聚丙烯复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(Polypropylene, PP)作为一种通用高分子材料,已成为继聚乙烯、聚氯乙烯之后的第三大通用塑料,是塑料中产量增长最快的品种,被广泛应用于工业生产的各个领域。但普通聚丙烯韧性差、低温易脆裂,且其非极性的线性链结构和较高的结晶性降低了与其它高分子材料和无机填料的相容性。因此对聚丙烯改性制备性能优良的聚丙烯合金及复合材料一直是学术界和企业界关注的焦点。
     本文介绍了聚丙烯合金的制备工艺技术和研究进展,回顾了聚丙烯合金的发展历程;分别采用原位固相法接枝丙烯酸和超临界二氧化碳协固相法接枝多单体制备出性能优异的聚丙烯合金;以该聚丙烯合金GPP作为相容剂,PP(T30S)为基质,与用自主研发的牵引剂Q以及活化剂H共同活化蒙脱土和碳酸钙微粒,制成壳核结构的纳米蒙脱土和壳核结构的碳酸钙,通过共混法制成PP/纳米蒙脱土、PP/纳米蒙脱土/碳酸钙复合材料。
     用原位固相法接枝丙烯酸制备聚丙烯合金,工艺简短易行,放大性良好,能有效地增加PP的极性和亲水性,PP原有的优良性能损失不大。结果表明:其接枝率受聚合温度、时间及引发剂浓度、自由基捕捉剂用量等因素的影响较大;接枝聚合过程中没有产生明显的降解副反应,产物分子量变化不大;接枝后的产物球晶得到细化;合金性能与聚丙烯基体大致相仿,表面电阻明显降低,拉伸强度和冲击强度得到提高,接枝率1.6%时,产品的水润湿角为80°。
     应用超临界二氧化碳(SC CO2)溶胀插嵌法协固相接枝多单体制备聚丙烯合金,接枝率高,单体分布均匀,PP的极性和亲水性明显增强,PP原有的优良性能损失很少,拉伸强度还略有增加。实验结果表明:采用以软、硬单体复配、SC CO2溶胀、常压接枝的方法对聚丙烯颗粒进行接枝改性制备PP合金的方法可行。PP与引发剂以及AA、MMA、MAH在SC CO2中溶胀4h,卸压后于80℃下反应2h,接枝率达4.29%,接枝效率达71.5%。超临界CO2对聚丙烯起到有限溶胀作用,接枝率随反应时间、反应温度、引发剂用量、单体用量的增加均出现先上升后下降的趋势;SC CO2协助PP固相接枝所需的反应时间比普通固相接枝要短2h,表明通过SC CO2溶胀插嵌使整个接枝反应的动力学由扩散控制转换为反应控制。接枝产品的熔点降低,结晶温度升高,热稳定性增加。接枝改性后聚丙烯的极性增强,水接触角由原料的980降低到72°。产品的内外表面微观形貌均发生明显改变,实现了内部均匀接枝。软、硬单体复配使用抵消了由于支链引入造成的产品力学性能下降,PP主链断裂倾向降低,产品韧性得到提高。
     用自主研发的牵引剂Q和活化剂H共同活化处理纳米蒙脱土制得具有壳核结构的有机纳米蒙脱土。以前面制得的极性PP合金GPP作相容剂,用具有壳核结构的有机纳米蒙脱土填充改性聚丙烯(T30S),通过熔融挤出制成PP/纳米蒙脱土复合材料,研究了各种因素对复合材料结构和性能的影响。实验结果表明:纳米蒙脱土改性产品很多性能得到提高;GPP作为相容剂一方面可以与壳-核结构聚异丁烯-纳米蒙脱土粒子结合另一方面还可以与PP结合在一起,从而促进纳米蒙脱土在PP中均匀分散,提高了共混材料的力学性能;使用复合牵引剂FQ比用单一牵引剂处理蒙脱土的效果更好。活化剂H与牵引剂FQ配合使用,可提高蒙脱土的分散性;当活化剂H/牵引剂Q/相容剂GPP三种物质复配使用时,可以能够使纳米蒙脱土在复合材料中分散的更加均匀,显著降低复合材料的挤出压力,提高复合材料的性能;复合材料产品模量高达2100MPa,冲击强度达到53 J/m,回缩率为0.52%;复合材料的加工温度为180~190℃C,产品中的蒙脱土呈2-3个单片重叠结构的片状分散,片层厚度3~4nm,分散稳定性好,没有明显的无团聚倾向。GPP的引入使纳米蒙脱土/PP基体的界面结合良好,加入量为5%左右时材料性能最好。偏光显微镜的结果显示复合带来的固体晶串珠生长方式提高了冲击性能;复合材料的热稳定高,具有较好的应用价值。拉伸强度和模量的实验值比用Halpin-Tsai方程计算值小很多,说明蒙脱土片剥离层还不充分。
     为了进一步提高复合材料的性能,研究使用两种无机填料的可行性,用同样的方法活化碳酸钙微粒,制成壳核结构的碳酸钙刚韧粒子;使用SC CO2协助固相接枝三单体制备聚丙烯GPP-4.3做相容剂制备PP/刚韧粒子复合材料。通过筛网实验和性能测试,研究了表面剂、活化剂和相容剂的种类、用量对挤出压力和产品性能的影响。结果表明,通过发挥表面剂、活化剂和相容剂的协同作用,可使碳酸钙粒子在复合材料中有效分散。将碳酸钙粒子与纳米蒙脱土复合使用制成无机刚韧粒子,之后再与PP共混制成PP/无机刚韧粒子复合材料,使材料的性能进一步提高。产品模量高达2300MPa,冲击强度达到60 J/m,回缩率为0.5%。
Polypropylene(PP) as a common polymer materials has been widely applicated in many fields. It developed so rapidly that makes it be the third largest general plastics next to polyethylene and polyvinyl chloride. As usual, polypropylene has the characteristics of poor toughness and easy embrittlement under low temperature, the compatibility to inorganic materials and other porlar polymers is poor due to the contribution of its nonpolar linear chains and high crystallinity. Modification of polypropylene to prepare alloys and composites is a promosing way to improve its performance.
     In this paper, the preparation, application and research progress of PP alloy and composites were summarized. The research progress of PP alloy catalyst has also been reviewed. PP alloys with excellent properties have been prepared through in-situ solid-phase graft acrylic acid (AA) and supercritical carbon dioxide (SC CO2) assisted grafting of multi-monomer onto PP backbone in solid-phase. The PP/nano-montmorillonite and PP/nano-montmorillonite/calcium carbonate composites were prepared in blending process with core-shell structure of nano-montmorillonite and calcium carbonate, using the GPP as the compatilizer and PP (T30S) as the raw material.
     The results showed that the process to make polypropylene alloys via in-situ solid-phase graft AA onto PP can effectively increase the polarity and hydrophilicity of PP, and is easy to carry out. The original properties of polypropylene were reserved. The grafting percentage was a function of polymerization temperature, time and initiator concentration, amount of free radical tapping agent and other factors. There was no significant degradation in the process of polymerization. No obviously change in molecular weight can be detected. Spherulite was refined. The most properties of alloys were almost the same as original polypropylene, but surface resistance decreased evidently, tensile and impact strength was improved. The contact angle of water drop to 80°for the product with grafting percentage of 1.6%.
     PP alloy were prepared by modification of PP with multi-monomer in solid-phase assisted with supercritical CO2 (SC CO2). The results indicated that monomers distribute on the surface equalitily and the polarity and hydrophilicity of PP increased effectively. The method of grafting soft-hard monomers onto PP, via solid-phase grafting with assistance of SC CO2, is practicable. Maximum grafting efficiency was more than 70%, grafting percentage was about 4.29%, in the condition that swelling time is 4h, reacting time is 2h and temperature is 80℃. PP was swelled in this process. With the increase of reacting time, temperature, initiator concentration and monomer concentration, the grafting percentage increase firstly and then drop. The reacting time for solid-phase grafting assisted with SC CO2 was shorter than normal solid-phase grafting. Melting point of the grafting product decreaseed, crystalline temperature, thermal stability and the polarity increased, the contact angle of water droped from 98°to 72°. After grafting, morphology of inner and surface of PP had been changed notable, and grafted molecules had been uniformly distributed in the PP substrate. Combination of soft monomer and hard monomer can counteract decreasing of mechanical properties caused by introducing side-chains. The tendency of main chain breaking decrease and toughness of product has been improved obviously.
     Based on the preparation and evaluation of PP composite, the montmorillonite was treated with a self-made organic tractive agent (Q) and activator (H) to form organic non-montmorillonite with core-shell structure. Using the GPP as the compatilizer, the PP/nano-montmorillonite composite was prepared by melt extrusion through blending process with core-shell structure nano-montmorillonite and PP. The results showed that the mechanical properties of the composite have been improved greatly for the addition of GPP. GPP can help nano-montmorillonite disperse in the composite, that is for GPP can combine with organic non-montmorillonite, and also combine with PP. the composite tractive agent (FQ) worked better than single tractive agent. When the H/FQ/GPP were used together, the nano-montmorillonite were dispersed beter that makes extrusion pressure decreased obviously. The modulus of product reached 2100MPa, the impact strength was 53J/m, the head shrinkage was 0.52% and the proper processing temperature was 180-190℃。The dispersion of montmorillonite in PP showed a laminated structure which was formed by 2-3 sheets overlapping with lamellar spacing of 3-4nm. The agglomeration tendency montmorillonite was neglectable. The adition of e GPP can promote the combination between montmorillonite and PP, the best properties of composite were achieved at the content of GPP was 5%. The polarizing microscope images indicated that the growth pattern of the composite's crystal increased the impact property. The composite is thermal stable and can meet theneeds in many application fields.The experimental data was lower than the value of the Halpin-Tsai equation, which suggested that the stripping layer of montmorillonite was insufficient.
     The feasibility of two kinds of inorganic filler was investigated as to further improve the performance of the composite. In the same way, calcium carbonate particles were actived, and the core-shell construction of calcium carbonate rigid particles was formed. GPP-4.3 was used as compatilizer, then PP/rigid particles composite were prepared. The kind of surface agent, activator and compatibilizer and concentration that effect extrusion pressure and product of performance were studied by screen experiment and performance test. The result indicated that dispersion of calcium carbonate particles highly disperse in composite and the property of composite further improve through synergistic effect of surface agent, activator and compatibilizer. Inorganic rigid particles using as grafting PP have been prepared through compound use of calcium carbonate particles and nano-montmorillonite. Then PP/Inorganic rigid particles composite have been prepared through they mixed with PP. The modulus of product reached 2300MPa, the impact strength was 60J/m, the head shrinkage was 0.5%.
引文
[1]郑玉婴,翁祖华.甲基丙烯酸固相接枝聚丙烯的研究[J].福州大学学报(自然科学版),2001,29(3):105-108.
    [2]Lee S, Rengarajan R, Chen, Lien T, et al. Free radical polymerization process and polymers obtained thereby [P]. WO 9110690A1,1991.
    [3]柯扬船.聚合物-无机纳米复合材料—纳米材料与应用技术丛书[M].北京:化学工业出版社,2003.
    [4]晋日亚,王培霞.聚丙烯改性研究进展[J].中国塑料,2001,15(2):20-23.
    [5]杜威,姜涛,宁英男.聚丙烯合金技术的研究进展[J].石油化工,2008,37(2):191-197.
    [6]张玉清,田子俊,李平.聚丙烯的发展及催化合金新技术[J].化工新型材料,1999,12:22-25.
    [7]方迅.汽车合金材料开发取得突破[J].上海化工,2005,30(3):10.
    [8]付义,赵增辉,张铭辉,等.反应器聚烯烃合金技术的进展[J].石油化工,2005,34(1):584-587.
    [9]张玉清,范志强,封麟先.聚丙烯反应器合金化研究[J].塑料工业,2001,29(1):5-7.
    [10]胡徐腾,李振宇,牛慧,等.聚丙烯釜内合金技术的研究进展[J].石油化工,2006,35(5):405-410.
    [11]杨茹欣,李玮,何颖.聚丙烯合金技术新进展及其应用[J].上海塑料,2006(4):14-17.
    [12]曹民干,乔雷.聚丙烯/聚乙烯共混合金中聚乙烯的含量对性能的影响[J].绝缘材料,2003,36(6):25-27.
    [13]邱桂学,吴人洁.茂金属聚乙烯弹性体mPE增韧改性聚丙烯的研究[J].塑料工业,2001,29(1):23-25.
    [14]杨军.PP/UHMWPE合金材料的结构与性能研究[D].青岛化工学院学位论文,1998.
    [15]汪晓东,励杭泉,金日光.共混方式对PP/UHMWPE合金的力学性能的形态结构的影响[J].高分子材料科学与工程,1995,3:69-74.
    [16]李炳海,陈勇.PP/UHMWPE合金增韧增强机理研究[J].中国塑料,2002,16(12):32-36.
    [17]Kejian Wang, Chixing Zhou. The effects of melt vibration blending on the subsequent crystallization and melting behavior of polypropylene/ultra high molecular weight polyethylene[J]. Polym Eng Sci,2001,41(12):2249-2258.
    [18]Souza A M C, N. R. Demarquette. Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends[J]. Polymer,2002,43(7):3959-3967.
    [19]冯长根,李鑫,曾庆轩,等.聚丙烯/聚苯乙烯共混物形态研究进展[J].化工进展,2004,23(11):1179-1183.
    [20]沈勇,李瑞海,何贵才.PP/PS合金的研制[J].塑料工业,2003,31(9):15-17,41.
    [21]陈晔,沈宁祥,李著萍,等.聚丙烯/聚苯乙烯共混合金—Ⅰ.相区分布研究[J].高分子材料科学与工程,2002,18(5):84-87.
    [22]徐振明.聚丙烯接枝苯乙烯PP/PS合金体系中作用的研究[D].天津大学学位论文,2000.
    [23]周达飞,吴张永,王婷兰.汽车用塑料-塑料在汽车中的应用[M].北京:化学工业出版社,2003.
    [24]Tseng F P, Lin J J, Tseng C R, et al. Maleic Anhydride Polyethylene Octene Elastomer Toughened Polyamide 6/Polypropylene Nanocomposites:Mechanical And Morphological Properties[J]. E-Polymer,2005,13-16.
    [25]David J Tucker, Sunggyu Lee, Richard L Eensporn. A study of the effect of PP-g-MA and SEBS-g-MA on the mechanical and morphological properties of polypropylene/nylon 6 blends[J]. Polym Eng Sci,2000,40(2):2577-2589.
    [26]Godshall D, White C, Wilkes G L. Effect of compatibilizer molecular weight and maleic anhydride content on interfacial adhesion of polypropylene-PA6 bicomponent fibers[J]. J Appl Polym Sci,2001,80(2):130-141.
    [27]Tseng F P, Lin J J, Tseng C R, et al. Poly(oxypropylene)amide grafted polypropylene as novel compatibilizer for PP and PA6 blends[J]. Polymer,2001,42(2):713-725.
    [28]Jannerfekdt G, Boogh L,Manson J A E. The morphology of hyperbranched polymer compatibilized polypropylene/polyamide 6 blends[J]. Polym Eng Sci,2001,41(2): 293-300.
    [29]Li Q F, Kim D G, Wu D Z, et al. Effect of maleic anhydride graft ratio on mechanical properties and morphology on nylon 11/ethylene-octene copolymer blends[J]. Polym Eng Sci,2001,41(12):2155-2159.
    [30]郭林锋,刘术佳,骆唐文,等.PP/PET合金纤维的形态和热性能研究[J].合成技术及应用,2006,21(3):12-14.
    [31]梁丽明,罗先珍,李志英,等.聚丙烯塑料合金的开发[J].广西化纤通讯,2002,30(1):11-14.
    [32]陈桂兰,周媛,焦叙强,等.新型聚丙烯合金材料的研究[J].塑料科技,2002,2:11-14.
    [33]汪九山,张鹏飞,姚芳莲.聚丙烯固相自由基反应改性进展[J].天津化工,2003,17(1):21-24.
    [34]吴智华,倪海鹰,陈军,等.填充增强PA6/PP合金的性能[J].工程塑料应用,1999,6:5-7.
    [35]章苏宁,顾明初.马来酸酐溶液法接枝无规聚丙烯的研究[J].功能高分子学报,1999,12(4):419-422.
    [36]Campos P G S, Fantini M C A, Petri D F S. Grafting of tetrahydrophthalic and maleic anhydride onto polyolefins in solution[J]. Journal of the Brazilian Chemical Society, 2004,15(4):532-540.
    [37]胡海东,王雅珍,马立群,等.丙烯腈溶液接枝聚丙烯的研究[J].齐齐哈尔大学学报:自然科学版,2004,20(3):10-12.
    [38]谭晓明,张曙.聚丙烯溶液法接枝马来酸酐及其表征[J].培训与研究,1998(5):13-15.
    [39]Sun Yijun, Hu Guohua, Lambla M. Free radical grafting of glycidyl methacrylate onto polypropylene in a co-rotating twin screw extruder[J]. Journal of Applied Polymer Science,1995,57(9):1043-1054.
    [40]Machado A V, Covas J A, Duin M. A study of grafting reactions during processing of polyolefins[J]. Advances in Polymer Technology,2004,23(3):196-210.
    [41]柯华,谢续明.甲基丙烯酸缩水甘油酯-苯乙烯多单体熔融接枝微孔聚丙烯[J].高分子材料科学与工程,2003,19(5):216-218.
    [42]金慧,盛京,原续波.反应挤出聚烯烃接枝改性研究进展[J].高分子通报,2006(3):37-41.
    [43]刘书银,陈中华.反应挤出技术在高聚物制备中的应用[J].高分子材料科学与工程,1999,15(5):13-17.
    [44]孙莉,徐斌,钟明强.聚丙烯熔融接枝改性研究[J].塑料科技,2006,34(3):16-18.
    [45]邓海,杨济活.高聚物辐射接枝的发展及应用[J].辐射研究与辐射工艺学报,1998,16(2):65-69.
    [46]Taher N H, Dessuoki A M, Arnaouty M B. Radiation initiated graft copolymerization of N-vinylpyrrolidone and acrylamide onto low density polyethylene films by individual and binary system[J]. Radiation Physics and Chemistry,1998,53:437-444.
    [47]Shim J K. Surface modification of polypropylene membranes by y-ray induced graft copolymerization and their solute permeation characteristics[J]. Member Science,2001, 90:215-226.
    [48]Kang J S, Shim J K, Huh H, Lee Y M. Colloidal adsorption of bovine serum albumin on porous polypropylene-g-poly(2-hydroxyethyl methacrylate) membrane [J]. Langmuir, 2001,17(14):4352-4359.
    [49]姚占海,饶蕾.聚丙烯纤维与丙烯酸辐射接枝共聚反应的研究[J].高分子材料科学与工程,1997,13(3):16-19.
    [50]杨慧丽,姚占海,刘长海,等.辐照对不相容聚合物共混物相界面粘接的影响[J].高分子材料科学与工程,1999,15(2):76-78.
    [51]Jin K S, Hee S N, Young M L, Hoon H, Young C N. Surface modification of polypropylene membranes y-ray induced graft copolymerization and their solute permeation characteristics [J]. Journal of Membrane Science,2001,190:215-226.
    [52]Feng Yuan, Junfu, WeiEn-qi. Synthesis and Modification of Polypropylene by Radiation induced Grafting[J]. International Journal of Chemistry February,2009,1(1):114-119.
    [53]费建奇,忻海.聚丙烯水相悬浮溶胀接枝法接枝苯乙烯[J].石油化工,2006,35(7):638-642.
    [54]徐春,吴靖,周达飞.悬浮法制得PP-g-HEMA结晶性能的研究[J].高分子材料科学与工程,1999,15(1):100-124.
    [55]徐春,吴靖,周达飞.聚丙烯悬浮法接枝HEMA的研究[J].高分子材料科学与工程,1999,15(2):62-64.
    [56]Xing Changmin, Deng Jianping, Yang Wantai. Surface photo-grafting polymerization of binary monomers malefic anhydride and n-butyl vinyl ether on polypropylene film. I: effects of principal factors[J]. Polymer Journal,2002,34(11):801-808.
    [57]Xing Changmin, Deng Jianping, Yang Wantai. Surface photo-grafting polymerization of binary monomers malefic anhydride and n-butyl vinyl ether on polypropylene film. II: some mechanistical aspects[J]. Polymer Journal,2002,34(11):809-816.
    [58]Ma H, Davis R H, Bowman C N. A novel sequential photo-induced living graft polymerization[J]. Macromolecules,2000,33:331-335.
    [59]Xu Zhikang, Dai Qingwen, Wu Jian, Huang Xiaojun, Yang Qian. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface:a novel approach[J]. Langmuir,2004,20:1481-1488.
    [60]孙义明,邹小明,彭少贤,等.丙烯酸在PP膜表面的紫外光辐射接枝[J].湖北工业大学学报,2005,20(4):62-64.
    [61]于毅冰,刘莲英,孙玉凤,等.多官能单体TMPTA在LDPE表面光接枝聚合研究[J].高分子学报,2006(3):455-460.
    [62]Rengarajan R, Parameswaran R V, Lee S, Vicic M, et al. NMR analysis of polypropylene-maleic anhydride copolymer [J]. Polymer,1990,31(9):1703-1706.
    [63]陶颖,李剑,周持兴.低等规度聚丙烯固相接枝[J].高分子材料科学与工程,2003,19(4):72-74.
    [64]解孝林,童身毅.固相接枝聚丙烯的晶态结构和热行为[J].高分子材料科学与工程,1994,10(6):51-54.
    [65]吴春蕾,章明秋,容敏智.聚丙烯固相接枝苯乙烯和丙烯酸乙酯的研究[J].中国塑料,2002,16(8):48-52.
    [66]杜慷概,林志勇,肖凤英.苯乙烯与聚丙烯固相接枝研究[J].塑料工业,1999,27(4):4-6.
    [67]程为庄,杜强国,王荣海.聚乙烯接枝改性及其与铝的粘结性[J].合成树脂及塑料,1995,12(4):14-15.
    [68]李彩林,郭少云,陈跃.高抗冲聚丙烯复合材料的研究[J].工程塑料应用,2006,34(9):15-19.
    [69]张凌燕,卜俊芬,管俊芳,等.聚丙烯增韧研究最新进展[J].塑料,2008,37(4):76-79.
    [70]杨景兴,陆光月,段玉丰.增韧改性本体PP在中空制品上的应用[J].塑料工业, 1994(1):49-52.
    [71]许群,倪伟.超临界流体技术制备纳米材料的研究与展望[J].化学进展,2007,19(9):1419-1427.
    [72]Donghai Sun, Bo Wang, Jun He, et al. Grafting of polypropylene with N-cyclohexyl-maleimide and styrene simultaneously using supercritical CO2[J]. Polymer,2004,45: 3805-3810.
    [73]M H Kunita, A W Rinaldi, E M Girotto, et al. Grafting of glycidyl methacrylate onto polypropylene using supercritical carbon dioxide[J]. European Polymer Journal,2005, 41:2176-2182.
    [74]张爱丰,张子勇.超临界C02在聚合物改性中的应用[J].化学通报,2003,66(2).
    [75]常玉宁,许群.超临界流体插嵌技术的研究与应用[J].高分子材料科学与工程,2004,20(1):31-35.
    [76]Yong Wang, Zhiming Liu, Buxing Han, et al. PH Sensitive polypropylene porous membrane prepared by grafting acrylic acid in supercritical carbon dioxide[J]. Polymer, 2004,45:855-860.
    [77]刘涛,赵玲,陈淼灿,等.超临界C02环境中聚丙烯固相接枝马来酸酐的方法[P].中国,ZL200410054326,2005.
    [78]董擎之.采用超临界C02介质制备不饱和有机酸接枝聚丙烯的方法[P].中国,ZL03141828,2004.
    [79]G Spadaro, R D Gregorio, A Galia, et al. Gamma radiation induced maleation of polypropylene using supercritical CO2:preliminary results[J]. Polymer,2000,41:3491-3494.
    [80]Z M Liu, L P Song, X H Dai et al. Grafting of methyl methylacrylate onto isotactic polypropylene film using supercritical CO2 as a swelling agent[J]. Polymer,2002,43: 1183-1188.
    [81]Ze Xuan Dong, Zhiming Liu, Buxing Han, et al. Modification of isotactic polypropylene films by grafting methyl acrylate using supercritical CO2 as a swelling agent[J]. J. of Superoritical Fluids,2004,31:67-74.
    [82]Tong Gangsheng, Liu Tao, Hu Guohua, et al. Modeling of the Kinetics of the Supercritical CO2 Assisted Grafting of Maleic Anhydride onto Polypropylene in the Solid State[J]. Chemical Engineering Science,2007,62:5290-5294.
    [83]王琪,刘才林.聚丙烯固相力化学接枝马来酸酐[J].高分子材料科学与工程,1999,15(3):85-88.
    [84]王琪,刘长生.磨盘碾磨聚丙烯粒度分布与接枝率的研究[J].高分子学报,2000,3(2):219-223.
    [85]Subramanian S. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers[D]. Dissertation of Philosophy doctor degree, University of Akron,1998.
    [86]王香梅,张菁,王庆瑞.等离子体引发接枝聚合改善聚丙烯表面的亲水性[J].高分 子材料科学与工程,2005,21(5):78-81.
    [87]陈伟.从现代聚烯烃工业之发展看催化材料的技术进步[J].石油化工,2005,34(2):101-104.
    [88]洪定一.聚丙烯-原理、工艺及技术[M].北京:中国石化出版社,2004.410-412.
    [89]Kittilsen P, M ckenna T F. Study of the Kinetics, Mass Transfer, and Particle Morphology in the Production of High-Impact Polypropylene[J]. J Appl Polym Sci, 2001,82:1047-1060.
    [90]Asahi Chemical Ind. Impact Resistant Polymer Compositions[P]. US Pat Appl, US 3627852.1971.
    [91]Montecatini Edison SpA. Components of Catalysts for the Polymerization of Olefins[P]. US Pat Appl, US 4495338,1985.
    [92]Montedison SPA. Polypropylene Compositions Having Improved Impact Strength Properties at Low Temperatures and Process for Preparing Same[P]. US 4521566,1985.
    [93]Montecatini Edison SpA. Catalysts for the Polymerization of Olefins[P]. US 4476289, 1984.
    [94]Montecatini Edison SpA. Polypropylene Compositions Having Improved Impact Strength Properties at Low Temperatures and Process for Preparing Same[P]. US 4521566,1982.
    [95]Covezzi M, Mei G The Multizone Circulating Reactor Technology[J]. Chem Eng Sci, 2001,56(13):4059-4067.
    [96]Montel Technology Company bv (NL). Process and Apparatus for the Gas-Phase Polymerization of α-Olefin[P]. US Pat App 1, US 5698642,1997.
    [97]孙春燕,刘伟,费建奇,等.多区循环反应器技术及在烯烃聚合中的应用[J].合成树脂及塑料,2004,21(3):73-76.
    [98]于鲁强.反应器聚烯烃合金技术的进展[J].石油化工,2004,33(8):777-780.
    [99]Fu Zhisheng, Fan Zhiqiang, Zhang Yuqing, et al. Structure and morphology of polypropylene poly(ethylene-co-propylene)in situ blends synthesized by spherical Ziegler-Natta catalyst[J]. European Polymer Journal,2003,39(4):795-804.
    [100]Chen Yong, Chen Ye, Chen Wei, et al. Morphology of high impact polypropylene particles[J]. Polymer,2006,47(19):6808-6813.
    [101]Chen Yong, Chen Ye, Chen Wei, et al. Evolution of phase morphology of high impact polypropylene particles upon thermal treatment[J]. European Polymer Journal,2007, 43(7):2999-3008.
    [102]Dong Qi, Wang Xiaofeng, Fu Zhisheng, et al. Regulation of morphology and mechanical properties of polypropylene/poly(ethylene-co-propylene) in-reactor alloys by multi-stage sequential polymerization[J]. Polymer,2007,48:5905-5910.
    [103]陈伟,张天一,张彤瑄,等.用于烯烃聚合催化剂的复合载体及其催化剂组分和催化剂[P],CN1524886.2004.
    [104]陈伟,刘月祥,郭子方,等.用于烯烃聚合的催化剂组分及其催化剂[P], CN1597712A.2005.
    [105]施苍松,陈伟,刘月祥,等.第十三届全国催化学术会议论文集[C].北京:清华大学中国学术期刊电子杂志社,2006.
    [106]宁英男,杜威,姜涛,等.丙烯多项共聚催化剂及工艺技术研究进展[P].化工进展,2008,27(7):1022-1027.
    [107]姜涛.MgCl2/SiO2复合载体催化剂用于丙烯均聚及多相共聚的研究[D].北京:北京化工大学,2005.
    [108]Hoechst A ktiengesellschaft. Process for Preparing a Polyp ropylene Molding Composition[P]. EP 0433989.1991.
    [109]Hoechst A ktiengesellschaft. Process for the Preparation of a Polypropylene Molding Composition[P]. US 5322902.1994.
    [110]BASF A ktiengesellschaft. Polymers of Propylene[P]. US 6248829.2001.
    [111]胡友良,刘信芳.烯烃的共聚合反应及聚烯烃改性:Ⅰ.烯烃与极性单体的共聚合[J].石化技术与应用,2004,22(1):1-3.
    [112]Desurmont G, Tokimitsu T, Yasuda H. First controlled block copolymerizations of higher 1-olefins with polar monomers using metallocene type single component lanthanide initiators[J]. Macromolecules,2000,33(21):7679-7681.
    [113]Wilen C E, Nasman J H. Polar activation in copolymerization of propylene and 6-tert-butyl-[2-(1,1-dimethylhept-6-enyl)]-4-methylphenol over a racemic [1,1'-(dimethylsilylene) bis (.eta.5-4,5,6,7-tetrahydro-l-indenyl)] zirconium dichloride/ methylalumoxane catalyst system[J]. Macromolecules,1994,27(15):4051-4057.
    [114]BASF A ktiengesellschaft. M ethod of Producing Multi2Phase Alklene Block Copolymers[P]. DE 4130429,1993,
    [115]Montell Technology Company. Process for the (co) Polymerization of Olefins[P]. US 5648422,1997.
    [116]肖士镜,余赋生.烯烃配位聚合催化剂及聚烯烃[M].北京:北京工业大学出版社,2002.348-355.
    [117]Randall J C. Sequence Distributions Versus Catalyst Site Behavior of in Situ Blends of Polypropylene and Poly(Ethylene-co-Propylene). J Polym Sci Part A:Polym Chem, 1998,36:1527-1542.
    [118]Liu Jiguang, Dong Jinyong. Supporting a metallocene on functional polypropylene granules for slurry ethylene polymerization[J]. Macromolecules,2004,37(17):6275-6282.
    [119]刘继广,董金勇,胡友良.功能化聚丙烯负载茂金属催化剂催化乙烯均聚及乙烯与α-烯烃共聚[C].第十二届全国催化学术会议论文集.北京:2004.148-151.
    [120]钟明强.PP汽车保险杠材料的研究开发进展[J].上海塑料,2006(4):39-42.
    [121]Cai Hongjun, Luo Xiaolie, Ma Dezhu. Structure and Properties of Impact Copolymer Polyp ropylene I. Chain Structure[J]. J Appl Polym Sci,1999,71:93-101.
    [122]Cai Hongjun, Luo Xiaolie, Ma Dezhu. Structure and Properties of Impact Copolymer Polyp ropylene Ⅱ. Phase Structure and Crystalline Morphology[J]. J App 1 Polym Sci, 1999,71:103-113.
    [123]刘庆,周缄,黄新东,等.塑料合金的进展及在电工产品上的应用[J].电气制造,2006(12):49-52.
    [124]刘庆,周缄,等.塑料合金的进展及在电工产品上的应用[J].电器工业,2002(12):23-27.
    [125]邹新伟,陈容焕,杨晓源.空调室外机外壳用耐候聚丙烯合金材料的研制[J].塑料,2001,30(1):57-59.
    [126]张永.复合载体法原位制备PP/MMT材料及其性能研究[D].浙江大学硕士论文,2006.
    [127]Wagenknecht U, Kretzschmar B, Reinhardt G. Investigations of fire retardant properties of polypropylene-clay-nanocomposites[J]. Macromol Symp,2003,194: 207-212.
    [128]Kawasumi M, Hasegawa N, Kato M, et al. Preparation and mechanical properties of polypropylene-clay hybrids[J]. Macromolecules,1997,30(20):6333-6338.
    [129]Garcia-Lopez D, Picazo O, Merino J C, et al. Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion[J]. Eur Polym J,2003,39:945-950.
    [130]陈洪杰,王霆,郭玉波,等.聚丙烯网片在疝修补术中的临床应用[J].中国综合临床,2005,21(5):434-435
    [131]Michael Alexandre, Philippe Dubois. Polymer-layered silicate nanocomposites preparation properties and uses of a new class of materials[J]. Materials Science and Engineering,200,28:1-63.
    [132]李培耀.聚烯烃/蒙脱土纳米复合材料的研究[D].青岛大学硕士学位论文,2005,12-18.
    [133]陈奎.PP. PMMA/MMT复合材料的力学、摩擦学性能及稳定性研究[D].兰州理工大学博士论文,2006.
    [134]吕建坤,柯毓才,漆宗能.环氧/粘土纳米复合材料的形成机理与性能[J].高分子通报,2000,(2):18-26.
    [135]李同年,周持兴.聚酞胺/粘土纳米复合材料[J].功能高分子学报,2000,13(1):112-118.
    [136]Stephen Stackhouse, Peter V Coveney, Eric Sandre. Plane-Wave Density Functional Theoretic Study of Formation of Clay-Polymer Nanocomposite Materials by Self-Catalyzed in Situ Intercalative Polymerization[J]. J. Am. Chem. Soc.,2001, 123(47):11764-11774.
    [137]黄锐,徐伟平.纳米级无机粒子对聚乙烯的增强与增韧[J].塑料工业,1997,25(3):106-108.
    [138]李春生,周春晖,李庆伟,等.聚合物/蒙脱土纳米复合材料的研究进展[J].化工生产与技术,2002,9(4):22-25.
    [139]韩可清,陈业,余木火.聚合物/蒙脱土纳米复合材料的研究进展[J].合成技术及应用,2003,18(3):24-27.
    [140]Anna C. Balazs, Chandralekha Singh, Ekaterina Zhulina, Modeling the ineractions between Polymer and Clay Surfaces through Self-Consistent Field Theory[J]. Macromolecules,1998,31(23):8370-8381.
    [141]Zhang J G, Jiang D D, Wilkie C A. Polyethylene and polypropylene nanocomposites based upon an oligomerically modified clay[J]. Thermochimica Acta,2005,430(1-2): 107-113.
    [142]Hasegawa N, Kawasumi M, Kato M. Preparation and mechanical properties of polypropylene-clay hybrids using maleic anhydride intercalation-modified polypropylene oligomer[J]. J Appl Polym Sci,1998,67:87-92
    [143]Oya A, Kurokawa Y, Yasuda H. Factors controlling mechanical properties of clay mineral/propylene nanocomposites[J]. J Mater Sci,2000,35:1045-1050.
    [144]Sun T, Garces M J. High-performance polypropylene-clay nanocomposites by in situ polymerization with metallocene/clay catalysts[J]. Adv Mater,2002,14:128-130.
    [145]Hwu J M, Jiang G J. Preparation and characterization of polypropylene-montomorillonite nanocomposites generated by in situ metallocene catalyst polymerization[J]. J Appl Polym Sci,2005,95:1228-1236.
    [146]Ma J S, Qi Z N, Hu Y L. Synthesis and characterization of polypropylene/clay nanocomposites[J]. J Appl Polym Sci,2001,82:3611-3617.
    [147]Weiss K, Wirth-Pfeifer C, Hofmann M, et al. Polymerization of ethylene or propylene with heterogeneous metallocene catalysts on clay minerals[J]. J Molecu Catal A: Chem,2002,182-183:143-149.
    [148]He A H, Hu H Q, Huang Y J, et al. Isotactic poly(propylene)/monoalkylimidazolum-modified montmorillonite nanocomposites:preparation by intercalative polymerization and thermal stability study[J]. Macromol Rapid Commun,2004,25: 2008-2013.
    [149]方治齐,唐龙祥,严满清,等.聚丙烯改性新进展.现代塑料加工应用,2002,14(6):36-39.
    [150]廖子兵.乙丙丁三元多相共聚聚丙烯合金的研究.石油化工,2003,32(3):242-246.
    [151]漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社,2002:20.
    [152]孙康.聚丙烯/蒙脱土纳米复合材料的结构与性能研究[D].上海:上海交通大学,2003.
    [153]颜莉,何慧,丁超,等.插层复合法制备聚丙烯/蒙脱土纳米复合材料的研究进展[J].绝缘材料,2005,38(4):50-54.
    [154]张敬武,谭菁,周兴平,等.聚丙烯/BA原位聚合改性MMT纳米复合材料的微观结构[J].塑料工业,2003,31(4):38-40.
    [155]史铁钧,吴德峰,王华林,等.两步法制备剥离型聚丙烯/蒙脱土纳米复合材料(Ⅰ) 制备、表征及力学性能[J].化工学报,2004,55(2):259-263.
    [156]赵海超,杨凤,张学全,等.原位聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征[J].高分子材料科学与工程,2004,20(2):185-187.
    [157]马继盛,漆宗能,张树范,等.插层聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征[J].高等学校化学学报,2001,22(10):1767-1770.
    [158]Alexandre M, Dubois P, Sun T, et al. Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique:synthesis and mechanical properties[J]. Polymer,2002,43:2123-2132.
    [159]Jin Y H, Park H J, Im S S, et al. Polyethylene/clay nanocomposite by in-situ exfoliation of montmor'illonite during Zieglar-Natta polymerization of ethylene[J]. Macromol Rapid Commun,2002,23:135-140.
    [160]Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A.. Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride modified polypropylene oligomer[J]. J. Appl. Polym. Sci.,1998,67:87-92.
    [161]Hasegawa N., Okamoto H., Kato M., Usuki A. Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay[J]. J. Appl. Polym. Sci.2000,78 (11):1918-1922.
    [162]Oya A, Kurokawa Y, Yasuda H. Factors controlling mechanical properties of clay mineral/propylene nanocomposites[J]. J. Mater Sci,2000,35:1045-1050.
    [163]杨科芳.聚丙烯基体原位功能化对插层聚合制备的聚丙烯/蒙脱土纳米复合材料结构稳定性的影响[J].科学通报,2006,51(19):2232-2236.
    [164]Usuki A, Kato M, Okada A, et al. Synthesis of polypropylene-clay hybrid[J]. J Appl Polym Sci,1997,63:137-139.
    [165]Kato M, Usuki A, Okada A. Synthesis of polypropylene oligomer-clay intercalation compounds[J]. J Appl Polym Sci,1997,66:1781-1785.
    [166]Manias E, Wu T L, Strawhecker K. Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes an materials properties[J]. Chem Mater,2001,13(10): 3516-3523.
    [167]王柯,张琴,江璐霞,等.聚丙烯/有机蒙脱土纳米复合材的制备及性能研究[J].绝缘材料,2002,35(3):3-6.
    [168]徐卫兵,戈明亮,何平笙.聚丙烯/蒙脱土纳米复合材料的制备与性能[J].中国塑料,2000,14(11):27-31.
    [169]邹志明,章永化,蒋智杰,等.改性蒙脱土对聚丙烯的抗紫外老化作用[J].中国塑料,2000,14(11):81-84.
    [170]许立宁,邓海金,曹赞华,等.原位聚合法制备PMMA/石墨纳米导电复合材料[J].塑料工业,2001,29(6):17-19.
    [171]Zanet ti M, Camino G, Reichert P, et al. Thermal behavior of poly (propylene) layered silicate nanocomposites[J]. Macromol Rapid Commun,2001,12(7):176-180.
    [172]Zanet ti M, Camino G, Canavese D. Fire retardant halogen-antimony-clay synergism in polypropylene layered silicate nanocomposites[J]. Chem. Mater,2002,14(1):189-193.
    [173]Tang Y, Hu Y, Wang S F. Intumescent flame retardant montmorillonite synergism in polypropylene-layered silicate nanocomposites[J]. Polym Int,2003,52(8):1396-1400.
    [174]Tang Y, Hu Y, Song L. Preparation and thermal stability of polypropylene/ montmorillonite nanocomposites[J]. Polym Degrad Stabil,2003,82(1):127-131.
    [175]Huaili Qin, Shimin Zhang, Shousheng Yang, et al. Thermal stability and flammability of polypropylene/montmorillonite composites[J]. Polym Degrad Stabil,2004,85(2): 807-813.
    [176]Chiu F Y,Lai S M, Chen J W. Combined effect s of clay modifications and compatibilizer t he formation and physical properties of melt-mixed polypropylene/ clay nanocomposites[J]. Polym Sci:Part B:Polym Phys,2004, (42):4139-4150.
    [177]Zheng W G, Lu X H, Toh C L. Effects of clay on polymorphism of polypropylene in polypropylene/clay nanocomposites[J]. Polym Sci Part B:Polym Phys,2004,42(10): 1810-1816.
    [178]Ellis Thomas S, D Angelo J S. Thermal and mechanical properties of a polypropylene nanocomposite[J]. J Appl Polym Sci,2003,90(6):1639-1647.
    [179]He J D, Cheung M K, Yang M S. Thermal stabilit y and crystallization kinetics of iostactic polypropylene/organomontmorillonite nanocomposites[J]. J Appl Polym Sci, 2003,89(12):3404-3415.
    [180]Maiti P, Nam P H, Okamoto M, et al. Influence of crystallization on intercalation, morphology, and mechanical properties of propylene/clay nanocomposites [J]. Macromolecules,2002,35(6):2042-2049.
    [181]Nowacki R, Monasse B, Piorkowska E, et al. Spherulite nucleation in isotactic polypropylene based nanocomposites with montmorillonite under shear[J]. Polymer, 2004,45(14):4877-4892.
    [182]Galgali G, Ramesh C, Lele A. A rheological study on the kinetics of hybrid formation in propylene nanocomposites[J]. Macromolecules,2001,34(4):852-858.
    [183]Solomon M J, Almusallam A S, Seefeldt K F, et al. Rheology of polypropylene/clay hybrid materials[J]. Macromolecules,2001,34(6):1864-1872.
    [184]王东庆,马敬红,梁伯润.聚丙烯/蒙脱土纳米复合材料的研究进展[J].石化技术,2004,11(1):53-57.
    [185]Kawasumi M, Hasegawa N, Kato M, et al. Preparation and mechanical properties of polypropylene-clay hybrids[J]. Macromolecules,1997,30(20):6333-6338.
    [186]Fan Q, Ugbolue S C, Wilson A R, et al. Dyeable Polypropylene via Nanotechnology[J]. Annual Report. National Textile Centre of American,2001.
    [187]Mani G, Eeffi M. Proceeding of the Annual International Conference & Exhibition of the American Association of Textile Chemists and Colorists[C]. Univ of Massachusetts-Dart mouth,2002.
    [188]杨勇,漆宗能.有机—无机纳米复合材料的研究进展[J].上海交通大学学报,1998,32(9):130-133.
    [189]许群,后振中,张延超,等.超临界CO2协助多单体接枝改性聚丙烯[J].应用化学,2007,24(4):416-419.
    [190]Wang Yong, Liu ZhiMin, Han BuXing, et al. pH Sensitive Polypropylene Porous Membrane Prepared by Grafting Acrylic Acid in Supercritical Carbon Dioxide[J]. Polymer,2004,45(3):855-860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700