and species abundance[J]. J Anim Ecol, 1994, 63: 456-478.
    [153] Jung H G and Koong L J. Effects of hunger satiation on diet quality by grazing sheep[J]. J Range Manage, 1985, 38: 302-305.
    [154] Ketelaars J J, Tolkamp B J. Oxygen efficiency and the control of energy flow in animals and humans[J]. J Anim Sci, 1996, 74, 3036-3051.
    [155] Ketelaars J J M H, Tolkamp B J. Toward a new theory of feed intake regulation in ruminants. 1. Causes of differences in voluntary feed intake: Critique of current views[J]. Livest Prod Sci, 1992, 30: 269.
    [156] Provenza F D, Scott C B, Phy T S, et al. Preference of sheep for foods varying in flavors and nutrients[J]. J Anim Sci, 1996, 74: 2355-2361.
    [157] Baumont R, Prache S, Meuret M, et al. How forage characteristics influence behaviour and intake in small ruminants: a review[J]. Livest Prod Sci, 2000, 64: 15-28.
    [158] Faverdin P, Baumont R, Ingvartsen K L. Control and prediction of feed intake in ruminants[C]. In: Journet M, Grenet E, Farce M H. eds. Recent Developments in the Nutrition of Herbivores, Proc 4th Inter Symp Nutr Herb, Paris: INRA Editions, 1995, 95-120.
    [159] Chapin III F S, Zavaleta E S, Eviner V T, et al. Consequences of changing biodiversity[J]. Nature, 2000, 405: 234-242.
    [160] Hector A, Schmid B, Beierkuhnlein C, et al. Plant diversity and productivity experiments in European grasslands[J]. Science, 1999, 286: 1123-1127.
    [161] Hooper D U, Chapin III FS, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge[J]. Ecol Monogr, 2005, 75: 3-35.
    [162] Knapp A, Blair J M, Briggs J M, et al. The keystone role of bison in North American tallgrass Prairie[J]. BioScience, 1999, 49: 39-50.
    [163] McNaughton S J, Oesterheld M, Frank D A, et al. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats[J]. Nature, 1989, 341: 142-144.
    [164] Milchunas D G, Lauenroth W K, Burke I C. Livestock grazing: animal and plant biodiversity of shortgrass steppe and the relationship to ecosystem function[J]. Oikos, 1998, 83: 65-74.
    [165] Laca E, Demmen M. Foraging strategies of grazing animals[M]. In: Hodgson J, Illius A. eds. The Ecology and Management of Grazing Systems. Wallingford: CAB International, 1996, 137-158.
    [166] Hodgson J. Nomenclature and definitions in grazing studies[J]. Grass Forage Sci, 1979, 34: 11-18.
    [167] Burritt E A, Provenza F D. Lambs form preferences for non-nutritive flavors paired with glucose[J]. J Anim Sci, 1992, 70: 1133-1136.
    [168] Ginane C, Duncan A J, Young S A, et al. Herbivore diet selection in response to simulated variation in nutrient rewards and plant secondary compounds[J]. Anim Behav, 2005, 69: 541-550.
    [169] Cooper S M, Owen-Smith N. Effects of plant spinescence on large mammalian herbivores[J]. Oecologia, 1986, 68: 446-455.
    [170] Cooper S M, Owen-Smith N, Bryant J P. Foliage acceptability to browsing ruminants in relation to seasonal changes in the leaf chemistry of woody plants in a South African savanna[J]. Oecologia, 1988, 75: 336-342.
    [171] O'Reagan P J. Plant structure and the acceptability of different grasses to sheep[J]. J Range Mange, 1993, 46: 232-236.
    [172] Shipley L A, Gross J E, Spalinger D E, et al. The scaling of intake rate in mammalian herbivores[J]. Am Nat, 1994, 143: 1055-1082.
    [173] Owen-Smith N, Novellie P. What should a clever ungulate eat?[J]. Am Nat, 1982, 119: 151-178.
    [174] Illius A W, Gordon I J, Elston D A, et al. Diet selection in goats: A test of intake-rate maximization[J]. Ecology, 1999, 80: 1008-1018.
    [175] WallisDeVries M F, Laca E A, Demment M W. The importance of scale of patchiness for selectivity in grazing herbivores[J]. Oecologia, 1999, 121: 355-363.
    [176] Illius A W, Duncan P, Richard C, et al. Mechanisms of functional response and resource exploitation in browsing roe deer[J]. J Anim Ecol, 2002, 71: 723-734.
    [177] Fortin D, Fryxell J M, Pilote R. The temporal scale of foraging decisions in bison[J]. Ecology, 2002, 83: 970-982.
    [178] Provenza F D, Villalba J J, Dziba L E, et al. Linking herbivore experience, varied diets, and plant biochemical diversity[J]. Small Ruminant Res, 2003, 49: 257-274.
    [179] Simpson S J, Sibly R M, Lee K P, et al. Optimal foraging when regulating intake of multiple nutrients[J]. Anim Behav, 2004, 68: 1299-1311.
    [180] Scott L L, Provenza F D. Variety of foods and flavors affects selection of foraging location by sheep[J]. Appl Anim Behav Sci, 1998, 61: 113-122.
    [181] Spehn E M, Hector A, Joshi J, et al. Ecosystem effects of biodiversity manipulations in European grasslands[J]. Ecol Monogr, 2005, 75: 37-63.
    [182] McNaughton S J, Banyikwa F F, McNaughton M M. Promotion of the cycling of diet-enhancing nutrients by African grazers[J]. Science, 1997, 278: 1798-1800.
    [183] Belovsky G E, Slade J B. Insect herbivory accelerates nutrient cycling and increases plant production[J]. PNAS, 2000, 97: 14412-14417.
    [184] Andow D A. Population dynamics of an insect herbivore in simple and diverse habitats[J]. Ecology, 1990, 71: 1006-1017.
    [185] Wilsey B J, Polley H W. Reductions in grassland species evenness increase dicot seedling invasion and spittle bug infestation[J]. Ecol Lett, 2002, 5: 676-684.
    [186] Giulio M D, Edwards P J. The influence of host plant diversity and food quality on larval survival of plant feeding heteropteran bugs[J]. Ecol Entomol, 2003, 28: 51-57.
    [187] Specht J, Scherber C, Unsicker S B, et al. Diversity and beyond: Plant functional identity determines herbivore performance[J]. J Anim Ecol, 2008, 77: 1047-1055.
    [188] Owen-Smith R. Megaherbivores: The influence of very large body size on ecology[M]. Cambridge:Cambridge University Press, 1988.
    [189] Gordon I J, Hester A J, Festa-Bianchet M. The management of wild large herbivores to meet economic, conservation and environmental objectives[J]. J Appl Ecol, 2004, 41: 1021-1031.
    [190] Westoby M. What are the biological bases of varied diets[J]. Am Nat, 1978, 112: 627-631.
    [191] Wiggins N L, McArthur C, Davies N W. Diet switching in a generalist mammalian folivore: Fundamental to maximising intake[J]. Oecologia, 2006, 147: 650-657.
    [192] Provenza F D, Villalba J J. Foraging in domestic vertebrates: linking the internal and external milieu[M]. Feeding in Domestic Vertebrates: From Structure to Function. Bels V L. ed. Oxfordshire: CABI Publications. 2006, 210-240.
    [193] Zavaleta E S, Hulvey K B. Realistic species losses disproportionately reduce grassland resistance to biological invaders[J]. Science, 2004, 306: 1175-1177.
    [194] ARC. Requirements for energy[M]. ARC, Nutrient Requirements of Farm Livestock, No. 2. Ruminants, ARC, London. 1965, 193-257.
    [195] Unsicker S B, Oswald A, K?hler G, et al. Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore[J]. Oecologia, 2008, 156: 313-324.
    [196] Jamieson W, Hodgson J. The effects of variation in sward characteristics upon the ingestive behaviour and herbage intake of calves and lambs under a continuous stocking management[J]. Grass Forage Sci, 1979, 34: 273-282.
    [197] Yearsley J, Tolkamp B J, Illius A W. Theoretical developments in the study and prediction of food intake[J]. P Nutr Soc, 2001, 60(1): 145-156.
    [198] Early D M, Provenza F D. Food flavor and nutritional characteristics alter dynamics of food preference in lambs[J]. J Anim Sci, 1998, 76: 728-734.
    [199] Freeland W, Janzen D. Strategies in herbivory by mammals: The role of plant secondary compounds[J]. Am Nat, 1974, 108: 269-289.
    [200] Burritt E A, Provenza F D. Role of toxins in intake of varied diets by sheep[J]. J Chem Ecol, 2000, 26: 1991-2005.
    [201] Marsh K J, Wallis I R, McLean S, et al. Conflicting demands on detoxification pathways influence how common brushtail possums choose their diets[J]. Ecology, 2006, 87: 2103-2112.
    [202] Wilmshurst J F, Fryxell J M, Colucci P E. What constrains daily intake in Thomson's gazelles? [J]. Ecology, 1999, 80: 2338-2347.
    [203] MacArthur R. Fluctuations of animal populations and a measure of community stability[J]. Ecology, 1955, 36: 533-536.
    [204] Ehrlich P, Ehrlich A. Extinction: The Causes and Consequences of the Disappearance of Species[M]. New York: Random House. 1981.
    [205] Walker B. Biodiversity and ecological redundancy[J]. Conserv Biol, 1992, 6: 18-23.
    [206] Lawton J H. What do species do in ecosystems? [J]. Oikos, 1994, 71: 367-374.
    [207] Hobbs N T. Responses of large herbivores to spatial heterogeneity in ecosystems[C]. In: Jung H G, Fahey G C. eds. Nutritional Ecology of Herbivores. Proc 5th Inter Symp Nutr Herb. Amer Soc Anim Sci, 1999, 97-129.
    [208] Li H, Reynolds J F. On definition and quantification of heterogeneity[J]. Oikos, 1995, 73: 280-284.
    [209] Wiens J A. Ecological heterogeneity: an ontogeny of concepts and approaches[M]. In: Hutchings M J, John E A, Stewart A J A. eds. The Ecological Consequences of Environmental Heterogeneity. Blackwell Science Ltd, 2000, 9-31.
    [210] Miller A M, McArthur C, Smethurst P J. Effects of within-patch characteristics on the vulnerability of a plant to herbivory[J]. Oikos, 2007, 116: 41-52
    [211] Bergvall U A, Rautio P, Kesti K, et al. Associational effects of plant defences in relation to within- and between-patch food choice by a mammalian herbivore: Neighbour contrast susceptibility and defence[J]. Oecologia, 2006, 147: 253-260.
    [212] Oom S P, Hester A J, Elston D A, et al. Spatial interaction models: From human geography to plant-herhivore interactions[J]. Oikos, 2002, 98: 65-74.
    [213] Palmer S C F, Hester A J, Elston D A, et al. The perils of having tasty neighbors: Grazing impacts of large herbivores at vegetation boundaries[J]. Ecology, 2003, 84: 2877-2890.
    [214] Hamback P A, Beckerman A P. Herbivory and plant resource competition: a review of two interacting interactions[J]. Oikos, 2003, 101: 26-37.
    [215] Olton D S. Spatial memory and food searching strategies[M]. In: Kamil A C, Sargent T D. eds. Foraging Behavior: Ecological, ethological and psychological approaches. Garland STPM Press, 1981, 333-354.
    [216] Cain M L. Random search by herbivorous insects: a simulation model[J]. Ecology, 1985, 66: 876-888.
    [217] Bailey D W. Daily selection of feeding areas by cattle in homogeneous and heterogeneous environments[J]. Appl Anim Behav Sci, 1995, 45: 183-200.
    [218] Lima S L, Zollner P A. Towards a behavioral ecology of ecological landscapes[J].Trends Ecol Evol, 1996, 11: 131-135.
    [219] Roitberg B D, Mangel M. Individuals on the landscape: behavior can mitigate landscape differences among habitats[M]. Munksgaard International Publishers, Ltd., 1997, 234-240.
    [220] Mangel M, Adler F R. Construction of multidimensional clustered patterns[J]. Ecology, 1994, 1289-1298.
    [221] Ward D, Saltz D. Foraging at different spatial scales: Dorcas gazelles foraging for lilies in the Negev Desert[J]. Ecology, 1994, 75: 48-58.
    [222] Boissy A, Dumont B. Interactions between social and feeding motivations on the grazing behaviour of herbivores: Sheep more easily split into subgroups with familiar peers[J]. Appl Anim Behav Sci, 2002, 79: 233-245.
    [223] McNaughton S. Ecology of a grazing ecosystem: the Serengeti[J]. Ecol Monogr, 1985, 55: 259-294.
    [224] Bee J N, Tanentzap A J, Lee W G, et al, The benefits of being in a bad neighbourhood: Plant community composition influences red deer foraging decisions[J]. Oikos, 2009, 118, 18-24.
    [225] McAuliffe J R. Sahuaro-nurse tree associations in the Sonoran Desert: competitive effects of sahuaros[J]. Oecologia 1984, 64: 319-321.
    [226] Hay M E. Associational plant defenses and the maintenance of species diversity: Turning competitors into accomplices[J]. Am Nat, 1986, 128: 617-641.
    [227] Holt R D, Kotler B P. Short-term apparent competition[J]. Am Nat, 1987, 130: 412-430.
    [228] Callaway R M, Kikodze D, Chiboshvili M, et al. Unpalatable plants protect neighbors from grazing and increase plant community diversity[J]. Ecology, 2005, 86: 1856-1862.
    [229] Eskelinen, A. Herbivore and neighbour effects on tundra plants depend on species identity, nutrient availability and local environmental conditions[J]. J Ecol, 2008, 96:155-165.
    [230] Milchunas D G, Noy-Meir I. Grazing refuges, external avoidance of herbivory and plant diversity[J]. Oikos, 2002, 99: 113-130.
    [231] Pietrzykowski E, McArthur C, Fitzgerald H, et al. Influence of patch characteristics on browsing of tree seedlings by mammalian herbivores[J]. J Appl Ecol, 2003, 40: 458-469.
    [232] Miller A M, McArthur C, Smethurst P J. Spatial scale and opportunities for choice influence browsing and associational refuges of focal plants[J]. J Anim Ecol, 2009, 78: 1134-1142.
    [233] Baraza E, Zamora R, Ho′dar J A. Conditional outcomes in plant-herbivore interactions: Neighbours matter[J]. Oikos, 2006, 113: 148-156.
    [234] Olsson O, Brown S. The foraging benefits of information and the penalty of ignorance[J]. Oikos, 2006, 112: 260-273.
    [235] Pfister C A, Hay M E. Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms[J]. Oecologia, 1988, 77: 118-129.
    [236] Atsatt P R, O'Dowd D J. Plant defense guilds[J]. Science, 1976, 193: 24-29.
    [237] Gross J E, Zank C, Hobbs N T, et al. Movement rules for herbivores in spatially heterogeneous environments: responses to small scale pattern[J]. Landscape Ecol, 1995, 10: 209-217.
    [238] Hewitson L, Dumont B, Gordon I J. Response of foraging sheep to variability in the spatial distribution of resources[J]. Anim Behav, 2005, 69: 1069-1076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700