无金属催化的点击聚合制备功能化聚三唑甲酸酯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展新的聚合反应对于高分子化学来说是非常重要的。几乎所有新的聚合反应都起源于已知的有机小分子的反应。
     Cu(I)催化的叠氮-炔的“点击反应”,由于反应原料易得、反应条件温和、后处理简单和具有立体专一性等优点,被广泛应用于药物及生物复合物的合成、表面改性和聚合物后功能化修饰等方面。同时该点击反应也用于制备线形和超支化聚合物。利用该反应制备的聚合物,金属催化剂往往很难去除干净,由于铜离子会产生细胞毒性和影响聚合物的光电性能,极大地限制了该反应在生物和光电高分子领域中的应用。解决的方法之一是发展无金属催化的“点击聚合”反应。
     本文建立了一种无金属催化的丙炔酸酯-叠氮的点击聚合反应,制备了一系列的功能化线形和超支化聚三唑甲酸酯。
     我们首先设计并合成了四种芳香族和脂肪族的二丙炔酸酯化合物,尝试了该类单体与二叠氮化合物在加热条件下的聚合反应,系统研究了单体浓度、反应时间和溶剂对聚合物的产率、分子量及立构规整性的影响,确定了最佳的聚合条件,并且该聚合反应可以在空气氛围中进行,大大简化了反应过程。该聚合反应所制备的聚三唑甲酸酯可在碱液中快速降解。
     含有聚集诱导发光(AIE)性能的四苯基乙烯(TPE)单元的二叠氮与二丙炔酸酯单体进行无金属催化的点击聚合,高产率地制备了具有较高分子量和立构规整性的聚三唑甲酸酯。由于分子结构中含有TPE单元,该聚三唑甲酸酯具有AIE性能,并且该聚合物可作为化学传感器,高灵敏度地检测爆炸物。
     通过分子结构设计,合成了四种含二苯甲酮、硫原子的功能化的二叠氮单体,利用无金属催化的点击聚合反应,制备了具有高透光率、较高的折光指数和较低的色散系数,并且可以形成光致抗蚀图案的聚三唑甲酸酯,该类聚合物有望用于光学材料。
     利用含二茂铁的二叠氮化合物与二丙炔酸酯单体进行无金属催化的点击聚合反应,高产率地得到了较高分子量、较低分子量分布和高立构规整性的二茂铁基聚三唑甲酸酯,所制备的聚合物具有较高的热稳定性和电化学活性。
     探索了三丙炔酸酯单体与含TPE单元的二叠氮化合物的无金属催化的点击聚合反应,系统研究了聚合反应温度、时间和单体浓度对聚合物的溶解性、产率、分子量及分子量分布的影响,确定了最佳的聚合条件,发展了一种无金属催化的丙炔酸酯-叠氮的点击聚合制备超支化聚合物的方法。所制备的聚合物具有较高的折光指数和较低的色散性,并且可形成光致抗蚀图案;该聚合物具有聚集诱导发光性能,可用于高灵敏度地检测爆炸物。
The development of new polymerization reactions is a constant theme in current polymer chemistry. Most of the new polymerization reactions, if not all, are derived from the established organic reactions.
     The Cu(Ⅰ)-catalyzed azide-alkyne cycloaddition, i.e. the click reaction, enjoys such advantageous characteristics as high efficiency, atom economy, regioselectivity, and functionality tolerance as well as mild reaction conditions, fast reaction rates and simple product isolation procedures. The click reaction has been actively utilized to synthesize bioconjugates and dendrimers, to decorate surfaces and nanoparticles, and to post-modify preformed polymers. This reaction has also been developed to a polymerization technique for the preparation of linear and hyperbranched polymers. However. it is very difficult to completely remove metallic catalysts after polymerization. The catalyst residues can cause cytotoxicity and deteriorate the photophysical properties of resulting polymers. The development of the metal-free click polymerization process is thus highly desired.
     In this paper, an efficient metal-free click polymerization of propiolates and azides was developed. Linear and hyperbrached poly(aroxycarbonyltriazole)s (PACTs) with advanced functional properties were prepared by the metal-free click polymerization.
     We firstly synthesized four aromatic and aliphatic propiolates. The thermally activated click polymerization of propiolates and azides were carried out. The effect of monomer concentration, reaction time and solvent on the yield, molecular weight and regioregularity of the polymer was studied. An optimal polymerization conditions were obtained. It is worthy noting that this polymerization reaction is insensitive to oxygen and moisture and can be carried out in open atmosphere, which further simplify the polymerization. The resulting PACTs could be rapidly degraded in the presence aqueous solution of potassium hydroxide.
     The metal-free click polymerization of4,4'-isopropylidenediphenyl dipropiolate and tetraphenylethene (TPE)-containing diazides were carried out in a DMF and toluene mixture at100℃for6h. affording PACTs with high molecular weights and regioregularities in high yields. Thanks to the aggregation-induced emission (AIE) feature of contained TPE units, the PACTs are also AIE-active and can serve as fluorescent chemosensors for superamplified detection of explosives.
     A series of functional PACTs were prepared by the metal-free click polymerization. The resulting PACTs are photo-sensitive and could generate three-dimensional phtotopattern upon UV irradiation. They also show high refractive indices and low optical dispersion, making them promising for photonic applications.
     Ferrocene-based PACTs with high molecular weights and low polydispersity indices, were synthesized by the metal-free click polymerization of bipropioiates and ferrocene-containing diazides. The ferrocene-based PACTs showed high resistance to thermolysis and electrochemical activity.
     We attempted the metal-free click polymerization of tripropiolates and diazide, and studied the effect of monomer concentration, reaction time and temperature on the yield, molecular weight and solubility of the polymers. The produced hyperbranched PACTs showed high resistance to thermolysis, high refractive index values and low optical dispersion, and could generate two-dimensional phtotopattern by UV irradiation. Moreover, the PACTs could be rapidly degraded in the presence of potassium hydroxide aqueous solution, showed AIE characteristics and worked as explosive sensors with high sensitivity.
引文
[1]. Kolb. H. C.; Finn. M. G.; Sharpless. K. B. Click chemistry:diverse chemical function from a few good reactions. Angew. Chem. Int. Ed.2001,40(11).2004-2021.
    [2]. Michael. A. Ueber die einwirkung von diazodenzolimid auf acetylendicarbon-sauremethylester.J. Praki. Chem.1893.48,94-95.
    [3]. (a) Huisgen. R.; Szeimies. G.; Mobius. L.1,3-Dipolar cycloadditions. XXXII. Kinetics of the addition of organic azides to carbon-carbon multiple bonds. Chem. Ber.1967,100. 2494-2507. (b) Huisgen, R. In 1,3-Dipolar cycloaddition chemistry; Padwa A Ed, Wiley: New York,1984,7,p.1-176.
    [4]. Tornoe. C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:[1,2.3]-triazoles by regiospecific copper(Ⅰ)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem.2002,67 (9).3057-3064.
    [5]. Rostovtsev. V. V.; Green, L. G..; Fokin. V.V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process:copper(Ⅰ)-catalyzed regioselective "ligation" of azides and terminal alkynes.Angew. Chem. Int. Ed.2002,41(14),2596-2599.
    [6]. (a) Angell. Y. L.; Burgess, K. Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem. Soc. Rev.2007.36 (10),1674-1689. (b) Meldal. M.; Tornoe. C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev.2008.108 (8),2952-3015. (c) Lutz, J. F.; Sorrier. H. G. Modem trends in polymer bio-conjugates design. Prog. Polym. Sci.2008, 33 (1).1-39. (d) Amblard, F.; Cho, J. H.; Schinazi. R. F. Cu(I)-Catalyzed Huisgen Azide-Alkyne 1.3-Dipolar Cycloaddition Reaction in Nucleoside. Nucleotide. and Oligonucleotide Chemistry. Chem. Rev.2009,109 (9),4207-4220. (e) Mamidyala, S. K. Finn. M. G. In situ click chemistry:probing the binding landscapes of biological molecules. Chem. Soc. Rev.2010,39 (4).1252-3261. (f) El-Sagheer, A. H.; Brown, T. Click chemistry with DNA. Chem. Soc. Rev.2010,39 (4).1388-1405.
    [7]. Chu. C. H.; Liu. R. H. Application of click chemistry on preparation of separation materials for liquid chromatography. Chem. Soc. Rev.2011.40 (5).2177-2188.
    [8]. Carlmark, A.; Hawker, C.; Hult, A.; Malkoch. M. New methodologies in the construction of dendritic materials. Chem. Soc. Rev.2009,38 (2).352-362.
    [9]. (a) Tasdelen. M. A.; Kahveci. M. U.; Yagci. Y. Telechelic polymers by living and controlled/living polymerization methods. Prog. Polym. Sci.2011,36 (4),455-567. (b) Golas. P. L.; Matyjaszewski, K. Marrying click chemistry with polymerization:expanding the scope of polymeric materials. Chem. Soc. Rev.2010,39 (4),1338-1354. (c) Chen, L. Shi, N.; Qian, Y.; Xie. L.; Fang. Q.; Huang, W. Click Chemistry and Functional Organic/Polymeric Materials Progress in Chemistry. Prog. Chem.2010,22 (0203).406-416. (d) Binder, W. H.; Sachsenhofer. R. Click Chemistry in Polymer and Materials Science. Macromol. Rapid Commun.2007,28 (1),15-54. (e) Binder, W. H.; Sachsenhofer, R. Click Chemistry in Polymer and Materials Science:An Update. Macromol. Rapid Commun.2008. 29 (12-13),952-981. (f) Fournier. D.; Hoogenboom, R.; Schubert, U. S. Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem. Soc. Rev.2007, 36 (8),1369-1380. (g) Golas, P. L.; Matyjaszewski, K. Click Chemistry and ATRP:A Beneficial Union for the Preparation of Functional Materials. OSAR Comb. Sci.2007.26 (11-12),1116-1134. (h) Yagci. Y.; Tasdelen. M. A. Mechanistic transformations involving living and controlled/living polymerization methods. Prog. Polym. Sci.2006,31 (12), 1133-1170. (i) Goodall, G. W.; Hayes, W. Advances in cycloaddition polymerizations. Chem. Soc. Rev.2006,35 (3),280-312. (j) Hawker, C. J.; Wooley, K. L. The Convergence of Synthetic Organic and Polymer Chemistries. Science 2005,309 (5738),1200-1205.
    [10]. Scheel, A. j.; Komber, H.; Voit, B. Novel hyperbranched poly([1,2.3]-triazole)s derived from AB2 monomers by a 1,3-dipolar cycloaddition. Macromol. Rapid Commun.2004.25 (12),1175-1180.
    [11]. Mcquade, D. T.; Pullen. A. E.; Swager, T. M. Conjugated polymer-based chemical sensors. Chem. Rev.2000,100 (7),2537-2574.
    [12]. van Steenis, D. J. V. C.; David, O. R. P.; van Strijdonck, G. P. F.; van Maarseveen, J. H.; Reek, J. N. H. Click-chemistry as an efficient synthetic tool for the preparation of novel conjugated polymers. Chem. Commun.2005, (34),4333-4335.
    [13]. Bakbak, S.:Leech. P. J.; Carson. B. E.; Saxena. S.; King, W. P.; Bunz, U. H. F.; 1,3-Dipolar cycloaddition for the generation of nanostructured semiconductors by heated probe tips. Macromolecules,2006.39 (20),6793-6795.
    [14]. Karim, M. A.; Cho, Y. R.:Park, J. S.; Kim, S. C.; Kim, H. J.; Lee, J. W.; Gal, Y.; Jin, S. H. Novel fluorene-based functional'click polymers" for quasi-solid-state dye-sensitized solar cells. Chem. Commun.2008, (16),1929-1931.
    [15]. Karim, M. A.; Cho. Y. R.; Park,J. S.; Ryu, T.1.; Lee, M. J.; Song, M.; Jin, S. H.; Lee, J. W.; Gal.Y. S. Comparison of Three Different Click Reaction Methods for the Synthesis of Fluorene-Based Polymers and Performance in Quasi-Solid-State DSSCs. Macromol. Chem. Phys.2008.209,1967-1975.
    [16]. (a) Huang. X.; Dong. Y.; Meng, J.; Cheng, Y.:Zhu. C. Fluorescence Polymer Incorporating Triazole and Benzo[2.1.3]thiadiazole Moieties for Ni2+ Detection. Synlett 2010, (12), 1841-1844. (b) Huang, X.; Meng, J.; Dong, Y.;Cheng, Y.; Zhu, C. Polymer-based fluorescence sensor incorporating triazole moieties for Hg2+ detection via click reaction. Polymer 2010,51 (14),3064-3067. (c) Zheng, L.:Huang, X.; Shen, Y.; Cheng, Y. Click Chemistry Approach to Fluorescence-Based Polybinaphthyls Incorporating a Triazole Moiety for Hg2+ Recognition. Synlett 2010. (3).453-456.
    [17]. Chen, Z.; Dreyer, D. R.; Wu, Z.:Wiggins, K. M.; Jiang, Z.; Bielawski. C. W. Synthesis of Main-Chain Poly(carbazole)s via CuAAC. J. Polym. Sci., Part A:Polym. Chem.2011,49 (6).1421-1426
    [18]. Terao, J.; Kimura. K.;Seki, S.:Fujiharaa, T.:Tsujia, Y. Synthesis of an insulated molecular wire by click polymerization. Chem. Commun.2012, (48).1577-1579.
    [19]. Xie. J. D.;Hu, L. H.; Shi, W. F.; Deng. X. X.:Cao, Z. Q.; Shen, Q. S. Synthesis and nonlinear optical properties of hyperbranched polytriazole containing second-order nonlinear optical chromophore. J. Polym. Sci., Part B:Polym. Phys.2008,46 (12), 1140-1148.
    [20]. Xue, X.;Zhu,J.; Zhang, Z.; Zhou, N.;Tu, Y.; Zhu. X. Soluble Main-Chain Azobenzene Polymers via Thermal 1,3-Dipolar Cycloaddition:Preparation and Photoresponsive Behavior. Macromolecules 2010,43 (6),2704-2712.
    [21]. Michinobu, T.; Inazawa, Y.; Hiraki. K.; Katayama, Y.; Masai, E.; Nakamura, M.; Ohara, S.; Shigehara, K. A Novel Biomass-based Polymer Prepared from Lignin-derived Stable Metabolic Intermediate by Cu(Ⅰ)-catalyzed Azide-Alkyne Click Reaction. Chem. Lett.2008, 37(2),154-155.
    [22]. Qin, A. J.; Lam. J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun, J. Z.; Tang, B. Z. Polytriazoles with aggregation-induced emission characteristics:synthesis by click polymerization and application as explosive chemosensors. Macromolecules 2009,42 (5), 1421-1424.
    [23]. (a) Luo, J.; Xie, Z.; Lam. J. W. Y.; Cheng, L.; Chen. H.; Qiu. C.; Kwok. H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun.2001, (18),1740-1741. (b) Chen, J.; Law. C. C. W.; Lam. J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem.Mater.2003,15 (7),1535-1546. (c) Yu, G.; Yin, S.; Liu, Y.; Chen, J.; Xu, X.; Sun, X.; Ma, D.; Zhan, X.:Peng. Q.; Shuai, Z.; Tang, B. Z.; Zhu, D.; Fan, W.; Luo, Y. Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. J. Am. Chem. Soc.2005, 127 (17),6335-6346. (d) Zeng, Q.; Li, Z.; Dong, Y.; Di, C.; Qin. A.; Hong, Y.; Zhu, Z.; Jim, C. K. W.; Yu, G.; Li, Q.; Li, Z,; Liu, Y.; Qin, J.; Tang, B. Z. Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations:AIE and AIEE effects. Chem. Commun.2007. (1),70-72. (e) Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li. Z.; Sun, J.; Sung, H. H.Y.; Williams.I. D.; Kwok, H. S.;Tang, B. Z. Aggregation-induced and crystallization-enhanced emissions of 1,2-diphenyl-3,4-bis(diphenylmethylene)-1-cyclobutene. Chem. Commun.2007, (31),3255-3257. (f) Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission:phenomenon, mechanism and applications. Chem. Commun.2009, (29),4332-4353. (g) Hong. Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev.2011,40 (11),5361-5388.
    [24]. (a) Nagao,Y.; Takasu, A. Click Polyester:Synthesis of Polyesters Containing Triazole Units in the Main Chain by Click Chemistry and Improved Thermal Property. Macromol. Rapid Commun. 2009, 30 (3), 199-203. (b) Nagao, Y.; Takasu, A. "Click Polyester": Synthesis of Polyesters Containing Triazole Units in the Main Chain via Safe and Rapid "Click" Chemistry and Their Properties. J. Pofym. ScL, Part A: Polym. Chem. 2010, 48 (19), 4207-4218.
    [25]. Ameduri B. Boutevin B. "Well-Architeclured Fluor opolymers: Synthesis, Properties and Applications" Elsevier: Amsterdam. 2004, pp 231-348.
    [26]. (a) Zhu, Y. Q.: Huang, Y. G..; Meng, W. D.; Li. H. Q.; Qing, F. L. Novel perfluorocyclobutyl (PFCB)-containing polymers formed by click chemistry. Polymer 2006. 41 (18), 6272-6279. (b) Yao, R. X.; Kong, L.; Yin, Z. S.; Qing, F. L. Synthesis of novel aromatic ether polymers containing perfluorocyclobutyl and triazole units via click chemistry. J. Fluorine Chem. 2008,129 (10), 1003-1006.
    [27]. Soules, A.; Ameduri, B.; Boutevin, B.; Calleja. G. Original Fluorinated Copolymers Achieved by Both Azide/Alkyne "Click" Reaction and Hay Coupling from Tetrafluoroethylene Telomers. Macromolecules 2010. 43 (10), 4489-4499.
    [28]. Chernykh, A.; Agag, T.; Ishida, H. Synthesis of linear polymers containing benzoxazine moieties in the main chain with high molecular design versatility via click reaction. Polymer 2009, 50 (2). 382-390.
    [29]. Binauld, S.; Damiron, D.; Hamaide. T.; Pascault, J. P.; Fieury. E.; Drockenmuller. E. Click chemistry step growth polymerization of novel a-azide-co-alkyne monomers. Chem. Commun. 2008, (35). 4138-4140.
    [30]. Zhou, X.; Du, L.; Wan. L.; Wang, X.; E, Y.; Huang. F. Synthesis and Characteristic of Novel Soluble Triazoleimide Oligomers with Terminated Arylacetylene. Bull. Korean Chem. Soc. 2010, 31 (9), 2603-2606.
    [31]. Ye. Y.; Yen, Y.; Cheng, C.; Syu, Y.; Huang. Y.; Chang, F. Polytriazole/Clay Nanocomposites Synthesized Using in Situ Polymerization and Click Chemistry. Polymer 2010, 57 (2). 430-436.
    [32]. Binauld, S.; Fieury, E.; Drockenmuller. E. Solving the Loss of Orthogonality During the Polyaddition of alpha-Azide-omega-Alkyne Monomers Catalyzed by Cu(PPh3)3Br: Application to the Synthesis of High-Molar Mass Polytriazoles. J. Polym. Sci.: Part A: Polym. Chem. 2010, 48(11), 2470-2476.
    [33]. Sheng. X.; Mauldin, T; Kessler. M. Kinetics of Bulk Azide/Alkyne "Click" Polymerization. J. Polym. Sci.. Part A: Polym. Chem. 2010, 48 (18), 4093-4102.
    [34]. Besset, C; Pascault, J.; Fieury, E.; Drockenmuller, E.; Bernard, J. Structure-Properties Relationship of Biosourced Stereocontrolled Polytriazoles from Click Chemistry Step Growth Polymerization of Diazide and Dialkyne Dianhydrohexitols. Biomacromolecules 2010, 77(10): 2797-3803.
    [35], Srinivasachari, S.: Liu, Y. M.: Zhang, G. D.: Prevette, L.; Reineke, T. M. Trehalose click polymers inhibit nanoparticle aggregation and promote pDNA delivery in serum. J. Am. Chem. Soc.2006.128 (25).8176-8184.
    [36]. Eissa. A.:Khosravi. E. Synthesis of a new smart temperature responsive glycopolymer via click polymerization. European Polymer Journal 2011,47(1):61-69.
    [37]. (a) Van Dijk, M.:Nollet. M. L.; Weijers. P.; Dechesne. A. C.; Van Nostrum, C. F.;Hennink, W. E.; Rijkers, D. T. S.; Liskamp, R. M. J. Synthesis and Characterization of Biodegradable Peptide-Based Polymers Prepared by Microwave-Assisted Click Chemistry. Biomacromolecules 2008,9 (10),2834-2843. (b) Van Dijk, M.; Mustafa. K.; Dechesne, A. C.; Van Nostrum, C. F.; Hennink. W. E.; Rijkers, D. T. S.; Liskamp, R. M. J. Synthesis of peptide-based polymers by microwave-assisted cycloaddition backbone polymerization. Biomacromolecules 2007,8 (2),327-330.
    [38]. Guo. J.; Wei, Y.; Zhou, D.; Cai, P.; Jing, X.; Chen, X.; Huang, Y. Chemosynthesis of Poly(ε-lysine)-Analogous Polymers by Microwave-Assisted Click Polymerization. Biomacromolecules 2011,12 (3),737-746.
    [39]. Liu, X.; Quan. L.; Tian, J.; Laquer, F.;Ciborowski, P.; Wang, D. Syntheses of Click PEG-Dexamethasone Conjugates for the Treatment of Rheumatoid Arthritis Biomacromolecules 2010.11 (10),2621-2628.
    [40]. Wang, Y.; Zhang, R.; Xu, N.; Du, F.; Wang. Y.;Tan, Y.; Ji. S.; Liang, D.; Li. Z. Reduction-Degradable Linear Cationic Polymers as Gene Carriers Prepared by Cu(I)-Catalyzed Azide-Alkyne Cycloaddition. Biomacromolecules 2011,12 (1),66-74.
    [41]. Abdelaziz A, Manners I. "Frontiers in Metal-Containing Polymers", Wiley-lnterscience, New Jersey,2007, p.123.
    [42]. Lang. C.; Voll, D.; Inglis, A.; Dingenouts. N.; Goldmann, A.; Barner. L.; Barner-Kowollik, C. An Access Route to Polyferrocenes via Modular Conjugation. Macromol. Chem. Phys. 2011,272(8),831-839.
    [43]. Brady, S.; Shultz, G.; Tyler, D. Preparation of Polymers Containing Metal-Metal Bonds along the Backbone Using Click Chemistry. J. Inorg. Organomet. Polym.2010,20 (3), 511-518.
    [44].琼斯,安藤亘,乔努斯基著:冯圣玉,栗付平,李美江译。含硅聚合物:合成与应用。北京:化学工业出版社,2008。
    [45]. (a) Wang. Y.; Wang. D.; Han, J.; Feng, S. Facile synthesis of σ-π conjugated organosiliconpolymers via Click polymerization. J. Organomet. Chem.2011,696 (9), 1874-1878. (b) Wang, Y.; Wang, D.; Xu, C.; Wang, R.; Han. J.; Feng, S. Click polymerization:Synthesis of novel σ-π conjugated organosilicon polymers. J. Organomet. Chem.2011,696 (18),3000-3005.
    [46]. Pandey, S.; Kolli, B.; Mishra. S. P.; Samui. A. B. Siloxane polymers containing azo moieties synthesized by click chemistry for photo responsive and liquid crystalline applications. J. Polym. Sci., Part A:Polym. Chem.2012,50 (6),1205-1215.
    [47]. (a) Tsarevsky, N. V. Sumerlin, B. S.; Matyjaszewski. K. Step-Growth "Click" Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization. Macromolecules 2005,38 (9),3558-3561. (b) Golas, P. L.; Tsarevsky, N. V.; Sumerlin, B.; Matyjaszewski, K. Catalyst Performance in'"Click" Coupling Reactions of Polymers Prepared by ATRP:Ligand and Metal Effects. Macromolecules 2006,39 (19),6451-6457.
    [48]. Durmaz, H.; Dag, A.:Hizal. G.; Tunca, U. Sequential double polymer click reactions for the preparation of regular graft copolymers. J. Polym. Sci., Part A:Polym. Chem.2011.49 (5),1195-1200.
    [49]. Schmidt, U.; Zehetmaier, P. C.; Rieger, B. Direct Synthesis of Poly(dimethylsiloxane) Copolymers with TPE-Properties via CuAAC (Click Chemistry). Macromol. Rapid Commun.2010,31 (6),545-548.
    [50]. Lau, K. N.; Chow, H. F.; Chan, M. C.; Wong, W. Dendronized Polymer Organogels from Click Chemistry:A Remarkable Gelation Property Owing to Synergistic Functional-Group Binding and Dendritic Size Effects. Angew. Chem., Int. Ed.2008,47 (36).6912-6916.
    [51]. Wang, W. J.; Li, T.; Yu. T.; Zhu, F. M. Synthesis of Multiblock Copolymers by Coupling Reaction Based on Self-Assembly and Click Chemistry. Macromolecules 2008,41 (24). 9750-9754.
    [52]. Rekharsky, M. V.; Inoue, Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998,98 (5),1875-1917.
    [53]. (a) Tuncel, D.; Steinke, J. H. G. The synthesis of [2]. [3] and [4] rotaxanes and semirotaxanes. Chem. Commun.2002, (5),496-498. (b) Tuncel, D.; Steinke. J. H. G. Catalytic Self-Threading:A New Route for the Synthesis of Polyrotaxanes. Macromolecules 2004.37 (2),288-302. (c) Tuncel, D.; Tiftik, H. B.; Salih, B. pH-Responsive polypseudorotaxane synthesized through cucurbit[6]uril catalyzed 1,3-dipolar cycloaddition. J. Mater. Chem.2006,16 (32),3291-3296.
    [54]. Ooya, T.; Inoue, D.; Choi, H. S.; Kobayashi, Y.; Loethen, S.; Thompson, D. H.; Ko, Y. H.; Kim, K.; Yui, N. pH-Responsive Movement of Cucurbit[7]uril in a Diblock Polypseudorotaxane Containing Dimethyl β-Cyclodextrin and Cucurbit[7]uril. Org. Lett. 2006,8 (15).3159-3162.
    [55]. (a) Meudtner, R. M.; Hecht, S. Responsive Backbones Based on Poly[(1,2,3-triazol-4-yl-1,3-pyridine)-alt-(1,2,3-triazol-1-yl-1,3-phenylene)]s:From Helically Folding Polymers to Metallosupramolecularly Crosslinked Gels. Macromol. Rapid Commun.2008.29 (2), 347-351. (b) Meudtner. R. M.; Ostermeier, M.; Goddard, R.; Limberg, C.; Hecht. S. Multifunctional "Clickates" as Versatile Extended Heteroaromatic Building Blocks: Efficient Synthesis via Click Chemistry, Conformational Preferences, and Metal Coordination. Chem. Eur. J.2007,13 (35),9834-9840.
    [56]. Katritzky, A. R.; Meher. N. K.; Hanci, S.; Gyanda. R.; Tala. S. R.; Mathai, S.; Duran, R. S.; Bernard, S.; Sabri, F.; Singh, S. K.; Doskocz, J.; Ciaramitaro, D. A. Preparation and characterization of 1,2,3-triazole-cured polymers from endcapped azides and alkynes J. Polym. Sci., Part A:Polym. Chem.2008.46 (1),238-256.
    [57]. Qin, A. J.; Lam, J. W. Y.;C. K. W.; Zhang, L.; Yan.J. J. M.; HauBler. M.;Liu. J. Z.; Dong.Y. Q.; Liang, D. H.;Chen, E. Q.; Jia. G. C.; Tang, B. Z. Hyperbranched polytriazoies: Click polymerization, regioisomeric structure, light emission, and fluorescent patterning. Macromolecules 2008,41(11),3808-3822.
    [58]. Wang, J.; Mei, J.; Yuan, W.; Lu, P.; Qin. A.; Sun, J.; Ma, Y.; Tang,B. Z. Hyperbranched polytriazoles with high molecular compressibility:aggregation-induced emission and superamplified explosive detection. J. Mater. Chem.2011,27(12):4056-4059.
    [59]. (a) Xie, J. D.:Hu, L. H.; Shi, W. F.; Deng, X. X.; Cao, Z. Q.; Shen, Q. S. Synthesis and characterization of hyperbranched polytriazole via an 'A2+B3' approach based on click chemistry. Polym. Int.2008,57 (8),965-974. (b) Xie, J. D.; Hu, L. H.; Shi, W. F.; Deng, X. X.; Cao, Z. Q.; Shen, Q. S. Synthesis and nonlinear optical properties of hyperbranched polytriazole containing second-order nonlinear optical chromophore. J. Polym. Sci., Part B: Polym. Phys.2008,46 (12),1140-1148.
    [60].(a) Li, Z. A.; Yu. G.; Hu, P.; Ye. C.;Liu, Y. Q.;Qin, J. G.; Li, Z. New Azo-Chromophore-Containing Hyperbranched Polytriazoles Derived from AB2 Monomers via Click Chemistry under Copper(Ⅰ) Catalysis. Macromolecules 2009,42 (5),1589-1596. (b) Li, Z. A.:Wu, W.;Qiu, G.; Yu, G.; Liu, Y. Q.; Ye, C.; Qin, J. G.; Li, Z. New Series of AB2-Type Hyperbranched Polytriazoles Derived from the Same Polymeric Intermediate: Different Endcapped Spacers with Adjustable Bulk and Convenient Syntheses via Click Chemistry under Copper(Ⅰ) Catalysis. J. Polym. Sci., Part A:Polym. Chem.2011,49 (9), 1977-1987. (c) Wu, W.; Fu, Y.; Wang, C.; Ye, C.; Qin, J. G.; Li, Z. New Series of Hyperbranched Polytriazoles Containing Perfluoroaromatic Rings from AB2-Type monomers:Convenient Syntheses via Click Chemistry under Copper(Ⅰ) Catalysis and Enhanced Optical Nonlinearity. Chem. Asian J.2011,6 (10),2787-2795.
    [61]. Zhang, L.; Chen, X. G.; Xue, P.; Sun, H. H.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. C. Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides. J. Am. Chem. Soc.2005,127(46),15998-15999.
    [62]. Majireck, M. M.; Weinreb, S. M. A Study of the Scope and Regioselectivity of the Ruthenium-Catalyzed [3+2]-Cycloaddition of Azides with Internal Alkynes. J. Org. Chem. 2006,71 (22),8680-8683.
    [63]. (a) Liu, J. Z.; Lam, J. W. Y.; Tang, B. Z. Acetylenic Polymers:Syntheses, Structures, and Functions. Chem. Rev.2009,109 (11),5799-5867. (b) Tang, B. Z. Construction of Functional Polymers from Acetylenic Triple-Bond Building Blocks. Macromol. Chem. Phys.2008,209 (13),1303-1307. (c) Lam, J. W. Y.; Tang, B. Z. Functional Polyacetylenes. Acc. Chem. Res.2005,38 (9) 745-754. (d) Lam, J. W. Y.; Tang. B. Z. Liquid-Crystalline and Light-Emitting Polyacetylenes. J. Polym. Sci., Part A:Polym. Chem.2003,41 (17). 607-2629. (e) HauBle, M.; Tang, B. Z. Functional Hyperbranched Macromolecules Constructed from Acetylenic Triple-Bond Building Blocks. Adv. Polym. Sci. 2007, 209 (1), 1-58. (f) HaufJler, M.; Qin, A. J.; Tang. B. Z. Acetylenes with multiple triple bonds: A group of versatile An-type building blocks for the construction of functional hyperbranched polymers. Polymer 2007, 48 (21), 61 81-6204.
    [64]. Qin. A. J.; Jim, C. K. W.; Lu. W. X.; Lam. J. W. Y.; HauBler, M.; Dong, Y. Q.; Sung. H. H. Y.; Williams, 1. D.;Wong. G. K. L.; Tang, B. Z. Click Polymerization: Facile Synthesis of Functional Poly(aroyltriazole)s by Metal-Free, Regioselective 1.3-Dipolar Polycycloaddition. Macromolecules 2007, 40 (7), 2308-2317.
    [65]. Qin, A. J.; Tang, L.; Lam, J. W. Y.; C. K. W.; Yu, Y; Zhao, H.; Sun, J. Z.; Tang, B. Z. Metal-free click polymerization: synthesis and photonic properties of poly(aroyltriazole)s. Adv. Fund. Mater. 2009, 19 (12) 1891-1900.
    [66]. (a) Deans, R.; Kim, J.; Machacek, M. R.: Swager, T. M. A Poly(p-phenyleneethynylene) with a Highly Emissive Aggregated Phase. J. Am. Chem. Soc. 2000, 122 (35), 8565-8566. (b) Hecht. S.; Frechet, J. M. J. Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. Angew. Chem. Int. Ed. 2001. 40 (1), 74-91. (c) Chen, S.; Su, A.; Huang, Y.; Su, C; Peng, G; Chen, S. Supramolecular Aggregation in Bulk Poly(2-rnethoxy-5-(2'-ethylhexyloxy)-l,4-phehy-enevinyiene). Macromolecules 2002, 35 (11), 4229-4232. (d) An, B. K.; Kwon, S. K.: Jung. S. D.; Park. S. Y. Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles. J. Am. Chem. Soc. 2002,124 (48). 14410-14415.
    [67]. (a) Qin, A. J.; Lam, J. W. Y; Mahtab, F.: Jim, C. K. W.; Tang, L.; Sun, J. Z.; Sung, H. H. Y: Williams, I. D.; Tang, B. Z. Pyrazine Luminogens with "Tree" and "Locked'" Phenyl Rings: Understanding of Restriction of Intramolecular Rotation as a Cause for Aggregation-Induced Emission. Appl. Phys. Lett. 2009, 94 (25), 253308-253310. (b) Li. Z.: Dong, Y. Q.; Mi. B. X.; Tang, Y. H.; HauBler. M.; Tong, H.; Dong, Y. P.; Lam, J. W. Y; Ren, Y.; Sung, H. H. Y; Wong, K. S.; Gao, P.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials. J. Phys. Chem. B 2005, 109 (20). 10061-10066. (c) Tong, H.: Dong, Y. Q.; Hong, Y. N.; HauBler, M. Lam, J. W. Y.; Sung, H. H. Y.; Yu, X. M.; Sun. J. X.; Williams. I. D.; Kwok, H. S.; Tang, B. Z. Aggregation-Induced Emission: Effects of Molecular Structure, Solid-State Conformation, and Morphological Packing Arrangement on Light-Emitting Behaviors of Diphenyldibenzofulvene Derivatives. J. Phys. Chem. C 2007. 111 (5), 2287-2294. (d) Fan. X.; Sun, J. L.; Wang, F. Z.; Chu, Z. Z.; Wang, P.; Dong, Y. Q.; Hu, R. R.; Tang, B. Z.; Zou, D. C. Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state. Chem. Commun. 2008. (26), 2989-2991.
    [68]. Yang, J. S.; Swager, T. M. Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc.1998.120 (46).11864-11873.
    [69]. (a) Kim. J. M.:Chang. T. E.:Kang. J. H.:Han. D. K.; Ahn. K. D. Synthesis of and Fluorescent Imaging with a Polymer Having t-BOC-Protected Quinizarin Moieties. Adv. Mater.1999. 11 (18).1499-1502. (b) Kim. J. M.; Chang, T. E.; Kang.J. H.; Han. D. K.: Ahn, K. D. Photoacid-Induced Fluorescence Quenching:A New Strategy for Fluorescent Imaging in Polymer Films. Angew. Chem., Int. Ed.2000,39 (10),1780-1782. (c) Ohshita, J.; Uemura. T.; Kim, D. H.; Kunai, A.; Kunugi, Y.:Kakimoto. M. Preparation of Poly(siiylene-p-phenylene)s Containing a Pendant Fluorophor and Their Applications to PL Imaging. Macromolecules 2005.38 (3),730-735.
    [70]. (a) Denk, W.; Strickler. J. H.; Webb. W. W. Two-photon laser scanning fluorescence microscopy. Science 1990,248 (4951),73-76. (b) Zhou. W.; Kuebler, S. M.; Braun, K. L. Yu, T.; Cammack. J. K.; Ober, C. K.; Perry. J. W.; Marder, S. R. An Efficient Two-Photon-Generated Photoacid Applied to Positive-Tone 3D Microfabrication. Science 2002,296 (5570),1106-1109. (c) Coenjarts, C.; Garcia, O.; Llauger. L.; Palfreyman, J.; Vinette, A. L.:Scaiano, J. C. Mapping Photogenerated Radicals in Thin Polymer Films: Fluorescence Imaging Using a Prefluorescent Radical Probe. J. Am. Chem. Soc.2003,125 (3).620-621.
    [71]. (a) Pond, S. J. K.; Rumi. M.; Levin, M. D.; Parker, T. C.; Beljonne, D.; Day, M. W.; Bredas, J. L.:Marder, S. R.; Perry.J. W. One- and Two-Photon Spectroscopy of Donor-Acceptor-Donor Distyrylbenzene Derivatives:Effect of Cyano Substitution and Distortion from Planarity. J. Phys. Chem. A 2002.106 (47),11470-11480. (b) Xu, C.;Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 1996,13 (3),481-491. (c) Woo, H. Y.; Liu, B.; Kohler, B.; Korystov, D.; Mikhailovsky, A.; Bazan, G. C. Solvent Effects on the Two-Photon Absorption of Distyrylbenzene Chromophores. J. Am. Chem. Soc.2005,127 (42),14721-14729.
    [72]. (a) Qin. A. J.; Lam, J. W. Y.; Tang, B. Z. Click polymerization. Chem. Soc. Rev.2010,39 (7),2522-2544. (b) Qin, A. J.; Lam, J. W. Y.; Tang, B. Z. Click Polymerization:Progresses. Challenges, and Opportunities. Macromolecules 2010,43 (21),8693-8702.
    [73]. (a) Dong. H. C.; Zheng, R. H.; Lam, J. W. Y.; HauBler. M.; Qin, A. J.; Tang, B. Z. A new route to hyperbranched macromolecules:Syntheses of photosensitive poly(aroylarylene)s via 1.3.5-regioselective polycyclotrimerization of bis(aroylacetylene)s. Macromolecules 2005,38 (15),6382-6391. (b) Qin, A. J.; Dong, H. C.; Lam, J. W. Y.; Tang, B. Z. Synthesis and light emission of a new hyperbranched poly(aroylarylene) containing triphenylamine chromophores. Polym. Mater. Sci. Eng.2005,93,538-539
    [74]. (a) Li, Z.; Seo, T. S.; Ju, J.1,3-Dipolar cycloaddition of azides with electron-deficient alkynes under mild condition in water. Tetrahedron Lett.2004,45,3143-3146. (b) Jim, C. K. W.; Qin, A. J.; Lam, J. W. Y.; Liu, J. Z.; HauBler, M.; Tang, B. Z. Amine-catalyzed polycyclotrimerization of arylene bipropiolate:A metal-free and regioselective route to hyperbranched polymer.Sci China Ser B-Chem.2008,57 (8),705-708. (c) Jim. C. K. W.; Qin. A. J.:Lam, J. W. Y.; Liu, J. Z.; HauBler. M.; Yuen, M. M. F.; Kim, J. K.; Ng, K. M.: Tang, B. Z. Facile Polycyclotrimerization of "Simple" Arylene Bipropiolates:A Metal-Free, Regioselective Route to Functional Hyperbranched Polymers with High Optical Transparency, Tunable Refractive Index, Low Chromatic Aberration, and Photoresponsive Patternability. Macromolecules 2009.42 (12),4099-4109. (d) Liu, J. Z.; Zhang, L.; Lam, J. W. Y.; Jim, C. K. W.; Yue, Y. N.; Deng. R.; Hong. Y, N.; Qin, A. J.; Sung. H. H. Y.; Williams, I. D.; Jia, G. C.; Tang. B. Z. Exploration of Effective Catalysts for Diyne Polycyclotrimerization, Synthesis of an Ester-Functionalized Hyperbranched Polyphenylene, and Demonstration of Its Utility as a Molecular Container with Implication for Controlled Drug Delivery. Macromolecules 2009,42 (19),7367-7378.
    [75]. Katritzky, A. R.; Meher, N. K.; Hanci, S.; Gyanda, R.; Tala, S. R.; Mathai, S.; Duran, R. S.; Bernard, S.; Sabri, F.; Singh, S. K.; Doskocz. J.; Ciaramitaro, D. A. Preparation and characterization of 1,2,3-triazole-cured polymers from endcapped azides and alkynes. J. Polym. Sci., Part A:Polym. Chem.2008,46 (1),238-256.
    [76]. (a) Feldman, A. K.; Colasson. B.; Fokin, V. V. One-Pot Synthesis of 1,4-Disubstituted 1,2.3-Triazoles from In Situ Generated Azides. Org. Lett.2004,6 (22).3897-3899. (b) Dai, Q.; Gao, W.; Liu. D.:Kapes, L. M.; Zhang, X. Triazole-Based Monophosphine Ligands for Palladium-Catalyzed Cross-Coupling Reactions of Aryl Chlorides. J. Org. Chem.2006,71 (10).3928-3934.
    [77]. Liu, J.; Lam, J. W. Y.; Jim, C. K. W.; Ng, J. C. Y.; Shi, J.; Su, H.; Yeung, K. F.; Hong, Y.; Mahtab, F.;Yu. Y.; Wong, K. S.; Tang, B. Z. Thiol-Yne Click Polymerization:Regio- and Stereoselective Synthesis of Sulfur-Rich Acetylenic Polymers with Controllable Chain Conformations and Tunable Optical Properties. Macromolecules 2011,44 (1).68-79.
    [78]. (a) Scott, G.; Gilead, D. Degradable Polymers; Chapman & Hill:London,1995. (b) Dunn. R. L. In Biomedical applications of synthetic biodegradable polymers; Hollinger, J. O. Ed.; Boca Raton:CRC Press; 1995:pp 17-31. (c) Li, S. M.; Vert, M. In Degradable polymers: principles and application:Scott. G.; Gilead, D. Ed.; London:Chapman & Hall,1995:pp 43-87.
    [79]. Koeshak. V. V.; Vinogradora, S. V. Polyester; Pergamon Press:New York, NY.1995.
    [80]. (a) Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett.1987, 57 (12),913-915. (b) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.: Mackay, K.; Friend. R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990,347,539-541. (c) Grimsdale, A. C; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev.2009.109 (3),897-1091. (d) Akcelrud, L. Electroluminescent polymers. Prog. Polym. Sci.2003,28.875-962. (e) Kim, D. Y; Cho. H. N.; Kim. C. Y. Blue light emitting polymers. Prog. Polym. Sci.2000.25 1089-1139. (f) Shimizu. M.; Hiyama. T. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem. Asian. J.2010,5 (7).1516-1531.
    [81]. (a) Samuel. I. D. W.; Turnbull. G. A. Organic semiconductor lasers. Chem. Rev.2007,107 (4),1272-1297. (b) McGehee, M. D.; Heeger. A. J. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater.2000,12 (22).1655-1668. (c) Kozlov, V. G.: Forrest, S. R. Lasing action in organic semiconductor thin films. Curr. Opin. Solid. State Plater Sci.1999,4 (2),203-208.
    [82]. (a) Feng. X.:Liu. L.; Wang, S.; Zhu, D. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc. Rev. 2010,39 (7),2411-2419. (b) Wang. M.; Zhang. G. X.; Zhang, D. Q.; Zhu, D. B.:Tang, B. Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem.2010,20 (10),1858-1867. (c) Goncalves. M. S. T. Fluorescent labeling of biomolecules with organic probes. Chem. Rev. 2009,109 (1),190-212. (d) Frommer, W. B.; Davidson, M. W.; Campbell, R. E. Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev,2009,38 (10),2833-2841. (e) Basabe-Desmonts, L.; Reinhoudt. D. N.; Crego-Calama, M. Design of fluorescent materials for chemical sensing. Chem. Soc. Rev.2007,36 (6),993-1017. (f) Thomas, Ⅲ. S. W.; Joly, G. D.; Swage, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev.2007.107 (4),1339-1386. (g) Adhikari, B.; Majumdar. S. Polymers in sensor applications. Prog. Polym. Sci.2004,29 (7),699-766.
    [83]. (a) Jenekhe, S. A.; Osaheni, J. A. Science 1994,265 (5173),765-768. (b) Cornil, J.; dos Santos. D. A.; Crispin, X.; Silbey, R.; Bredas, J. L.; J. Am. Chem. Soc.1998.120 (6), 1289-1299.
    [84]. Qin, A. J.; Lam, J. W. Y.; Tang, B. Z. Luminogenic polymers with aggregation-induced emission characteristics. Prog. Polym. Sci.2012,37 (1),182-209.
    [85]. Toal, S. J.; Trogler. W. C. Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem.2006,16 (28):2871-2883.
    [86]. Liu,J. Z.; Zhong, Y. C.;Lu, P.; Hong, Y. N.; Lam, J. W. Y.;Faisal, M.; Yu, Yong.; Wong, K. S.; Tang. B. Z. A superamplification effect in the detection of explosives by a fluorescent hyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics. Polym. Chem.2010,1 (4):426-429.
    [87].杨柏,吕长利,沈家骢。 高性能聚合物光学材料。北京:化学工业出版社,2005。
    [88]. (a) Watanabe. Y.; Sakai, Y.; Shibasaki. Y.;, Ando, S.; Ueda, M. Synthesis of Wholly Alicyclic Polyimides from N-Silylated Alicyclic Diamines and Alicyclic Dianhydrides. Macromolecules 2002,35 (6),2277-2281. (b) Fukukawa. K.; Shibasaki, Y.; Ueda. M. A Photosensitive Semi-Alicyclic Poly(benzoxazole) with High Transparency and Low Dielectric Constant. Macromolecules 2004,37 (22),8256-8261. (c) Liu J. G.; Nakamura Y.; Shibasaki Y.; Ando S.; Ueda, M. High Refractive Index Polyimides Derived from 2.7-Bis(4-aminophenylenesulfanyl)-thianthrene and Aromatic Dianhydrides. Macromolecules 2007, 40 (13), 4614-4620. (d) Liu J. G.; Ueda, M. High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 2009, 19 (47), 8907-8919. (e) Nakagawa. Y.; Suzuki, Y; Higashihara, T.; Ando, S.; Ueda, M. Synthesis of Highly Refractive Poly(phenylene thioether) Derived from 2,4-Dichloro-6-alkylthio-1,3,5-triazines and Aromatic Dithiols. Macromolecules 2011, 44 (23), 9180-9186. (f) Bhagat, S. D.; Chatterjee, J.; Chen. B.; Stiegman. A. E. High Refractive Index Polymers Based on Thiol-Ene Cross-Linking Using Polarizable Inorganic/Organic Monomers. Macromolecules 2012, 45 (3), 1174-1181.
    [89]. (a) HauBler, M.; Lam, j. W. Y.; Qin, A.; Tse, K. K. C.; Li, M. K. S.; Liu, J.; Jim. C. K.W.; Gao, P.; Tang, B. Z. Metallized hyperbranched polydiyne: a photonic material with a large refractive index tunability and a spin-coatable catalyst for facile fabrication of carbon nanotubes. Chem. Commun. 2007, (25), 2584-2586. (b) Jim. C. K. W.; Qin. A.; Lam, J. W. Y; Faisal. M.; Yu. Y. Tang, B. Z. Metal-Free Alkyne Polyhydrothiolation: Synthesis of Functional Poly(vinylenesulfide)s with High Stereoregularity by Regioselective Thio-Click Polymerization. Adv. Fund. Mater. 2010, 20 (8), 1319-1328. (c) Jim, C. K. W.; Lam, J. W. Y: Qin, A.; Zhao, Z.; Liu. J.; Hong. Y; Tang. B. Z. Luminescent and Light Refractive Polymers: Synthesis and Optical and Photonic Properties of Poly(arylene ethynylene)s Carrying Silole and Tetraphenylethene Luminogenic Units. Macromol. Rapid Commun. 2012, DOI: 10.1002/marc.201100768
    [90]. (a) Campbell, L.; Sharp, D. N.; Harrison, M. T.; Denning. R. G; Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404, 53-56. (b) Wu, L.; Zhong, Y; Chan, C. T.; Wong, K. S.; Wang, G. P. Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography.appl. Phys. Lett. 2005, 56(24), 241102-241104.
    [91]. (a) Wu, L.; Tong, W. Y. Y; Zhong, Y.; Wong, K. S.; Hua, J.: HauBler, M.; Lam, J. W. Y.: Tang, B. Z. Photo-cross-linkable light-emitting polymers for holographic patterning. Appl. Phys. Lett. 2006, 89 (19): 191109-191111. (b) Lam, J. W. Y; Qin. A.; Dong, Y. P.; Lai, L. M.; HauBler, M.; Dong. Y. Q.; Tang, B. Z. Functional disubstituted polyacetylenes: synthesis, liquid crystallinity, light emission, and fluorescent photopatteming of biphenyl-containing poly(l-phenyl-octyne)s with different functional bridges. J. Phys. Chem. B 2006. 110 (43), 21613-21622. (c) Law, C. C. W.; Lam, J. W. Y.: Qin, A. J.; Dong, Y. Q,; Kwok, H. S.; Tang, B. Z. Synthesis, Thermal Stability, Light Emission, and Fluorescent Photopatteming of Poly(diphenylacetylene)s Carrying Naphthalene Pendant Groups. Polymer 2006, 47 (19), 6642-6651. (d) Xu, H.; Sun, J.; Qin. A.; Hua, J.; Li, Z.; Dong, Y. Q.; Xu, H.; Yuan. W.; Ma, Y.; Wang. M.; Tang. B. Z. Functional Perovskite Hybrid of Polyacetylene Ammonium and Lead Bromide: Synthesis, Light Emission, and Fluorescence Imagining. J. Phys. Chem. B 2006.110 (43).21701-21709.
    [92]. (a) Nguyen. P.:Gomez-Elipe. P.; Manners. L. Orgnometallic Polymers with transition metals in the main chain. Chem. Rev.1999,99 (6),1515-1548. (b) Hudson. R. D. A. Ferrocene polymers:current architectures, syntheses and utility. J. Organomet. Chem.2001, 637-639,47-69. (c) Abd-E-Aziz. A. S.; Todd, E. K. Organoiron polymers. Coord. Chem. Rev.2003.246 (1-2):3-56. (d) Wang, J.; Wang, L.; Wang X. Recent Progress in Highly Branched Ferrocene-based Polymer. Progress in Chemistry 2003,15 (5),409-419. (e) Shi. J.; Zhi, J.; Tong, B.; Zhao, W.; Shen, J.; Dong, Y. Full-Conjugated Ferrocene-Based Polymers. Progress in Chemistry 2008,20 (4),558-564.
    [93]. (a) Gao, C.; Yan, D. Hyperbranched polymers:from synthesis to applications. Prog. Polym. Sci.2004,29 (3).183-275. (b) Yan, D.:Gao, C.; Frey. H. Hyperbranched Polymers: Synthesis, Properties, and Applications. Wiley:New York,2011.
    [94]. (a) Uhrich, K. E.; Hawker, C. J.; Frechet, J. M. J.; Turner, S. R. One-Pot Synthesis of Hyperbranched Polyethers. Macromolecules 1992,25 (18),4583-4587. (b) Muchtar, Z.; Schappacher, M; Deffieux, A. Hyperbranched Nanomolecules:Regular Polystyrene Dendrigrafts. Macromolecules 2001,34 (22),7595-7600. (c) Grayson, S. M.; Frechet, J. M J. Divergent Synthesis of Dendronized Poly(p-hydroxystyrene). Macromolecules 2001,34 (19),6542-6544. (d) Xu, K.:Peng, H.:Sun, Q.; Dong. Y.; Salhi, F.; Luo, J.; Chen, J.; Huang. Y.; Xu. Z.; Tang, B. Z. Polycyclotrimerization of Diynes:Synthesis and Properties of Hyperbranched Polyphenylenes. Macromolecules 2002,35 (15),5821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700