含过氧桥化合物的合成方法及生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤严重威胁人民群众的身体健康,发病率和死亡率呈逐年增长的趋势,现有临床药物疗效有限、毒副作用大、有交叉耐药的现象发生,持续开发新的抗肿瘤药物刻不容缓。以青蒿素为代表的天然来源和半合成的过氧化物在体外和体内实验中表现出显著的抗肿瘤活性,构效关系表明过氧键在这类化合物发挥抗肿瘤活性中具有重要作用。但是,天然或半合成过氧化物来源有限、结构单一、药代动力学性质不理想、作用机制不明,限制了它们成为抗肿瘤药物的可能性,所以,开发全合成类过氧化物的合成方法、研究它们的抗肿瘤活性和作用机制,对于发现具有全新抗肿瘤机制、与现有抗肿瘤药物无交叉耐药的过氧化物类抗肿瘤药物意义重大。本文对1,2,4-trioxolanes、1,2,4-trioxanes和1,2,4,5-tetraoxanes三类内过氧化物的合成方法、抗肿瘤活性和作用机制进行了初步研究。
     1,2,4,5-tetraoxanes具有显著的抗肿瘤、抗疟、抗菌等药理作用。但这类化合物的合成方法存在收率低、操作不方便、所用催化剂对空气和水分敏感、价格昂贵等缺点。本文报道以无水硫酸镁为脱水剂、磷钼酸为催化剂,通过1,1-dihydroperoxides与羰基化合物缩合制备1,2,4,5-tetraoxanes的方法。该方法操作简单、价格低廉、收率高,可用于克数量级制备1,2,4,5-tetraoxanes。
     过氧氢基化合物1,1-dihydroperoxides和β-hydroxyhydroperoxides是制备1,2,4,5-tetraoxanes和1,2,4-trioxanes的重要中间体。本文发展了一种使用同一体系(环氧乙烷-四氯化锡-过氧化氢)制备上述两种过氧氢基化合物的方法。用过氧化氢处理环氧乙烷-四氯化锡络合物,将以先重排后加成的两步“一锅法”反应高产率地得到1位单取代的1,1-dihydroperoxides。这种由环氧乙烷制备1,1-dihydroperoxides的方法由本课题组首次报道。如用四氯化锡-过氧化氢体系处理环氧乙烷,得到的是β-hydroxyhydroperoxides,该方法操作简单、底物普适性好、收率较高。
     过氧化物中的过氧键对化合物的抗肿瘤活性贡献很大,但仅过氧键无法发挥抗肿瘤活性。为探讨不同取代基对过氧化物活性的影响,本文设计并合成了几类结构简单的1,2,4-trioxolanes、1,2,4-trioxanes和1,2,4,5-tetraoxanes类化合物。体外初步筛选结果表明:含有过氧键的化合物并不都有抗肿瘤活性;伯胺基团对于1,2,4,5-tetraoxanes发挥抗肿瘤活性非常重要。
     过氧键可被体内亚铁离子激活,生成活性自由基,发挥抗肿瘤活性。基于此机理,本文设计并合成了过氧化物-二茂铁轭合物,以利用二茂铁中的亚铁离子激活过氧键,协同二者的抗肿瘤活性。本文发现过氧化物1,2,4-trioxane和非过氧化物1,3-dioxolane通过胺甲基与二茂铁连接的轭合物具有显著的抗肿瘤活性,且该作用无法用去铁胺拮抗,表明这类轭合物的抗肿瘤活性与过氧键无关。
     肿瘤细胞内具有较高的铁离子浓度,可以选择性激活过氧化物,另外,铁螯合剂也会对肿瘤细胞产生选择性杀伤作用。基于此机理,本文设计并合成了过氧化物-铁螯合剂轭合物,以协同二者的活性和选择性。体外实验结果表明,不同的铁螯合剂具有不同程度的抗肿瘤活性,儿茶酚类和8-羟基喹啉类轭合物全部具有中等至显著的抗肿瘤活性,而且这种作用可以被去铁胺拮抗,表明这类轭合物通过铁代谢途径发挥活性,且过氧键在其中发挥重要作用。
     内过氧化物结构中含有空间集中、体积较大的亲水基团,可作为氢键受体,靶点的氢键供体与之结合将有利于内过氧化物与特定靶点的结合,发挥更强的抗肿瘤活性。基于此假设,我们合成了内过氧化物-受体酪氨酸蛋白激酶抑制剂轭合物和内过氧化物-组蛋白去乙酰化酶抑制剂轭合物。体外抗肿瘤实验表明,酯类的受体酪氨酸蛋白激酶抑制剂轭合物和全部组蛋白去乙酰化酶抑制剂轭合物具有显著的抗肿瘤活性。
     上述具有显著抗肿瘤活性的过氧化物的构效关系和作用机制还需要进一步的研究。
The incidence and mortality caused by cancer tend to increase quickly in recentyears. Due to the disadvantages of limited efficacy, serious side effects, and emergenceof cross resistance of the existing chemotherapy drugs, there is an urgent need todevelop new antitumor drugs.
     Artemisinin and semi-synthetic derivatives exhibit potent antitumor activity both invitro and in vivo. It has been proven that the peroxide bridge plays an important role forartemisinin to exert various biological activity. The use of aretemisinin derivatives incancer therapy are limited by their source, rigid structure, poor pharmacokineticproperties and unclear mechanism of action. Therefore, new methodology developmentfor synthetic peroxides may solve the above mentioned problems and provide newgeneration antitumor drugs. In this work, the synthetic methodology, antitumor activityand mechanism of action of endoperoxides1,2,4-trioxolanes,1,2,4-trioxanes and1,2,4,5-tetraoxanes were reported.
     1,2,4,5-Tetraoxanes exhibit potent antitumor, antimalarial and antibacterialactivities. But synthesis of1,2,4,5-tetraoxanes was limited by lack of efficient methodsand catalysts. In this work, we developed a phosphomolybdic acid catalyzed method forthe preparation of1,2,4,5-tetraoxanes. Using anhydrous magnesium sulfate asdehydrating agent, phosphomolybdic acid efficiently catalyzed the condensation of1,1-dihydroperoxides and carbonyl compounds to afford1,2,4,5-tetraoxanes in highyield. We proved phosphomolybdic acid is a convenient, economical and efficientcatalyst for the preparation of1,2,4,5-tetraoxanes.
     1,1-Dihydroperoxides and β-hydroxyhydroperoxides are important intermediatesfor biologically active1,2,4,5-tetraoxanes and1,2,4-trioxanes. The preparation of thesetwo hydroperoxides was limited by the lack of efficient method. In this work, we havedisclosed an oxirane-SnCl4-H2O2system which could convert oxiranes to eitherβ-hydroxyhydroperoxides or primary1,1-dihydroperoxides in moderate to good yields by adjusting the order of addition, reaction temperature and the amount of SnCl4. SnCl4acted as an efficient catalyst in the preparation of β-hydroxyhydroperoxides. In the caseof preparing primary1,1-dihydroperoxides, SnCl4first promoted rearrangement ofoxirane to aldehyde, then catalyzed the condensation reaction of aldehyde withhydrogen peroxide. This is the first report that primary1,1-dihydroperoxides could beefficiently prepared from corresponding oxirane via a two-step, one-pot tandemreaction.
     Both peroxide group and related auxiliary moiety contribute to the compoundantitumor activity. About thirty1,2,4-trioxolanes,1,2,4-trioxanes and1,2,4,5-tetraoxanes were designed, synthesized and evaluated for their antiproliferationactivity toward cancer cells. The results showed that presence of a primary amino groupseems critical for endoperoxides to display antitumor activity in1,2,4,5-tetraoxanes.
     It has been reported that activation of the peroxide bond, possiblely by the ferrousion, is essential for peroxidesto play biological effects. Base on this hypothesis,endoperoxide-ferrocene conjugates were designed and synthesized to synergize theirantitumor activity. Primary screening results showed that a1,2,4-trioxane conjugate anda non-peroxide conjugate exhibited excellent antitumor activity. The activity could notbeen impaired by deferoxamine, suggesting a pathway independent of iron metabolicpathway and peroxide group.
     Ferrous ion concentration in cancer cell is much higher than that in normalcell,thus cancer cells are more suspective to iron chelators and peroxides which need theactivation by ferrous ion. Based on this observation, endoperoxide-iron chelatorconjugates were designed and synthesized to enhance the efficacy and tumor cellselectivity. Our results showed that all pyrocatechol-and8-hydroxyquinoline-conjugates exhibited moderate or potent antitumor activity. The activity of theseconjugates could be impaired by deferoxamine, which proved that iron metabolicpathway may be involved in the antitumor mechanism and peroxide group playedimportant role in the antitumor activity.
     Endoperoxides could act as hydrogen bond receptor. The hydrogen bond donor inthe active site of target may bond to it and the interaction between them was enhanced.Based on the hypothesis, endoperoxide-enzyme inhibitor conjugates were designed andsynthesized. Primary results for these compounds toward cancer cells showed that theester derivative of endoperoxide-receptor tyrosine protein kinase inhibitor conjugates and all endoperoxide-histone deacetylase inhibitor conjugates exhibit potent antitumoractivity.
     The structural activity relationship and mechanism of these potent antitumorperoxides need further study.
引文
1. Bray F, Jemal A, Grey N, et al. Global cancer transitions according to the HumanDevelopment Index (2008-2030): a population-based study [J]. Lancet Oncol.2012,13(8):790-801.
    2.代敏,任建松,李霓,等.中国2008年肿瘤发病和死亡情况估计及预测[J].中华流行病学杂志.2012,33(1):57-61.
    3. Li JW, Vederas JC. Drug discovery and natural products: end of an era or anendless frontier?[J]. Science.2009,325(5937):161-165.
    4. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last25years [J]. J Nat Prod.2007,70(3):461-477.
    5.赖春丽,黄婉锋,祝晨蔯,等.抗肿瘤中药新药开发探讨[J].中药材.2003,26(9):677-680.
    6. Posner GH, Oh CH, Gerena L, et al. Extraordinarily Potent AntimalarialCompounds-New, Structurally Simple, Easily Synthesized, Tricyclic1,2,4-Trioxanes [J]. J Med Chem.1992,35(13):2459-2467.
    7. Charman SA, Arbe-Barnes S, Bathurst IC, et al. Synthetic ozonide drug candidateOZ439offers new hope for a single-dose cure of uncomplicated malaria [J]. ProcNatl Acad Sci U S A.2011,108(11):4400-4405.
    8. World Health Organization. Guidelines for the Treatment of Malaria [R]. Seconded. Geneva: WHO;2010.
    9. Crespo-Ortiz MP, Wei MQ. Antitumor Activity of Artemisinin and Its Derivatives:From a Well-Known Antimalarial Agent to a Potential Anticancer Drug [J]. JBiomed Biotechnol.2012: doi:10.1155/2012/247597.
    10. Woerdenbag HJ, Moskal TA, Pras N, et al. Cytotoxicity of artemisinin-relatedendoperoxides to Ehrlich ascites tumor cells [J]. J Nat Prod.1993,56(6):849-856.
    11. Efferth T, Olbrich A, Bauer R. mRNA expression profiles for the response ofhuman tumor cell lines to the antimalarial drugs artesunate, arteether, andartemether [J]. Biochem Pharmacol.2002,64(4):617-623.
    12. Mao HT, Gu HT, Qu X, et al. Involvement of the mitochondrial pathway andBim/Bcl-2balance in dihydroartemisinin-induced apoptosis in human breastcancer in vitro [J]. Int J Mol Med.2013,31(1):213-218.
    13. Ba Q, Zhou NY, Duan J, et al. Dihydroartemisinin Exerts Its Anticancer Activitythrough Depleting Cellular Iron via Transferrin Receptor-1[J]. Plos One.2012,7(8).
    14. Zhang CZ, Zhang HT, Yun JP, et al. Dihydroartemisinin exhibits antitumor activitytoward hepatocellular carcinoma in vitro and in vivo [J]. Biochem Pharmacol.2012,83(9):1278-1289.
    15. Chen XR, Lin H, Wen J, et al. Dihydroartemisinin suppresses cell proliferation,invasion, and angiogenesis in human glioma U87cells [J]. Afr J Pharm Pharmaco.2012,6(32):2433-2440.
    16. Cabello CM, Lamore SD, Bair WB, et al. The redox antimalarialdihydroartemisinin targets human metastatic melanoma cells but not primarymelanocytes with induction of NOXA-dependent apoptosis [J]. Invest New Drug.2012,30(4):1289-1301.
    17. Wang SJ, Sun B, Cheng ZX, et al. Dihydroartemisinin inhibits angiogenesis inpancreatic cancer by targeting the NF-kappa B pathway [J]. Cancer ChemothPharm.2011,68(6):1421-1430.
    18. Lu JJ, Chen SM, Zhang XW, et al. The anti-cancer activity of dihydroartemisininis associated with induction of iron-dependent endoplasmic reticulum stress incolorectal carcinoma HCT116cells [J]. Invest New Drug.2011,29(6):1276-1283.
    19.王勤,吴理茂,李爱媛,等.青蒿琥酯抗肝癌作用的实验研究[J].中国中药杂志.2001,26(10):707-708,720.
    20. Hou J, Wang D, Zhang R, et al. Experimental therapy of hepatoma withartemisinin and its derivatives: in vitro and in vivo activity, chemosensitization,and mechanisms of action [J]. Clin Cancer Res.2008,14(17):5519-5530.
    21. Weifeng T, Feng S, Xiangji L, et al. Artemisinin inhibits in vitro and in vivoinvasion and metastasis of human hepatocellular carcinoma cells [J].Phytomedicine.2011,18(2-3):158-162.
    22. Chen H, Sun B, Pan SH, et al. Dihydroartemisinin inhibits growth of pancreaticcancer cells in vitro and in vivo [J]. Anti-Cancer Drug.2009,20(2):131-140.
    23. Aung W, Sogawa C, Furukawa T, et al. Anticancer effect of dihydroartemisinin(DHA) in a pancreatic tumor model evaluated by conventional methods and opticalimaging [J]. Anticancer Research.2011,31(5):1549-1558.
    24. Xu Q, Li ZX, Peng HQ, et al. Artesunate inhibits growth and induces apoptosis inhuman osteosarcoma HOS cell line in vitro and in vivo [J]. J Zhejiang Univ Sci B.2011,12(4):247-255.
    25. Wu B, Hu K, Li S, et al. Dihydroartiminisin inhibits the growth and metastasis ofepithelial ovarian cancer [J]. Oncol Rep.2012,27(1):101-108.
    26. Ma H, Yao Q, Zhang AM, et al. The effects of artesunate on the expression ofEGFR and ABCG2in A549human lung cancer cells and a xenograft model [J].Molecules.2011,16(12):10556-10569.
    27. Dell'Eva R, Pfeffer U, Vene R, et al. Inhibition of angiogenesis in vivo and growthof Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate [J]. BiochemPharmacol.2004,68(12):2359-2366.
    28. Li L-N, Zhang H-D, Yuan S-J, et al. Artesunate attenuates the growth of humancolorectal carcinoma and inhibits hyperactive Wnt/b-catenin pathway [J].International Journal of Cancer.2007,121:1360-1365.
    29.牛高华,尚凡晶,武华.青蒿素对人胃癌裸鼠移植瘤的生长抑制作用及其机制的研究[J].中华肿瘤防治杂志.2010,17(12):903-907.
    30. Tin AS, Sundar SN, Tran KQ, et al. Antiproliferative effects of artemisinin onhuman breast cancer cells requires the downregulated expression of the E2F1transcription factor and loss of E2F1-target cell cycle genes [J]. Anticancer Drugs.2012,23(4):370-379.
    31. Singh NP, Lai HC. Synergistic cytotoxicity of artemisinin and sodium butyrate onhuman cancer cells [J]. Anticancer Research.2005,25(6B):4325-4331.
    32.陈卫强,戚好文,吴昌归,等.双氢青蒿素逆转人肺腺癌细胞多药耐药作用研究[J].现代肿瘤医学.2006,(03):284-286.
    33. Efferth T, Giaisi M, Merling A, et al. Artesunate induces ROS-mediated apoptosisin doxorubicin-resistant T leukemia cells [J]. Plos One.2007,2(8): e693.
    34. Huang XJ, Li CT, Zhang WP, et al. Dihydroartemisinin potentiates the cytotoxiceffect of temozolomide in rat C6glioma cells [J]. Pharmacology.2008,82(1):1-9.
    35.张佳丽,王增,庄蓓蓓,等.二氢青蒿素联合环氧化酶2抑制剂抗S180肉瘤作用机制研究[J].中国药理学通报.2009,25(3):308-312.
    36. Chen T, Li MA, Zhang RW, et al. Dihydroartemisinin induces apoptosis andsensitizes human ovarian cancer cells to carboplatin therapy [J]. J Cell Mol Med.2009,13(7):1358-1370.
    37. Zhou HJ, Zhang JL, Li A, et al. Dihydroartemisinin improves the efficiency ofchemotherapeutics in lung carcinomas in vivo and inhibits murine Lewis lungcarcinoma cell line growth in vitro [J]. Cancer Chemother Pharmacol.2010,66(1):21-29.
    38. Wang SJ, Gao Y, Chen H, et al. Dihydroartemisinin inactivates NF-kappa B andpotentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitroand in vivo [J]. Cancer Lett.2010,293(1):99-108.
    39. Berger TG, Dieckmann D, Efferth T, et al. Artesunate in the treatment of metastaticuveal melanoma--first experiences [J]. Oncol Rep.2005,14(6):1599-1603.
    40.张祖贻,余世庆,苗立云,等.青蒿琥酯联合NP方案治疗中晚期非小细胞肺癌的随机对照研究[J].中西医结合学报.2008,(02):134-138.
    41. Kim SJ, Kim MS, Lee JW, et al. Dihydroartemisinin enhances radiosensitivity ofhuman glioma cells in vitro [J]. J Cancer Res Clin Oncol.2006,132(2):129-135.
    42.董俊清,赵妍妍,姚琦,等.青蒿琥酯增加人脑胶质瘤细胞CHG-5对β射线的敏感性[J].第三军医大学.2008,32:588-592.
    43.唐艳,曹建平,樊赛军,等.青蒿素对人鼻咽癌CNE细胞的放射增敏作用及机制的研究[J].中华放射医学与防护杂志.2010,30(3):280-282.
    44.潘麓羽,曹建平,纪蓉,等.蒿甲醚对人鼻咽癌细胞CNE-1放射敏感性的影响及其机制研究[J].中华放射医学与防护杂志.2010,30:550-553
    45.纪蓉,曹建平,陈遐林,等.青蒿琥酯对人宫颈癌HeLa细胞的放射增敏作用[J].中华放射医学与防护杂志.2010,30(5):554-557.
    46.周媛媛,封阳,张旭光,等.青蒿琥酯对人宫颈癌HeLa和Siha细胞辐照后DNA损伤水平的影响[J].辐射研究与辐射工艺学报.2011,(01):33-36.
    47. Zhao Y, Jiang W, Li B, et al. Artesunate enhances radiosensitivity of humannon-small cell lung cancer A549cells via increasing NO production to induce cellcycle arrest at G2/M phase [J]. Int Immunopharmacol.2011,11(12):2039-2046.
    48.周媛媛,封阳,曹建平,等.青蒿琥酯增敏对宫颈癌HeLa细胞裸鼠移植瘤凋亡的影响[J].苏州大学学报(医学版).2011,(01):13-15+20.
    49. Li J, Zhou B. Biological Actions of Artemisinin: Insights from MedicinalChemistry Studies [J]. Molecules.2010,15(3):1378-1397.
    50. Opsenica DM, Solaja BA. Artemisinins and Synthetic Peroxides as HighlyEfficient Antimalarials [J]. Maced J Chem Chem En.2012,31(2):137-182.
    51. Meunier B, Robert A. Heme as Trigger and Target for Trioxane-ContainingAntimalarial Drugs [J]. Accounts Chem Res.2010,43(11):1444-1451.
    52. O'Neill PM, Barton VE, Ward SA. The Molecular Mechanism of Action ofArtemisinin-The Debate Continues [J]. Molecules.2010,15(3):1705-1721.
    53. Vennerstrom JL, Fu HN, Ellis WY, et al. Dispiro-1,2,4,5-tetraoxanes: a new classof antimalarial peroxides [J]. J Med Chem.1992,35(16):3023-3027.
    54. O'Neill PM, Amewu RK, Nixon GL, et al. Identification of a1,2,4,5-tetraoxaneantimalarial drug-development candidate (RKA182) with superior properties tothe semisynthetic artemisinins [J]. Angew Chem, Int Ed.2010,49(33):5693-5697.
    55. Beekman AC, Barentsen AR, Woerdenbag HJ, et al. Stereochemistry-dependentcytotoxicity of some artemisinin derivatives [J]. J Nat Prod.1997,60(4):325-330.
    56. Niesen A, Barthel A, Kluge R, et al. Antitumoractive Endoperoxides fromTriterpenes [J]. Arch Pharm.2009,342(10):569-576.
    57. Beekman AC, Woerdenbag HJ, Kampinga HH, et al. Cytotoxicity of artemisinin, adimer of dihydroartemisinin, artemisitene and eupatoriopicrin as evaluated by theMTT and clonogenic assay [J]. Phytother Res.1996,10(2):140-144.
    58. Mercer AE, Copple IM, Maggs JL, et al. The role of heme and the mitochondrionin the chemical and molecular mechanisms of mammalian cell death induced bythe artemisinin antimalarials [J]. J Biol Chem.2011,286(2):987-996.
    59. Hagen H, Marzenell P, Jentzsch E, et al. Aminoferrocene-Based ProdrugsActivated by Reactive Oxygen Species [J]. J Med Chem.2012,55(2):924-934.
    60. Fujita T, Felix K, Pinkaew D, et al. Human fortilin is a molecular target ofdihydroartemisinin [J]. Febs Lett.2008,582(7):1055-1060.
    61. Firestone GL, Sundar SN. Anticancer activities of artemisinin and its bioactivederivatives [J]. Expert Rev Mol Med.2009,11.
    62. Lai H, Singh NP. Selective Cancer Cell Cytotoxicity from Exposure toDihydroartemisinin and Holotransferrin [J]. Cancer Lett.1995,91(1):41-46.
    63. Singh NP, Lai HC. Artemisinin induces apoptosis in human cancer cells [J].Anticancer Research.2004,24(4):2277-2280.
    64.苗立云,张祖贻.铁离子增强青蒿琥酯抗癌作用及改变癌细胞死亡方式研究[J].中草药.2008,(10):1528-1532.
    65. Singh NP, Lai H. Selective toxicity of dihydroartemisinin and holotransferrintoward human breast cancer cells [J]. Life Sci.2001,70(1):49-56.
    66. Efferth T, Benakis A, Romero MR, et al. Enhancement of cytotoxicity ofartemisinins toward cancer cells by ferrous iron [J]. Free Radic Biol Med.2004,37(7):998-1009.
    67. Lai H, Sasaki T, Singh NP. Targeted treatment of cancer with artemisinin andartemisinin-tagged iron-carrying compounds [J]. Expert Opin Ther Targets.2005,9(5):995-1007.
    68. Moore JC, Lai H, Li JR, et al. Oral administration of dihydroartemisinin andferrous sulfate retarded implanted fibrosarcoma growth in the rat [J]. Cancer Lett.1995,98(1):83-87.
    69. SINGH NP, VERMA KB. Case report of a laryngeal squamous cell carcinomatreated with artesunate [J]. Archive of Oncology.2002,10(4):279-280.
    70. Huang XJ, Ma ZQ, Zhang WP, et al. Dihydroartemisinin exerts cytotoxic effectsand inhibits hypoxia inducible factor-1alpha activation in C6glioma cells [J]. JPharm Pharmacol.2007,59(6):849-856.
    71. Lu JJ, Meng LH, Cai YJ, et al. Dihydroartemisinin induces apoptosis in HL-60leukemia cells dependent of iron and p38mitogen-activated protein kinaseactivation but independent of reactive oxygen species [J]. Cancer Biol Ther.2008,7(7):1017-1023.
    72. Xiao FL, Gao WJ, Wang XP, et al. Amplification activation loop betweencaspase-8and-9dominates artemisinin-induced apoptosis of ASTC-a-1cells [J].Apoptosis.2012,17(6):600-611.
    73. Michaelis M, Kleinschmidt MC, Barth S, et al. Anti-cancer effects of artesunate ina panel of chemoresistant neuroblastoma cell lines [J]. Biochem Pharmacol.2010,79(2):130-136.
    74. Kong R, Jia G, Cheng ZX, et al. Dihydroartemisinin EnhancesApo2L/TRAIL-Mediated Apoptosis in Pancreatic Cancer Cells via ROS-MediatedUp-Regulation of Death Receptor5[J]. Plos One.2012,7(5).
    75.杜冀晖,马镇坚,李佳璇,等.青蒿琥酯通过活性氧损伤机制诱导胰腺癌细胞发生胀亡性死亡[J].中国癌症杂志.2008,(06):410-414.
    76. Thomas S, Quinn BA, Das SK, et al. Targeting the Bcl-2family for cancer therapy[J]. Expert Opin Ther Tar.2013,17(1):61-75.
    77.高迎春,张爽.青蒿琥脂对人卵巢癌细胞株HO8910增殖的影响及机制探讨[J].山东医药.2010,(50):14-16.
    78. Ji Y, Zhang YC, Pei LB, et al. Anti-tumor effects of dihydroartemisinin on humanosteosarcoma [J]. Mol Cell Biochem.2011,351(1-2):99-108.
    79.高小玲,罗子国,王丕龙,等.双氢青蒿素诱导前列腺癌PC-3细胞凋亡及其机制研究[J].中草药.2010,(01):81-85.
    80.战晓农,黄燕,王雷,等.双氢青蒿素对人结直肠癌裸鼠移植瘤的抑制作用及机制研究[J].中药新药与临床药理.2011,(05):491-494.
    81.王勤,吴理茂,赵一,等.青蒿琥酯抗肿瘤作用的机制研究[J].药学学报.2002,(06):477-478.
    82.赵小波,刘明学,吴凯南,等.青蒿琥酯抑制MCF-7细胞的机制探讨[J].肿瘤防治研究.2006,(10):745-747.
    83. Mercer AE, Copple IM, Maggs JL, et al. The Role of Heme and the Mitochondrionin the Chemical and Molecular Mechanisms of Mammalian Cell Death Induced bythe Artemisinin Antimalarials [J]. J Biol Chem.2011,286(2):987-996.
    84. Disbrow GL, Baege AC, Kierpiec KA, et al. Dihydroartemisinin is cytotoxic topapillomavirus-expressing epithelial cells in vitro and in vivo [J]. Cancer Res.2005,65(23):10854-10861.
    85. Hwang YP, Yun HJ, Kim HG, et al. Suppression of PMA-induced tumor cellinvasion by dihydroartemisinin via inhibition of PKCalpha/Raf/MAPKs andNF-kappaB/AP-1-dependent mechanisms [J]. Biochem Pharmacol.2010,79(12):1714-1726.
    86. Wang J, Zhang B, Guo Y, et al. Artemisinin inhibits tumor lymphangiogenesis bysuppression of vascular endothelial growth factor C [J]. Pharmacology.2008,82(2):148-155.
    87.李世辉,潘峻,薛芳.青蒿琥酯与阿霉素对SP2/0骨髓瘤细胞作用对比观察及其作用机制的研究[J].中成药.2008,(09):1385-1387.
    88. Davidson BS. Cytotoxic five-membered cyclic peroxides from a Plakortis sponge[J]. J Org Chem.1991,56:6722-6724.
    89. Horton PA, Longley RE, Kellyborges M, et al. New Cytotoxic Peroxylactonesfrom the Marine Sponge, Plakinastrella Onkodes [J]. J Nat Prod.1994,57(10):1374-1381.
    90. Sandler JS, Colin PL, Hooper JNA, et al. Cytotoxic beta-carbolines and cyclicperoxides from the palauan sponge Plakortis nigra [J]. J Nat Prod.2002,65(9):1258-1261.
    91. Rudi A, Afanii R, Gravalos LG, et al. Three new cyclic peroxides from the marinesponge Plakortis aff simplex [J]. J Nat Prod.2003,66(5):682-685.
    92. Mohammed R, Peng JN, Kelly M, et al. Polyketide-peroxides from a Species ofJamaican Plakortis (Porifera: Demospongiae)[J]. Aust J Chem.2010,63(6):877-885.
    93. Jimenez-Romero C, Ortiz I, Vicente J, et al. Bioactive Cycloperoxides Isolatedfrom the Puerto Rican Sponge Plakortis halichondrioides [J]. J Nat Prod.2010,73(10):1694-1700.
    94. Davidson BS. Plakortolide, a Cytotoxic Peroxylactone from a Plakortis Sponge [J].Tetrahedron Lett.1991,32(49):7167-7170.
    95. Toth SI, Schmitz FJ. Two new cytotoxic peroxide-containing acids from a NewGuinea sponge, Callyspongia sp [J]. J Nat Prod.1994,57(1):123-127.
    96. Varoglu M, Peters BM, Crews P. The Structures and Cytotoxic Properties ofPolyketide Peroxides from a Plakortis Sponge [J]. J Nat Products.1995,58(1):27-36.
    97. Fontana A, Ishibashi M, Kobayashi J. New polyketide peroxides from Okinawanmarine sponge Plakortis sp.[J]. Tetrahedron.1998,54(10):2041-2048.
    98. Phuwapraisirisan P, Matsunaga S, Fusetani N, et al. Mycaperoxide H, a newcytotoxic norsesterterpene peroxide from a Thai marine sponge Mycale sp.[J]. JNat Prod.2003,66(2):289-291.
    99. Youssef DTA. Tasnemoxides A-C, new cytotoxic cyclic norsesterterpene Peroxidesfrom the red sea sponge Diacarnus erythraenus [J]. J Nat Prod.2004,67(1):112-114.
    100. Pettit GR, Nogawa T, Knight JC, et al. Antineoplastic agents.535. Isolation andstructure of plakorstatins1and2from the Indo-Pacific sponge Plakortis nigra [J].J Nat Prod.2004,67(9):1611-1613.
    101. Berrue F, Thomas OP, Bon CFL, et al. New bioactive cyclic peroxides from theCaribbean marine sponge Plakortis zyggompha [J]. Tetrahedron.2005,61(50):11843-11849.
    102. Chao CH, Chou KJ, Wang GH, et al. Norterpenoids and Related Peroxides fromthe Formosan Marine Sponge Negombata corticata [J]. J Nat Prod.2010,73(9):1538-1543.
    103. D'Ambrosio M, Guerriero A, Debitus C, et al. Relative contributions to antitumoralactivity of lipophilic vs. polar reactive moieties in marine terpenoids [J].Tetrahedron Lett.1997,38(35):6285-6288.
    104. Sperry S, Valeriote FA, Corbett TH, et al. Isolation and cytotoxic evaluation ofmarine sponge-derived norterpene peroxides [J]. J Nat Prod.1998,61(2):241-247.
    105. Harrison B, Crews P. Cyclic polyketide peroxides and acyclic diol analogues fromthe sponge Plakortis lita [J]. J Nat Prod.1998,61(8):1033-1037.
    106. Ibrahim SRM, Ebel R, Wray V, et al. Diacarperoxides, norterpene cyclic peroxidesfrom the sponge Diacarnus megaspinorhabdosa [J]. J Nat Prod.2008,71(8):1358-1364.
    107. Fattorusso E, Taglialatela-Scafati O, Di Rosa M, et al. Metabolites from the spongePlakortis simplex. Part3: Isolation and stereostructure of novel bioactivecycloperoxides and diol analogues [J]. Tetrahedron.2000,56(40):7959-7967.
    108. Yang H, Wang CM, Jia ZJ, et al. Four new eremophilanoid sesquiterpenes fromSenecio oldhamianus [J]. Acta Chim Sinica.2001,59(10):1686-1690.
    109. Wang CM, Hua W, We YM, et al. In vitro effects on proliferation, telomeraseactivity and apoptosis of an eremophilanoid sesquiterpene from Seneciooldhamianus Maxim in cultured human tumor cell lines [J]. Pharmazie.2004,59(10):802-806.
    110. Noori S, Hassan ZM. Tehranolide inhibits proliferation of MCF-7human breastcancer cells by inducing G0/G1arrest and apoptosis [J]. Free Radical Bio Med.2012,52(9):1987-1999.
    111. Noori S, Taghikhani M, Hassan ZM, et al. Tehranolide molecule modulates theimmune response, reduce regulatory T cell and inhibits tumor growth in vivo [J].Mol Immunol.2010,47(7-8):1579-1584.
    112. Csuk R, Niesen-Barthel A, Barthel A, et al. Synthesis of an antitumor activeendoperoxide from11-keto-beta-boswellic acid [J]. Eur J Med Chem.2010,45(9):3840-3843.
    113. Kwon HC, Choi SU, Lee KR. Cytotoxic peroxides from Artemisia stolonifera [J].Arch Pharm Res.2000,23(2):151-154.
    114. Abbasi R, Efferth T, Kuhmann C, et al. The endoperoxide ascaridol shows strongdifferential cytotoxicity in nucleotide excision repair-deficient cells [J]. ToxicolAppl Pharm.2012,259(3):302-310.
    115. Erickson KL, Beutler JA, Gray GN, et al. Majapolene A, a cytotoxic peroxide, andrelated sesquiterpenes from the red alga Laurencia majuscula [J]. J Nat Prod.1995,58(12):1848-1860.
    116. Li HX, Huang HB, Shao CL, et al. Cytotoxic Norsesquiterpene Peroxides from theEndophytic Fungus Talaromyces flavus Isolated from the Mangrove PlantSonneratia apetala [J]. J Nat Prod.2011,74(5):1230-1235.
    117. Szpilman AM, Korshin EE, Rozenberg H, et al. Total syntheses of yingzhaosu Aand of its C(14)-epimer including the first evaluation of their antimalarial andcytotoxic activities [J]. J Org Chem.2005,70(9):3618-3632.
    118. Ding Y, Liang C, Kim JH, et al. Triterpene compounds isolated from Acermandshuricum and their anti-inflammatory activity [J]. Bioorg Med Chem Lett.2010,20(5):1528-1531.
    119. Arakawa K, Endo Y, Kimura M, et al. Multifunctional anti-angiogenic activity ofthe cyclic peroxide ANO-2with antitumor activity [J]. International Journal ofCancer.2002,100(2):220-227.
    120. Copple IM, Mercer AE, Firman J, et al. Examination of the Cytotoxic andEmbryotoxic Potential and Underlying Mechanisms of Next-Generation SyntheticTrioxolane and Tetraoxane Antimalarials [J]. Mol Med.2012,18(7):1045-1055.
    121. Opsenica D, Pocsfalvi G, Juranic Z, et al. Cholic acid derivatives as1,2,4,5-tetraoxane carriers: Structure and antimalarial and antiproliferative activity[J]. J Med Chem.2000,43(17):3274-3282.
    122. Opsenica D, Kyle DE, Milhous WK, et al. Antimalarial, antimycobacterial andantiproliferative activity of phenyl substituted mixed tetraoxanes [J]. J Serb ChemSoc.2003,68(4-5):291-302.
    123. Terzic N, Opsenica D, Milic D, et al. Deoxycholic acid-derived tetraoxaneantimalarials and antiproliferatives [J]. J Med Chem.2007,50(21):5118-5127.
    124. Cvijetic IN, Zizak ZP, Stanojkovic TP, et al. An alignment independent3D QSARstudy of the antiproliferative activity of1,2,4,5-tetraoxanes [J]. Eur J Med Chem.2010,45(10):4570-4577.
    125. Opsenica R, Angelovski G, Pocsfalvi G, et al. Antimalarial and antiproliferativeevaluation of bis-steroidal tetraoxanes [J]. Bioorg Med Chem.2003,11(13):2761-2768.
    126. Zizak Z, Juranic Z, Opsenica D, et al. Mixed steroidal tetraoxanes induce apoptoticcell death in tumor cells [J]. Invest New Drug.2009,27(5):432-439.
    127. Opsenica DM, Terzic N, Smith PL, et al. Mixed tetraoxanes containing the acetonesubunit as antimalarials [J]. Bioorg Med Chem.2008,16(14):7039-7045.
    128. Opsenica I, Opsenica D, Smith KS, et al. Chemical stability of the peroxide bondenables diversified synthesis of potent tetraoxane Antimalarials [J]. J Med Chem.2008,51(7):2261-2266.
    129. Opsenica I, Terzic N, Opsenica D, et al. Tetraoxane antimalarials and their reactionwith Fe(II)[J]. J Med Chem.2006,49(13):3790-3799.
    130. Liu HH, Wu YK, Shen X. Alkylation of sulfur ligand in cysteinate-iron chelates bya1,2,4,5-tetraoxane [J]. Chinese J Chem.2003,21(7):875-877.
    131. D'Alessandro S, Basilico N, Corbett Y, et al. Hypoxia modulates the effect ofdihydroartemisinin on endothelial cells [J]. Biochem Pharmacol.2011,82(5):476-484.
    132. Kumura N, Furukawa H, Onyango AN, et al. Different behavior of artemisinin andtetraoxane in the oxidative degradation of phospholipid [J]. Chem Phys Lipids.2009,160(2):114-120.
    133. Bousejra-El Garah F, Wong MHL, Amewu RK, et al. Comparison of the Reactivityof Antimalarial1,2,4,5-Tetraoxanes with1,2,4-Trioxolanes in the Presence ofFerrous Iron Salts, Heme, and Ferrous Iron Salts/Phosphatidylcholine [J]. J MedChem.2011,54(19):6443-6455.
    134. Mercer AE, Maggs JL, Sun XM, et al. Evidence for the involvement ofcarbon-centered radicals in the induction of apoptotic cell death by artemisinincompounds [J]. Journal of Biological Chemistry.2007,282(13):9372-9382.
    1. Dong YX. Synthesis and antimalarial activity of1,2,4,5-tetraoxanes [J]. Mini-RevMed Chem.2002,2(2):113-123.
    2. Vennerstrom JL, Fu HN, Ellis WY, et al. Dispiro-1,2,4,5-tetraoxanes: a new classof antimalarial peroxides [J]. J Med Chem.1992,35(16):3023-3027.
    3. Todorovic NM, Stefanovic M, Tinant B, et al. Steroidal geminal dihydroperoxidesand1,2,4,5-tetraoxanes: Structure determination and their antimalarial activity [J].Steroids.1996,61(12):688-696.
    4. Dong YX, Matile H, Chollet J, et al. Synthesis and antimalarial activity of11dispiro-1,2,4,5-tetraoxane analogues of WR148999.7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecanes substituted at the1and10positionswith unsaturated and polar functional groups [J]. J Med Chem.1999,42(8):1477-1480.
    5. Kim HS, Tsuchiya K, Shibata Y, et al. Synthetic methods forunsymmetrically-substituted1,2,4,5-tetroxanes and of1,2,4,5,7-pentoxocanes [J]. JChem Soc Perk T1.1999,(13):1867-1870.
    6. Vennerstrom JL, Dong YX, Andersen SL, et al. Synthesis and antimalarial activityof sixteen dispiro-1,2,4,5-tetraoxanes: Alkyl-substituted7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecanes [J]. J Med Chem.2000,43(14):2753-2758.
    7. Opsenica I, Terzic N, Opsenica D, et al.7,8,15,16-tetraoxa-dispiro[5.2.5.2]hexadecane-3-carboxylic acid derivatives andtheir antimalarial activity [J]. J Serb Chem Soc.2004,69(11):919-922.
    8. Atheaya H, Khan SI, Mamgain R, et al. Synthesis, thermal stability, antimalarialactivity of symmetrically and asymmetrically substituted tetraoxanes [J]. BioorgMed Chem Lett.2008,18(4):1446-1449.
    9. Opsenica DM, Terzic N, Smith PL, et al. Mixed tetraoxanes containing the acetonesubunit as antimalarials [J]. Bioorg Med Chem.2008,16(14):7039-7045.
    10. Rawat DS, Kumar N, Khan SI, et al. Synthesis, antimalarial activity andcytotoxicity of substituted3,6-diphenyl-[1,2,4,5]tetraoxanes [J]. Bioorg Med Chem.2009,17(15):5632-5638.
    11. O'Neill PM, Amewu RK, Nixon GL, et al. Identification of a1,2,4,5-tetraoxaneantimalarial drug-development candidate (RKA182) with superior properties tothe semisynthetic artemisinins [J]. Angew Chem Int Ed.2010,49(33):5693-5697.
    12. Dong YX, McCullough KJ, Wittlin S, et al. The structure and antimalarial activityof dispiro-1,2,4,5-tetraoxanes derived from (+)-dihydrocarvone [J]. Bioorg MedChem Lett.2010,20(22):6359-6361.
    13. Hamann HJ, Hecht M, Bunge A, et al. Synthesis and antimalarial activity of new1,2,4,5-tetroxanes and novel alkoxy-substituted1,2,4,5-tetroxanes derived fromprimary gem-dihydroperoxides [J]. Tetrahedron Lett.2011,52(1):107-111.
    14. Kumar N, Khan SI, Atheaya H, et al. Synthesis and in vitro antimalarial activity oftetraoxane-amine/amide conjugates [J]. Eur J Med Chem.2011,46(7):2816-2827.
    15. Marti F, Chadwick J, Amewu RK, et al. Second generation analogues of RKA182:synthetic tetraoxanes with outstanding in vitro and in vivo antimalarial activities[J]. Med Chem Commun.2011,2:661-665.
    16. World Health Organization. Guidelines for the Treatment of Malaria [R]. Seconded. Geneva: WHO;2010.
    17. Opsenica D, Pocsfalvi G, Juranic Z, et al. Cholic acid derivatives as1,2,4,5-tetraoxane carriers: Structure and antimalarial and antiproliferative activity[J]. J Med Chem.2000,43(17):3274-3282.
    18. Solaja BA, Terzic N, Pocsfalvi G, et al. Mixed steroidal1,2,4,5-tetraoxanes:Antimalarial and antimycobacterial activity [J]. J Med Chem.2002,45(16):3331-3336.
    19. Opsenica R, Angelovski G, Pocsfalvi G, et al. Antimalarial and antiproliferativeevaluation of bis-steroidal tetraoxanes [J]. Bioorg Med Chem.2003,11(13):2761-2768.
    20. Opsenica D, Kyle DE, Milhous WK, et al. Antimalarial, antimycobacterial andantiproliferative activity of phenyl substituted mixed tetraoxanes [J]. J Serb ChemSoc.2003,68(4-5):291-302.
    21. Terzic N, Opsenica D, Milic D, et al. Deoxycholic acid-derived tetraoxaneantimalarials and antiproliferatives [J]. J Med Chem.2007,50(21):5118-5127.
    22. Zizak Z, Juranic Z, Opsenica D, et al. Mixed steroidal tetraoxanes induce apoptoticcell death in tumor cells [J]. Invest New Drugs.2009,27(5):432-439.
    23. Kirchhofer C, Vargas M, Braissant O, et al. Activity of OZ78analogues againstFasciola hepatica and Echinostoma caproni [J]. Acta Trop.2011,118(1):56-62.
    24. Wang XF, Zhao QJ, Vargas M, et al. The activity of dispiro peroxides againstFasciola hepatica [J]. Bioorg Med Chem Lett.2011,21(18):5320-5323.
    25. Jefford CW, Boukouvalas AJJ. Efficient Preparation of1,2,4,5-Tetraoxanes fromBis(trimethylsilyl) Peroxide and Carbonyl Compounds [J]. Synthesis.1988:391-393.
    26. Murray RW, Agarwal SK. Ozonolysis of Some Tetrasubstituted Ethylenes [J]. JOrg Chem.1984,50:4698-4702.
    27. Nakamura N, Nojima M, Kusabayashi S. Ozonolysis of Vinyl Ethers. Evidence forIntramolecular Oxygen Transfer from a Carbonyl Oxide Moiety to a MethoxyvinylGroup [J]. J Am Chem Soc.1987,109:4969-4973.
    28. Dong YX, Vennerstrom JL. Dispiro-1,2,4,5-tetraoxanes via Ozonolysis ofCycloalkanone O-Methyl Oximes: A Comparison with the Peroxidation ofCycloalkanones in Acetonitrile-Sulfuric Acid Media [J]. J Org Chem.1998,63:8582-8585.
    29. Opsenica I, Opsenica D, Smith KS, et al. Chemical stability of the peroxide bondenables diversified synthesis of potent tetraoxane Antimalarials [J]. J Med Chem.2008,51(7):2261-2266.
    30. Ellis GL, Amewu R, Sabbani S, et al. Two-step synthesis of achiraldispiro-1,2,4,5-tetraoxanes with outstanding antimalarial activity, low toxicity, andhigh-stability profiles [J]. J Med Chem.2008,51(7):2170-2177.
    31. Ghorai P, Dussault PH. Broadly Applicable Synthesis of-1,2,4,5-Tetraoxanes.[J].Org Lett.2009,11(1):213-216.
    32. Kumar N, Khan SI, Sharma M, et al. Iodine-catalyzed one-pot synthesis andantimalarial activity evaluation of symmetrically and asymmetrically substituted3,6-diphenyl[1,2,4,5] tetraoxanes [J]. Bioorg Med Chem Lett.2009,19(6):1675-1677.
    33. Kumar N, Khan SI, Beena, et al. Synthesis, antimalarial activity and cytotoxicityof substituted3,6-diphenyl-[1,2,4,5]tetraoxanes [J]. Bioorg Med Chem.2009,17(15):5632-5638.
    34. Terent'ev AO, Kutkin AV, Starikova ZA, et al. New preparation of1,2,4,5-tetraoxanes [J]. Synthesis.2004,(14):2356-2366.
    35. Kim HS, Tsuchiya K, Shibata Y, et al. Synthetic methods forunsymmetrically-substituted1,2,4,5-tetroxanes and of1,2,4,5,7-pentoxocanes [J]. JChem Soc, Perkin Trans1.1999,(13):1867-1870.
    36. Sashidhara KV, Avula SR, Singh LR, et al. A facile and efficient Bi(III) catalyzedsynthesis of1,1-dihydroperoxides and1,2,4,5-tetraoxanes [J]. Tetrahedron Lett.2012,53(36):4880-4884.
    37. Li Y, Hao HD, Zhang Q, et al. A Broadly Applicable Mild Method for theSynthesis of gem-Diperoxides from Corresponding Ketones or1,3-Dioxolanes [J].Org Lett.2009,11(7):1615-1618.
    38. Li Y, Hao HD, Wu YK. Facile Ring-Opening of Oxiranes by H2O2Catalyzed byPhosphomolybdic Acid [J]. Org Lett.2009,11(12):2691-2694.
    39. Leonard J, Lygo B, Procter G. Advanced Practical Organci Chemistry [M].2nd ed.Cheltenham: Stanley Thornes;1998:57.
    40. Ghorai P, Dussault PH. Mild and Efficient Re(VII)-Catalyzed Synthesis of1,1-Dihydroperoxides [J]. Org Lett.2008,10(20):4577-4579.
    41. Kumura N, Furukawa H, Kobayashi M, et al. Synthesis of Novel Conjugates ofTetraoxane Endoperoxide with Bis(Quaternary Ammonium Salts)[J]. BiosciBiotech Bioch.2009,73(1):217-220.
    1. Kumar N, Sharma M, Rawat DS. Medicinal chemistry perspectives of trioxanesand tetraoxanes [J]. Curr Med Chem.2011,18(25):3889-3928.
    2. Amewu R, Gibbons P, Mukhtar A, et al. Synthesis, in vitro and in vivo antimalarialassessment of sulfide, sulfone and vinyl amide-substituted1,2,4-trioxanes preparedvia thiol-olefin co-oxygenation (TOCO) of allylic alcohols [J]. Org Biomol Chem.2010,8(9):2068-2077.
    3. O'Neill PM, Amewu RK, Nixon GL, et al. Identification of a1,2,4,5-tetraoxaneantimalarial drug-development candidate (RKA182) with superior properties tothe semisynthetic artemisinins [J]. Angew Chem, Int Ed.2010,49(33):5693-5697.
    4. Zizak Z, Juranic Z, Opsenica D, et al. Mixed steroidal tetraoxanes induce apoptoticcell death in tumor cells [J]. Invest New Drugs.2009,27(5):432-439.
    5. Terzic N, Opsenica D, Milic D, et al. Deoxycholic acid-derived tetraoxaneantimalarials and antiproliferatives [J]. J Med Chem.2007,50(21):5118-5127.
    6. Opsenica D, Kyle DE, Milhous WK, et al. Antimalarial, antimycobacterial andantiproliferative activity of phenyl substituted mixed tetraoxanes [J]. J Serb ChemSoc.2003,68(4-5):291-302.
    7. Solaja BA, Terzic N, Pocsfalvi G, et al. Mixed steroidal1,2,4,5-tetraoxanes:Antimalarial and antimycobacterial activity [J]. J Med Chem.2002,45(16):3331-3336.
    8. Kirchhofer C, Vargas M, Braissant O, et al. Activity of OZ78analogues againstFasciola hepatica and Echinostoma caproni [J]. Acta Trop.2011,118(1):56-62.
    9. Singh C, Verma VP, Naikade NK, et al.6-(4'-Aryloxy-phenyl)vinyl-1,2,4-trioxanes: A new series of orally active peroxideseffective against multidrug-resistant Plasmodium yoelii in Swiss mice [J]. BioorgMed Chem Lett.2010,20(15):4459-4463.
    10. Tang YQ, Dong YX, Wang XF, et al. Dispiro-1,2,4-trioxane analogues of aprototype dispiro-1,2,4-trioxolane: Mechanistic comparators for artemisinin in thecontext of reaction pathways with iron(II)[J]. J Org Chem.2005,70(13):5103-5110.
    11. Singh C, Srivastav NC, Puri SK. Synthesis and antimalarial activity of6-cycloalkylvinyl substituted1,2,4-trioxanes [J]. Bioorg Med Chem.2004,12(22):5745-5752.
    12. Yan X, Chen JL, Zhu YT, et al. Phosphomolybdic Acid Catalyzed Synthesis of1,2,4,5-Tetraoxanes [J]. Synlett.2011,(19):2827-2830.
    13. Ghorai P, Dussault PH. Broadly Applicable Synthesis of-1,2,4,5-Tetraoxanes.[J].Org Lett.2009,11(1):213-216.
    14. Terent'ev AO, Kutkin AV, Starikova ZA, et al. New preparation of1,2,4,5-tetraoxanes [J]. Synthesis.2004,(14):2356-2366.
    15. Sabbani S, La Pensee L, Bacsa J, et al. Diastereoselective schenck ene reaction ofsinglet oxygen with chiral allylic alcohols; access to enantiomerically enriched1,2,4-trioxanes [J]. Tetrahedron.2009,65(41):8531-8537.
    16. Griesbeck AG, Blunk D, El-Idreesy TT, et al. Bicyclic peroxides andperorthoesters with1,2,4-trioxane structures [J]. Angew Chem, Int Ed.2007,46(46):8883-8886.
    17. Griesbeck AG, El-Idreesy TT, Lex J. Singlet oxygen addition to chiral allylicalcohols and subsequent peroxyacetalization with beta-naphthaldehyde: synthesisof diastereomerically pure3-beta-naphthyl-substituted1,2,4-trioxanes [J].Tetrahedron.2006,62(46):10615-10622.
    18. Prein M, Adam W. The Schenck ene reaction: Diastereoselectiveoxyfunctionalization with singlet oxygen in synthetic applications [J]. AngewChem, Int Ed.1996,35(5):477-494.
    19. Ogata Y, Sawaki Y, Shimizu H. Rates and Scope of the Oxidative Carbon-CarbonCleavage of Epoxides by Alkaline Hydrogen Peroxide [J]. J Org Chem.1978,43(9):1760-1763.
    20. Subramanyam V, Brizuela CL, Soloway AH. Synthesis and Reactions ofBeta-Hydroxyhydroperoxides [J]. J Chem Soc Chem Comm.1976,(13):508-509.
    21. Liu Y-H, Zhang Z-H, Li T-S. Efficient Conversion of Epoxides intobeta-Hydroperoxy Alcohols Catalyzed by Antimony Trichloride/SiO2[J].Synthesis.2008,(20):3314-3318.
    22. Li Y, Hao HD, Wu YK. Facile Ring-Opening of Oxiranes by H2O2Catalyzed byPhosphomolybdic Acid [J]. Org Lett.2009,11(12):2691-2694.
    23. Li Y, Hao HD, Zhang Q, et al. A Broadly Applicable Mild Method for theSynthesis of gem-Diperoxides from Corresponding Ketones or1,3-Dioxolanes [J].Org Lett.2009,11(7):1615-1618.
    24. Ghorai P, Dussault PH. Mild and Efficient Re(VII)-Catalyzed Synthesis of1,1-Dihydroperoxides [J]. Org Lett.2008,10(20):4577-4579.
    25. Das B, Krishnaiah M, Veeranjaneyulu B, et al. A simple and efficient synthesis ofgem-dihydroperoxides from ketones using aqueous hydrogen peroxide andcatalytic ceric ammonium nitrate [J]. Tetrahedron Lett.2007,48(36):6286-6289.
    26. Zmitek K, Zupan M, Stavber S, et al. Iodine as a catalyst for efficient conversionof ketones to gem-dihydroperoxides by aqueous hydrogen peroxide [J]. Org Lett.2006,8(12):2491-2494.
    27. Zmitek K, Zupan M, Stavber S, et al. The effect of iodine on the peroxidation ofcarbonyl compounds [J]. J Org Chem.2007,72(17):6534-6540.
    28. Azarifar D, Khosravi K, Soleimanei F. Mild and Efficient Strontium ChlorideHexahydrate-Catalyzed Conversion of Ketones and Aldehydes into Correspondinggem-Dihydroperoxides by Aqueous H(2)O(2)[J]. Molecules.2010,15(3):1433-1441.
    29. Azarifar D, Khosravi K, Soleimanei F. Stannous Chloride Dihydrate: A Novel andEfficient Catalyst for the Synthesis of gem-Dihydroperoxides from Ketones andAldehydes [J]. Synthesis.2009,(15):2553-2556.
    30. Tada N, Cui L, Okubo H, et al. A facile catalyst-free synthesis ofgem-dihydroperoxides with aqueous hydrogen peroxide [J]. Chem Commun.2010,46(10):1772-1774.
    31. Tada N, Cui L, Okubo H, et al. An Efficient Synthesis of gem-Dihydroperoxideswith Molecular Oxygen and Anthracene under Light Irradiation [J]. Adv SynthCatal.2010,352(14-15):2383-2386.
    32. Bunge A, Hamann HJ, Liebscher J. A simple, efficient and versatile synthesis ofprimary gem-dihydroperoxides from aldehydes and hydrogen peroxide [J].Tetrahedron Lett.2009,50(5):524-526.
    33. Hamann HJ, Hecht M, Bunge A, et al. Synthesis and antimalarial activity of new1,2,4,5-tetroxanes and novel alkoxy-substituted1,2,4,5-tetroxanes derived fromprimary gem-dihydroperoxides [J]. Tetrahedron Lett.2011,52(1):107-111.
    34. Kim HS, Nagai Y, Ono K, et al. Synthesis and antimalarial activity of novelmedium-sized1,2,4,5-tetraoxacycloalkanes [J]. J Med Chem.2001,44(14):2357-2361.
    35. Kim HS, Tsuchiya K, Shibata Y, et al. Synthetic methods forunsymmetrically-substituted1,2,4,5-tetroxanes and of1,2,4,5,7-pentoxocanes [J]. JChem Soc Perk T1.1999,(13):1867-1870.
    36. Ishihara K. Sn(II) and Sn(IV) Lewis Acids. In: Yamamoto H, editor. Lewis Acidsin Organic Synthesis. Weinheim: Wiley-VCH;2000. p.408-443.
    37. Kita Y, Matsuda S, Inoguchi R, et al. SnCl4-promoted rearrangement of2,3-epoxyalcohol derivatives: stereochemical control of the reaction [J]. Tetrahedron Lett.2005,46(1):89-91.
    38. Robinson MWCP, K.S.; Mabbett, I.; Timms, D.A.; Graham, A.E. Copper(II)tetrafluroborate-promoted Meinwald rearrangement reactions of epoxides [J].Tetrahedron.2010,66(43):8377-8382.
    39. Corey EJ, Chaykovsky M. Methylenecyclohexane Oxide [J]. Org Syn.1969,49:78-80.
    40. Bach RD, Knight JW. Epoxidation f Olefines By Hydrogen Peroxide-Acetonitrile:cis-Cyclooctene Oxide [J]. Org Syn.1981,60:63-66.
    41. Muehlbacher M, Poulter CD. Regioselective Opening of Simple Epoxides withDiisopropylamine Trihydrofluoride [J]. J Org Chem.1988,53(5):1026-1030.
    42. Kavanagh SA, Piccinini A, Connon SJ. Efficient Catalytic Corey-ChaykovskyReactions Involving Ketone Substrates [J]. Advanced Synthesis&Catalysis.2010,352(11-12):2089-2093.
    43. Wu FL, Ross BP, McGeary RP. New Methodology for the Conversion of Epoxidesto Alkenes [J]. Eur J Org Chem.2010,(10):1989-1998.
    44. Su W, Chen J, Wu H, et al. A general and efficient method for the selectivesynthesis of beta-hydroxy sulfides and beta-hydroxy sulfoxides catalyzed bygallium(III) triflate [J]. J Org Chem.2007,72(12):4524-4527.
    45. Garibay SJ, Wang ZQ, Cohen SM. Evaluation of Heterogeneous Metal-OrganicFramework Organocatalysts Prepared by Postsynthetic Modification [J]. InorgChem.2010,49(17):8086-8091.
    46. Saisaha P, Pijper D, van Summeren RP, et al. Manganese catalyzedcis-dihydroxylation of electron deficient alkenes with H2O2[J]. Org Biomol Chem.2010,8(19):4444-4450.
    47. Suda K, Kikkawa T, Nakajima SI, et al. Highly regio-and stereoselectiverearrangement of epoxides to aldehydes catalyzed by high-valent metalloporphyrincomplex, Cr(TPP)OTf [J]. J Am Chem Soc.2004,126(31):9554-9555.
    48. Adam W, Peters K, Renz M. Titanium-catalyzed diastereoselective epoxidations ofene diols and allylic alcohols with beta-hydroperoxy alcohols as novel oxygendonors [J]. J Org Chem.1997,62(10):3183-3189.
    49. Wang XF, Zhao QJ, Vargas M, et al. The activity of dispiro peroxides againstFasciola hepatica [J]. Bioorg Med Chem Lett.2011,21(18):5320-5323.
    50. Gaspar B, Carreira EM. Cobalt catalyzed functionalization of unactivated alkenes:regioselective reductive C-C bond forming reactions [J]. J Am Chem Soc.2009,131(37):13214-13215.
    1. Crespo-Ortiz MP, Wei MQ. Antitumor Activity of Artemisinin and Its Derivatives:From a Well-Known Antimalarial Agent to a Potential Anticancer Drug [J]. JBiomed Biotechnol.2012: doi:10.1155/2012/247597.
    2. Li HX, Huang HB, Shao CL, et al. Cytotoxic Norsesquiterpene Peroxides from theEndophytic Fungus Talaromyces flavus Isolated from the Mangrove PlantSonneratia apetala [J]. J Nat Prod.2011,74(5):1230-1235.
    3. Jimenez-Romero C, Ortiz I, Vicente J, et al. Bioactive Cycloperoxides Isolatedfrom the Puerto Rican Sponge Plakortis halichondrioides [J]. J Nat Prod.2010,73(10):1694-1700.
    4. Arakawa K, Endo Y, Kimura M, et al. Multifunctional anti-angiogenic activity ofthe cyclic peroxide ANO-2with antitumor activity [J]. International Journal ofCancer.2002,100(2):220-227.
    5. Zizak Z, Juranic Z, Opsenica D, et al. Mixed steroidal tetraoxanes induce apoptoticcell death in tumor cells [J]. Invest New Drug.2009,27(5):432-439.
    6. Niesen A, Barthel A, Kluge R, et al. Antitumoractive Endoperoxides fromTriterpenes [J]. Arch Pharm.2009,342(10):569-576.
    7. Ellis GL, Amewu R, Sabbani S, et al. Two-step synthesis of achiraldispiro-1,2,4,5-tetraoxanes with outstanding antimalarial activity, low toxicity, andhigh-stability profiles [J]. J Med Chem.2008,51(7):2170-2177.
    8. D'Alessandro S, Basilico N, Corbett Y, et al. Hypoxia modulates the effect ofdihydroartemisinin on endothelial cells [J]. Biochem Pharmacol.2011,82(5):476-484.
    9. Kumura N, Furukawa H, Onyango AN, et al. Different behavior of artemisinin andtetraoxane in the oxidative degradation of phospholipid [J]. Chem Phys Lipids.2009,160(2):114-120.
    10. Bousejra-El Garah F, Wong MHL, Amewu RK, et al. Comparison of the Reactivityof Antimalarial1,2,4,5-Tetraoxanes with1,2,4-Trioxolanes in the Presence ofFerrous Iron Salts, Heme, and Ferrous Iron Salts/Phosphatidylcholine [J]. J MedChem.2011,54(19):6443-6455.
    11. Copple IM, Mercer AE, Firman J, et al. Examination of the Cytotoxic andEmbryotoxic Potential and Underlying Mechanisms of Next-Generation SyntheticTrioxolane and Tetraoxane Antimalarials [J]. Mol Med.2012,18(7):1045-1055.
    12. Opsenica D, Pocsfalvi G, Juranic Z, et al. Cholic acid derivatives as1,2,4,5-tetraoxane carriers: Structure and antimalarial and antiproliferative activity[J]. J Med Chem.2000,43(17):3274-3282.
    13. Opsenica D, Kyle DE, Milhous WK, et al. Antimalarial, antimycobacterial andantiproliferative activity of phenyl substituted mixed tetraoxanes [J]. J Serb ChemSoc.2003,68(4-5):291-302.
    14. Terzic N, Opsenica D, Milic D, et al. Deoxycholic acid-derived tetraoxaneantimalarials and antiproliferatives [J]. J Med Chem.2007,50(21):5118-5127.
    15. Cvijetic IN, Zizak ZP, Stanojkovic TP, et al. An alignment independent3D QSARstudy of the antiproliferative activity of1,2,4,5-tetraoxanes [J]. Eur J Med Chem.2010,45(10):4570-4577.
    16. Barton V, Ward SA, Chadwick J, et al. Rationale Design of BiotinylatedAntimalarial Endoperoxide Carbon Centered Radical Prodrugs for Applications inProteomics [J]. J Med Chem.2010,53(11):4555-4559.
    17. Wang XF, Zhao QJ, Vargas M, et al. The activity of dispiro peroxides againstFasciola hepatica [J]. Bioorg Med Chem Lett.2011,21(18):5320-5323.
    18. Robert A, Laurent SAL, Boissier J, et al. Synthesis of "Trioxaquantel"(R)derivatives as potential new antischistosomal drugs [J]. Eur J Org Chem.2008,(5):895-913.
    19. Tang YQ, Dong YX, Karle JM, et al. Synthesis of tetrasubstituted ozonides by thegriesbaum coozonolysis reaction: Diastereoselectivity and functional grouptransformations by post-ozonolysis reactions [J]. J Org Chem.2004,69(19):6470-6473.
    20. Marti F, Chadwick J, Amewu RK, et al. Second generation analogues of RKA182:synthetic tetraoxanes withoutstanding in vitro and in vivo antimalarial activities [J]. Med Chem Commun.2011,2:661-665.
    21. Kroth H, Hamel C, Benderitter P, et al. Preparation of7-azaindole, indole, andcarbazole compounds for the treatment of diseases associated with amyloid oramyloid-like proteins [P], WO2011128455A1.2011-10-20.
    22. Muller S, Webber MJ, List B. The Catalytic Asymmetric Fischer Indolization [J]. JAm Chem Soc.2011,133(46):18534-18537.
    23. Kitbunnadaj R, Hoffmann M, Fratantoni SA, et al. New high affinity H-3receptoragonists without a basic side chain [J]. Bioorgan Med Chem.2005,13(23):6309-6323.
    24. Itoh KI, Utsukihara T, Funayama K, et al. Reaction of alpha,beta-unsaturatedketones using cerium (IV) sulfate tetrahydrate in acetic acid [J]. Appl OrganometChem.2007,21(12):1029-1032.
    25. Marti F, Chadwick J, Amewu RK, et al. Second generation analogues of RKA182:synthetic tetraoxanes with outstanding in vitro and in vivo antimalarial activities[J]. Med Chem Commun.2011,2:661-665.
    1. Mandal S, Moudgil M, Mandal SK. Rational drug design [J]. Eur J Pharmacol.2009,625(1-3):90-100.
    2. Crespo-Ortiz MP, Wei MQ. Antitumor Activity of Artemisinin and Its Derivatives:From a Well-Known Antimalarial Agent to a Potential Anticancer Drug [J]. JBiomed Biotechnol.2012: doi:10.1155/2012/247597.
    3. Wermuth CG. The Practice of Medicinal Chemistry [M]. Third ed. San Diego:Academic Press;2008:380-383.
    4. Lal B, Badshah A, Altaf A, et al. Miscellaneous applications of ferrocene-basedpeptides/amides [J]. Appl Organomet Chem.2011,25(12):843-855.
    5. Fouda MFR, Abd-Elzaher MM, Abdelsamaia RA, et al. On the medicinalchemistry of ferrocene [J]. Appl Organomet Chem.2007,21(8):613-625.
    6. Ornelas Ct. Application of ferrocene and its derivatives in cancer research [J]. NewJ Chem.2011,35:1973-1985.
    7. Snegur LV, Babin VN, Simenel AA, et al. Antitumor activities of ferrocenecompounds [J]. Russ Chem B+.2010,59(12):2167-2178.
    8. Acevedo-Morantes CY, Meléndez E, Singh SP, et al. Cytotoxicity and ReactiveOxygen Species Generated by Ferrocenium and Ferrocene on MCF7and MCF10ACell Lines [J]. J Cancer Sci Ther.2012,4(9):271-275.
    9. Torti SV, Torti FM. Iron and cancer: more ore to be mined [J]. Nature ReviewsCancer.2013,13:342-355.
    10. Merlot AM, Kalinowski DS, Richardson DR. Novel Chelators for CancerTreatment: Where Are We Now?[J]. Antioxid Redox Sign.2013,18(8):973-1006.
    11. Yu Y, Gutierrez E, Kovacevic Z, et al. Iron chelators for the treatment of cancer [J].Curr Med Chem.2012,19(17):2689-2702.
    12. Kovacevic Z, Kalinowski DS, Lovejoy DB, et al. The medicinal chemistry ofnovel iron chelators for the treatment of cancer [J]. Curr Top Med Chem.2011,11(5):483-499.
    13. Meunier B, Robert A. Heme as Trigger and Target for Trioxane-ContainingAntimalarial Drugs [J]. Accounts Chem Res.2010,43(11):1444-1451.
    14. Krishna S, Uhlemann AC, Haynes RK. Artemisinins: mechanisms of action andpotential for resistance [J]. Drug Resist Update.2004,7(4-5):233-244.
    15. Bernhardt PV. Coordination chemistry and biology of chelators for the treatment ofiron overload disorders [J]. Dalton T.2007,(30):3214-3220.
    16. Beckwith ALJ, Vickery GG. Displacement of Hydroxy-Group fromFerrocenylmethanol by Amines [J]. Journal of the Chemical Society-PerkinTransactions1.1975,(18):1818-1821.
    17. Tang YQ, Dong YX, Karle JM, et al. Synthesis of tetrasubstituted ozonides by thegriesbaum coozonolysis reaction: Diastereoselectivity and functional grouptransformations by post-ozonolysis reactions [J]. J Org Chem.2004,69(19):6470-6473.
    18. Crosby IT, Rose ML, Collis MP, et al. Antiviral agents. I. Synthesis and antiviralevaluation of trimeric naphthoquinone analogues of conocurvone [J]. Aust J Chem.2008,61(10):768-784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700