等规聚苯乙烯和乙烯—苯乙烯共聚物的合成、表征及结晶性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用球形高效负载Ziegler-Natta催化体系(TiCl_4-MgCl_2/AlR_3/二苯基二甲氧基硅烷(Diphenyl Dimethoxy Silane,DPDMS))合成等规聚苯乙烯(iPS),研究了聚合温度、助催化剂用量和种类、外给电子体用量、单体浓度及氢气压力等条件对催化效率及产物结构的影响;采用溶液成膜、从玻璃态升温等温结晶,对不同分子量及分子量分布的等规聚苯乙烯的结晶性能进行了研究;通过对丙烯预聚产物的粒子形貌分析,确定了适宜的预聚合条件,并通过预聚合工艺合成了球形聚乙烯和苯乙烯-乙烯共聚物;用正辛烷和二甲苯为溶剂分别对两种不同聚合工艺制备的共聚物进行了分级,各级分经过逐步降温等温结晶(step-wise
     crystallization)后,用DSC分析了其结晶熔融行为,结合FTIR对各级分的组成进行了分析;通过热台偏光显微镜(PLM)、示差扫描量热法(DSC)、广角X射线衍射(WAXD)等对苯乙烯-乙烯共聚物结晶行为进行研究,并对其等温和非等温结晶动力学进行了分析;用电子拉力机和DMTA分析了共聚物的拉伸性能和动态力学性能,并对共聚物磺化改性,表征了其表面极性的变化。结果表明:
     1、该催化体系对苯乙烯的等规聚合活性较高,催化效率最高可达7700gPS/gTi.h,通过多个Schulz-Flory最可几分布对产物的分子量分布曲线拟合分峰,结果发现AlEt_3能使产物中低分子量部分含量增加,Al(i-Bu)_3则倾向于形成高分子量的活性中心。体系中加入氢气不仅能显著提高催化效率,而且使iPS的分子量分布显著增宽。
     2、对等规聚苯乙烯的DSC分析发现,iPS晶体熔融过程中出现两个吸热峰:退火峰与熔融峰,其中退火峰对应的温度随退火温度的增加而升高但与退火时间无关。在相同条件下等温结晶,随着分子量分布的增加,晶核密度减小,球晶尺寸逐渐增大。在分子量分布较窄和较宽的情况下,iPS球晶内部晶片主要是edge-on取向,但在分子量分布适中时,在不同结晶温度下,可同时观察到edge-on与flat-on取向的晶片。通过对AFM相图的分析,球晶内部晶片厚度约为25±10nm,说明晶片取向是edge-on或类似edge-on。
     3、在丙烯预聚合研究中,发现在Al/Ti=80~100、Si/Ti=5~10、聚合温度40~50℃、适中的搅拌速度下可得到粒子形貌为球形且粒径较均匀的预聚物粒子。丙烯预聚合时间在10~15min时,可以得到较高的乙烯聚合活性、较大的球形聚乙烯粒子且粒径较均匀。加入适量H_2可小量提高乙烯聚合的活性,同时可以调节聚乙烯的分子量及分子量分布。通过丙烯预聚—乙烯聚合—苯乙烯聚合、丙烯预聚—苯乙烯聚合—乙烯聚合以及苯乙烯预聚—乙烯聚合等三种聚合工艺合成苯乙烯-乙烯共聚物,其中第一种工艺的产物中苯乙烯含量极低,第二种工艺产物中苯乙烯含量有所增加,第三种工艺制备的产物中苯乙烯含量最高。
Isotactic polystyrene (iPS) and styrene-ethylene copolymers (PES) were synthesized with spherical MgCl_2-supported Ziegler-Natta catalytic system consisted of titanium tetra- chloride, diisobutyl o-phthalate (DIBP) as internal electron donor, triisobutyl aluminium as cocatalyst and diphenyl dimethoxy silane as external electron donor. The effects of polymerization temperature, cocatalyst, external electron donor, monomer concentration and pressure of molecular hydrogen on the synthesis of iPS were investigated. The crystallization behavior of iPS films with various molecular weight distributions prepared from solution and isothermally crystallized from glassy state were revealed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The pre-polymerization in the preparation of PES was studied by the particle morphology of propylene pre-polymerization and the PES were fractionated with octane and xylene as solvent by temperature gradient elution fractionation method (TGEF). The crystallization behavior of PES and its fractions were investigated by differential scanning calorimetry (DSC), polarized light microscopy (PLM) with hot-stage and wide angle X-ray diffraction (WAXD). The tensile and dynamic mechanical properties of PES were characterized to verify the conclusions on its structure and crystallization. The sulfonation of PES was carried out and the contact angle between the PES films and alcohol were obtained to characterize the level of the modification. The results are follows.1. The catalytic efficiency of isospecific polymerization of styrene is far above the values of the reported in references;particularly it can be 7700 gPS/gTi.h under the suitable conditions. The curves of iPS molecular weight distribution can be fitted with several Schulz-Flory most-probable distributions and the results show that the fraction of lower molecular weight in the product increases when triethyl aluminium is used as cocatalyst. On the contrary, the high molecular weight products can be obtained with triisobutyl aluminium as cocatalyst. The introduction of molecular hydrogen results in higher catalytic efficiency and broader molecular weight distribution.
    2. There appear two peaks in the DSC endotherm of iPS, called annealing peak and melting peak, respectively. The temperature of annealing peak increases with the rising temperature of isothermal crystallization. With the increasing of iPS molecular weight distributions, the nucleation density increases and the size of iPS spherulites decrease, at the same crystallization temperature and time. The lamellar thickness in the spherulites is about 25 ± lOnm, larger than the typical value of polymer lamellar thickness. The orientations of lamellae are all edge-on in the spherulites with narrow and broad molecular weight distributions, while both the edge-on and flat-on lamellae can be observed in the sample with medium molecular weight distribution.3. The uniform spherical particles of polypropylene pre-polymerized can be obtained under the conditions that Al/Ti molar ratio is 80-100, Si/Ti molar ratio is 5-10, and the temperature is 40-50 °C. With the pre-polymerization process for 10 ~15min, the uniform large polyethylene particles are yielded with high catalytic efficiency. The catalytic efficiency can be enhanced and the molecular weight and molecular weight distribution can be controlled when the molecular hydrogen is introduced during the ethylene polymerization. The styrene-ethylene copolymers can be obtained with three polymerization technologies with different orders of the monomers introduction. The styrene content in PES is relatively higher with styrene pre-polymerization technology.4. The PES can be fractionated effectively with octane as the extraction solvent by temperature gradient elution fractionation method. The components in the copolymers are identified as three major types based on the thermal behaviors and FT-IR and 13C-NMR spectrum: high styrene content and short ethylene sequence copolymer, ethylene-predominant copolymer and highly molecular weight copolymer containing multi-ethylene segments.5. The spherulitic growth rates and melting points of PES decreased with the increase of styrene content, and the unit cell dimensions of the orthorhombic crystals of copolymers are larger than that of pure polyethylene. The peak in the WAXD curve corresponding to (200) reflections disappears gradually and the peak corresponding to (110) reflections is weakened with the increasing of styrene content.
    The crystallinites of PES, however, are larger than that of pure PE under the same crystallization conditions, which is correlated to the nucleation rate after the insertion of styrene unit in the polyethylene chains. Both isothermal and non-isothermal crystallization kinetics show the overall crystallization rate of PES with higher styrene content is larger than that of low styrene-content copolymer.6. The tensile strength and elongation at break of PES prepared with styrene pre-polymerization technology are larger than that of pure polyethylene. On the contrary, the tensile strength of PES prepared with propylene pre- polymerization is decreased with the increase of styrene content and the elongation at break is less than that of PE. There appears a new weak peak in the dynamic mechanical thermal analysis of PES, which corresponds to the irregular structure due to the insertion of styrene units. The contact angle between the PES films and alcohol is reduced for the sulfonation of copolymers.
引文
1. K. Ziegler, E. Holzkamp, H. Martin, H. Brel, Angew. Chem. 67: 541 (1955)
    2. G. Natta, Une nouvelle classe de polymeres α-olefmes ayant une regularite de structure exeeptionnelle. J. Polym. Sci. 16: 143-154 (1955)
    3. E. Albizzati, U. Giarmini, G. Collina, L. Noristi, L. Reseconi, Polymer handbook 1996 Hanser Publishers
    4. R. Colvin, Super-soft grades could be a billion-lb, replacement market. Modern Plastics. 74: 40 (1997)
    5. G. Natta, P. Pino, P. Corradini, F. Danusso, E. Mantica, G. Mazzanti, G. Moraglio, Crystalline high polymers of α-olefins. d. Am. Chem. Soc. 77: 1708-1710 (1955)
    6. D. S. Breslow, N. R. Newburg, Bis-(cyclopentadienyl)-titanium dichloride-alkylaluminum complexes as catalysts for the polymerization of ethylene, d. Am. Chem. Soc. 79: 5072-5073 (1957)
    7. D. S. Breslow, N. R. Newbarg, Bis-(cyclopentadienyl)-titanium dichloride-alkylaluminum complexes as soluble catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 81: 80-86 (1959)
    8. H. Sinn, W. Kaminsky, Living polymers on polymerization with extremely productive Ziegler catalysts. Angewandte Chemie-lnternational Edition in English. 19: 390-392 (1980)
    9. H. Sinn, W. Kaminsky, H. J. Vollmer, Rigid phenyl-group conformation in complexes. Angew. Chem., Int. Ed. Engl. 19: 396-397 (1980)
    10. J. A. Ewen, R. L. Jones, A. Razavi, J. D. Ferrara, Syndiospecific propylene polymerizations with Group IV_B metallocenes, J. Am. Chem. Soc. 110: 6255-6256 (1988)
    11.陈天红,林尚安,等规聚苯乙烯与聚(乙烯-丙烯)嵌段共聚物的研究,2.嵌段共聚物的分离与表征.高等学校化学学报.18:2053-2056(1997)
    12. L. K. Johnson, C. M. Killian, M. Brookhart, New Pd(Ⅱ)- and Ni(Ⅱ)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc. 117: 6414-6415 (1995)
    13. B. L. Small, M. Brookhart, A. M. A. Bennett, Highly active iron and cobalt catalysts for the polymerization of ethylene, d. Am. Chem. Soc. 120: 4049-4050 (1998)
    14. G. J. P. Pfitovsek, M. Bruce, V. C. Gibson, Cationic alkyl aluminium ethylene polymerization catalysts based on monoanionic N,N,N-pyridyliminoamide ligands. Chem. Commun. (22): 2523-2524 (1998)
    15. S. Bensason, A. Hiltner, E. Baer, J. Minick, A. Moet, Classification of homogeneous ethylene-octene copolymers based on comonomer content J. Polym. Sci., Part B: Polym. Phys. 34: 1301-1315 (1996)
    16. H. Chen, A. Hiltner, E. Baer, M. J. Guest, S. Chum, Classification of ethylene-styrene interpolymers based on comonomer content J. Appi. Polym. Sci. 70: 109-119 (1998)
    17. F. J. Timmers, Pseudo-random copolymers formed by use of constrained geometry addition polymerization catalysts. The DOW Chemical Company. 1997: USA.
    18. H. Azuma, S. Nanikawa, Polymerization of ethylene, propylene and styrene by use of activated Ziegler catalyst. 1970: Japan.
    19. Z. Huang, H. Marand, W. Y. Cheung, M. Guest, Study of crystallization processes in ethylene-styrene copolymers by conventional DSC and temperature-modulated calorimetry: linear polyethylene and low styrene content copolymers. Macromolecules. 37: 9922-9932 (2004)
    20. R. Fayt, R. Jerome, P. Teyssie, Molecular design of multicomponent polymer systems. 13. Control of the morphology of polyethylene polystyrene blends by block copolymers. Mackromol. Chem. Macromol. Chem. Phys. 187: 837-852 (1986)
    21. M. N. Bureau, J. I. Dickson, J. Denault, Fatigue propagation behaviour of polystyrene/polyethylene blends, d. Mater. Sci. 33: 1405-1419 (1998)
    22. Z. Wang, C.-M. Chart, J. R. Shen, S. H. Zhu, Compatibilization of polystyrene and low density polyethylene blends by a two-step erosslinking process. Polymer. 39: 6801-6806 (1998)
    23. M. N. Bureau, J. Denault, J. I. Dickson, Fractographic interpretation of the fatigue crack propagation behavior of polystyrene and polystyrene/polyethylene blends, d. Mater. Sci. Lett. 20: 1901-1904 (2001)
    24. J. Li, B. D. Favis, Characterizing co-continuous high density polyethylene/polystyrene blends. Polymer. 42: 5047-5053 (2001)
    25. M. F. Diaz, S. E. Barbosa, N. J. Capiati, Polyethylene-polystyrene grafting reaction: effects of polyethylene molecular weight Polymer. 43: 4851-4858 (2002)
    26. P. Longo, A. Grassi, L. Oliva, Copolymerization of styrene and ethylene in the presence of different syndiospecific catalysts. Makromol. Chem. 191: 2387-2396 (1990)
    27. R. E. Cohen, A. Bellare, M. A. Drzewinski, Spatial organization of polymer chains in a crystallizable diblock copolymer of polyethylene and polystyrene. Macromolecules. 27: 2321-2323 (1994)
    28. P. Aaltonen, J. Seppala, The attempted copolymerization of styrene and ethylene with monocyclopentadienyltitanium trichloride/methylaluminoxane catalyst. Effect of polymerization conditions. Eur. Polym. J. 31: 79-83 (1995)
    29. P. P. Chu, H. S. Tseng, Y. P. Chen, D. D. Yu, Synthesis and fractionation of syndiotacticpolystyrene/polyethylene copolymers with C_5H_5TiCl_3 catalysts Polymer. 41: 8271-8281 (2000)
    30. J. Y. Dong, T. C. Chung, Synthesis of polyethylene containing a terminal p-methylstyrene group: metallocene-mediated ethylene polymerization with a consecutive chain transfer reaction to p-methylstyrene and hydrogen. Macromolecules. 35: 1622-1631 (2002)
    31. G. E. Molau, Heterogeneous polymer systems. I. Polymeric oil-in-oil emulsions, J. Polym. Sci., Part A: Polym. Chem. 3: 1267-1278 (1965)
    32. G. E. Molau, Heterogeneous polymer systems. Ⅱ. Mechanism of stabilization of polymeric oil-in-oil emulsions d. Polym. Sci. 3: 4235-4242 (1965)
    33. G. E. Molau, W. M. Wittbrodt, Colloidal properties of styrene-butadiene block copolymers Macromolecules. 1: 260-265 (1968)
    34. R. Fayt, R. Jer6me, P. Teyssie, Molecular design of multicomponent polymer systems. Ⅱ. Emulsifying effect of a poly (hydrogenated butadiene-b -styrene) copolymer in high-density polyethylene/polystyrene blends, J. Polym. Sci., Part B: Polym. Phys. 19: 1269-1272 (1981 )
    35. W. J. Coumans, D. Heikens, S. D. Sjoerdsma, Dilatometfic investigation of deformation mechanisms in polystyrene-polyethylene block copolymer blends: correlation between Poisson ratio and adhesion. Polymer. 21: 103-108 (1980)
    36. K. H. Dai, E.J. Kramer, K. R. Shull, Interfacial segregation in two-phase polymer blends with diblock eopolymer additives: the effect of homopolymer molecular weight Macromolecules. 25: 220-225 (1992)
    37. L. Leibler, Emulsifying effects of block copolymers in incompatible polymer blends. Makromol. Chem., Macromol. Syrup. 16: 1-17 (1988)
    38. K. H. Dai, E. J. Kramer, J. M. J. Frechet, Enhanced segregation of a diblock copolymer caused by hydrogen bonding Macromolecules. 27: 5187-5191 (1994)
    39. C. Auschra, R. Stadler, I. G. Voigt-Martin, Poly(styrene-b-methyl methacrylate) block copolymers as eompatibilizing agents in blends of poly(styrene-co-acrylonitrile) and poly(2,6-dimethyl-1,4-phenylene ether): 1. Location of block copolymers in ternary blends - compatibilization versus micelle formation. Polymer. 34: 2081-2093 (1993)
    40.方征平,单旭亮,徐欢驰,许承威,聚苯乙烯/聚乙烯共混体系的研究.合成树脂与塑料.14:18-21(1997)
    41.俞强,林明德,时涛,王广,聚苯乙烯/聚乙烯的反应性挤出共混.应用化学.16:53-56 (1999)
    42.王文新,周持兴,顾再春,聚苯乙烯/高密度聚乙烯反应共混的研究.高分子材料科学与工程.14:71-73 (1998)
    43.张玉清,范志强,封麟先,聚丙烯反应器合金化研究.塑料工业.29:5-7 (2001)
    44.张玉清,聚丙烯催化合金的合成与结构-性能研究,in 高分子科学研究所.1999,浙江大学:杭州.
    45.张艳中,聚丙烯原位合金的合成及其苯乙烯固相接枝研究,in 高分子科学研究所.2003.浙江大学:杭州.
    46.傅智盛,气相法聚乙烯原位合金的合成及其结构-性能关系研究.in 高分子科学研究所.2003,浙江大学:杭州.
    47. H. H. Song, R. S. Stein, B. Chu, D.-Q. Wu, M. Ree, J. C. Phillips, A. LeGrand, Time-resolved SAXS on crystallization of a low-density polyethylene/high-density polyethylene polymer blend.
    ??Macromolecules. 21: 1180-1182 (1988)
    48. K. Tashiro, M. Izuchi, F. Kaneuchi, C. Jin, M. Kobayashi, R.S. Stein, Cocrystallization and phase segregation of polyethylene blends between the D and H species. 6. Time-resolved FTIR measurements for studying the crystallization kinetics of the blends under isothermal conditions. Macromolecules. 27: 1240-1244 (1994)
    49. K. Tashiro, M. Izuchi, M. Kobayashi, R.S. Stein, Cocrystallization and phase segregation of polyethylene blends between the D and H species. 5. Structural studies of the blends as viewed from different levels of unit cell to spherulite. Macromolecules. 27: 1234-1239 (1994)
    50. K. Tashiro, M. Izuchi, M. Kobayashi, R.S. Stein, Cocrystallization and phase segregation of polyethylene blends between the D and H species. 4. The crystallization behavior as viewed from the infrared spectral changes. Macromolecules. 27: 1228-1233 (1994)
    51. K. Tashiro, M. Izuchi, M. Kobayashi, R.S. Stein, Cocrystallization and phase segregation of polyethylene blends between the D and H species. 3. Blend content dependence of the crystallization behavior. Macromolecules. 27: 1221-1227 (1994)
    52. J. Li, R.A. Shanks, Y. Long, Miscibility and crystallisation of polypropylene/linear low density polyethylene blends. Polymer. 42: 1941-1951 (2001)
    53. M.J. Galante, L. Mandelkern, R.G Alamo, The crystallization of blends of different types of polyethylene: the role of crystallization conditions. Polymer. 39: 5105-5119 (1998)
    54. B.S. Tanem, A. Stori, Blends of single-site linear and branched polyethylene, 2. Morphology characterisation. Polymer. 42: 6609-6618 (2001)
    55. M.LA.e. Maaty, A counter-intuitive asymmetric habit of spherulites in polyethylene blends. Polymer. 43: 5639-5642 (2002)
    56. C.H. Stephens, A. Hiltner, E. Baer, Phase behavior of partially miscible blends of linear and branched polyethylenes. Macromolecules. 36: 2733-2741 (2003)
    57. L. Yang, R.H. Somani, I. Sics, B.S. Hsiao, R. Kolb, H. Fruitwala, C. Ong, Shear-induced crystallization precursor studies in model polyethylene blends by in-situ rheo-SAXS and rheo-WAXD. Macromolecules. 37: 4845-4859 (2004)
    58. J.-g. Gao, M.-s. Yu, Z.-T. Li, Nonisothermal crystallization kinetics and melting behavior of bimodal medium density polyethylene/low density polyethylene blends. Eur. Polym. J. 44: 1533-1539(2004)
    59. A. Krumme, A. Lehtinen, A. Viikna, Crystallisation behaviour of high density polyethylene blends with bimodal molar mass distribution 1. Basic characteristics and isothermal crystallisation. Eur. Polym. J. 40: 359-369 (2004)
    60. L. Ma, M. Azuma, M. Matsuo, C. He, T. Suzuki, Y. Bin, Characteristics of ultradrawn blend films of ethylene-methyl methacrylate copolymer and ultrahigh molecular weight polyethylene prepared by gelation/ crystallization from solutions estimated by X-ray, positron annihilation, and ~(13)C NMR Macromolecules. 37: 7673-7682 (2004)
    61. D. Huang, Y. Yang, B. Li, Impact behavior of phenolphthalein poly(ether sulfone)/ultrahigh molecular weight polyethylene blends. J. Appl. Polym. Sci. 67: 113-118 (1998)
    62. C. Vocke, U. Anttila, J. Seppala, Compatibilization of polyethylene/polyamide 6 blends with oxazoline-functionalized polyethylene and styrene ethylene/butylene styrene copolymer (SEBS). J. Appl. Polym. Sci. 72: 1443-1450 (1999)
    63. L. Minkova, H. Yordanov, S. Filippi, Characterization of blends of LDPE and PA6 with functionalized polyethylenes. Polymer. 43: 6195-6204 (2002)
    64. I. Sutherland, D. W. Brewis, R. J. Heath, E. Sheng, Modification of polypropylene surfaces by flame treatment. Surf. Interface Ahal 17: 507-510 (1991)
    65. D. Briggs, D. M. Brewis, M. B. Konieczko, X-ray photoelectron-spectroscopy studies of polymer surfaces. 3. flame treatment of polyethylene, J. Mater. ScL 14: 1344-1348 (1979)
    66. F. Garbassi, E. Occhiello, F. Polato, Surface effect of flame treatments on polypropylene, J. Mater Sci. 22: 207 (1987)
    67. N. Jones, M. Stoilovic, C. Lennard, C. Roux, Vacuum metal deposition: factors affecting normal and reverse development of latent fingerprints on polyethylene substrates Forensic Sci. Int. 115: 73-88 (2001)
    68. C. Fonseca, J. M. Perena, J. G. Fatou, A. Bello, Sulfuric-acid etching of polyethylene surfaces, J. Mater Sci. 20: 3283-3288 (1985)
    69. K. W. Lee, T. J. McCarthy, Chemistry of surface-hydroxylated poly(chlorotrifluoroethylene). Macromolecules. 21: 2318-2330 (1988)
    70. J. M. Perena, V. Lorenzo, G. Zamfirova, A. Dimitrova, Microhardness of polyethylene surface modified by chlorosulphonic acid. Polym. Test. 19: 231-236 (1999)
    71. T. Ogawa, H. Mukai, S. Osawa, Effects of functional groups and surface roughness on interfacial shear strength in ultrahigh molecular weight polyethylene fiber/polyethylene system, J. AppL Polym. Sci. 71: 243-249 (1999)
    72. J. Lei, X. Liao, Surface graft copolymerization of acrylic acid onto LDPE film through corona discharge. Eur Polym. J. 37: 771-779 (2001)
    73. L. J. Gerenser, J. E Elman, M. G. Mason, A. B. Wootton, Electrical discharge treatment of polypropylene fill Polymer. 24: 47-52 (1983)
    74. A. Hollaender, J. Behnisch, H. Zimmermann, Surface modification of poly(ethylene) in an rf downstream remote plasma reactor, J. Appl. Polym. Sci. 49: 1857 (1993)
    75. C. M. Weikart, H. K. Yasuda, Modification, degradation, and stability of polymeric surfaces treated with reactive plasmas, J. Polym. Sci., Part A: Polym. Chem. 38: 3028-3042 (2000)
    76. C. H. Bamford, J. C. Ward, The effect of the high-frequency discharge on the surfaces of solids. I. The production of surface radicals on polymers Polymer. 2: 277-293 (1961)
    77. M. T. Razzak, Y. Tabata, K. Otsuhata, Modification of natural rubber by different grafting techniques. Radiat. Phys. Chem. 42: 57-60 (1993)
    78. S. Lenka, P. L. Nayak, I. B. Mohanty, Graft copolymerization onto rubber. Ⅵ. Graft copolymerization of methyl methacrylate onto rubber using acetylacetonate complex of manganese(Ⅲ), J. Appl. Polym. Sci. 30: 2711 (1985)
    79. Y. Li, J. M. Desllone, C. D. Poon, E. T. Samuski, Photoinduced graft polymerization of styrene onto polypropylene substrates, J. Appl. Polym. Sci. 64: 883-889 (1997)
    80.张艳中,范志强,刘钊,张玉清,封麟先,球形聚丙烯粒子固相接枝苯乙烯的研究.高分子学报,432-437 (2002)
    81. A. Lazzeri, M. Malanima, M. Pracella, Reactive compatibilization and fracture behavior in nylon 6/VLDPE blends, J. Appl. Polym. Sci. 74: 3455-3468 (1999)
    82. F. P. Epaillard, B. Chevet, J. C. Brosse, Functionalization of polypropylene by a microwave (433 MHz) cold plasma of carbon dioxide. Surface modification or surface degradation. Eur Polym. J. 26: 333-339 (1990)
    83. V. Svorcik, K. Proskova, V. Hnatowicz, V. Rybka, Alanine grafting of ion-beam-modified polyethylene. J. Appl. Polym. Sci. 75: 1144-1148 (2000)
    84. W. Yang, B. Ranby, Photoinitiation performance of some ketones in the LDPE-acrylic acid surface photografting system Eur. Polym. J. 35: 1557-1568 (1999)
    85. Y. Uyama, H. Tadokoro, Y. Ikada, Surface lubrication of polymer films by photoinduced graft polymerization. J. Appl. Polym. Sci. 39:489-498 (1990)
    86. K.L. Tang, L.L. Woon, H.K. Wong, E.T. Kang, K.G. Neoh, Surface modification of plasma-pretreated poly(tetrafluoroethylene) films by graft copolymerization Macromolecules. 26: 2832(1993)
    87. N. Medard, J.-C. Soutif, F.P. Epaillard, CO_2, H_2O, and CO_2/H_2O plasma chemistry for polyethylene surface modification Langmuir. 18: 2246 (2002)
    88. C. Batich, A. Yahiaoui, Surface modification. I. Graft polymerization of acrylamide onto low-density polyethylene by Ce4+-induced initiation. J. Polym. Sci., Part A: Polym. Chem. 25: 3479-3488(1987)
    89. D. Bandopadhay, A.B. Panda, Pramanik, Surface modification of LDPE film by chemical processes with Ni~(2+) and ammonium persulfate. J. Appl. Polym. Sci. 82:406-415 (2001)
    90. S.A. Fayek, S.M. Sayed, M.B. Arnaouty, Study the effect of gamma irradiation on optical and morphological properties of grafted low density polyethylene. Polym. Test. 19: 435 (2000)
    91. K. Yamada, H. Tsutaya, S. Tatekawa, M. Hirata, Hydrophilic and adhesive properties of polyethylene plates grafted with hydrophilic monomers. J. Appl. Polym. Sci. 46: 1065-1085 (1992)
    92. K. Yamada, T. Kimura, H. Tsutaya, M. Hirata, Hydrophilic and adhesive properties of methacrylic acid-grafted polyethylene plates. J. Appl. Polym. Sci. 44: 993-1001 (1992)
    93. J. Lei, X. Liao, Surface graft copolymerization of 2-hydroxyethyl methacrylate onto low-density polyethylene film through corona discharge in air. J. Appl. Polym. Sci. 81:2881-2887 (2001)
    94. N. Sarkar, S. Bhattacharjee, S. Sivaram, Surface functionalization of poly(ethylene) with succinic anhydride: preparation, modification, and characterization Langmuir. 13:4142 (1997)
    95. K. Kaji, M. Hatada, I. Yoshizawa, C. Kohara, K. Komai, Preparation of hydrophilic polyethylene foam of open cell type by radiation grafting of acrylic acid. J. Appl. Polym. Sci. 37: 2153-2164 (1989)
    96. N. Chanunpanich, A. Ulman, Y.M. Strzhemechny, S.A. Schwarz, A. Janke, H.G Braun, T. Kratzmueller, Surface modification of polyethylene through brominatioa Langmuir. 15: 2089-2094 (1999)
    97. S. Balamurugan, A.B. Mandale, S. Badrinarayanan, S.P. Vernekar, Photochemical bromination of polyolefin surfaces. Polymer. 42: 2501-2512 (2001)
    98. R. Foerch, J. Izawa, N.S. McIntyre, D.H. Hunter, Effect of distance from a nitrogen plasma on the modification of polymer surfaces. Polym. Mater. Sci. Eng. 62: 428 (1990)
    99. K. Sugiyama, T. Matsumoto, Y. Yamazaki, Evaluation of biocompatibility of the surface of polyethylene films modified with various water soluble polymers using Ar plasma-post polymerization technique Macromol. Mater. Eng. 282: 5 (2000)
    100. D.S. Everhart, C.N. Reilley, Polymer functional group mobility. 2. Partition of ion pairs between hydrophobic and hydrophilic phases of plasma oxidized polyethylene. Surf. Interface Anal. 3: 258-268(1981)
    101. G Ungar, X.-b. Zeng, Learning polymer crystallization with the aid of linear, branched and cyclic model compounds. Chem. Rev. 101: 4157-4288 (2001)
    102. M. Zhang, D.T. Lynch, S.E. Wanke, Effect of molecular structure distribution on melting and
     crystallization behavior of l-butene/ethylene copolymers. Polymer. 42: 3067-3075 (2001)
    103. X.-b. Zhang, Z.-s. Li, H. Yang, C.-C. Sun, Molecular dynamics simulations on crystallization of polyethylene copolymer with precisely controlled branching. Macromolecules. 37: 7393-7400 (2004)
    104. M. Ueda, S. Sakurai, W. J. MacKnight, K. Sakurai, S. Okamoto, D. J. Lohse, S. Shinkai, S. Nomura, Spherulite formation from microphase-separated lamellae in semi-crystalline diblock copolymer comprising polyethylene and atactic polypropylene blocks. Polymer. 44: 6995-7005 (2003)
    105. J.-T. Xu, P.-J. Ding, Z.-S. Fu, Z.-Q. Fan, Study of crystallization and melting behavior of polypropylene-block-polyethylenes copolymers fractionated from polypropylene and polyethylene mixtures. Polym. Int. 53: 1314-1320 (2004)
    106. J. Wagner, P. J. Phillips, The mechanism of crystallization of linear polyethylene, and its copolymers with octene, over a wide range of supercoolings Polymer. 42: 8999-9013 (2001)
    107. L. Mandelkern, Crystallization kinetics of homopolymers: overall crystallization: a review. Biophys. Chem. 112: 109-116 (2004)
    108. G. Feio, G. Buntinx, J. P. Cohen-Addad, Applied to the kinetics of polymer crystallization: Ⅱ. Poly(dimethyl sloxane solutions). J. Polym. Sci., Part B: Polym. Phys. 27: 1-24 (1986)
    109. M. Psarski, F. Piorkowska, A. Galeski, Crystallization of polyethylene from melt with lowered chain entanglement Macromolecules. 33: 916-932 (2000)
    110. H. Bu, F. Gu, L. Bao, M. Chen, Influence of entanglements on crystallization ofmacromolecules. Macromolecules. 31: 7108-7110 (1998)
    111. J. D. Hoffrnan, Regime Ⅲ crystallization in melt-crystallized polymers: The variable cluster model of chain folding, Polymer. 24: 3-26 (1983)
    112. J. D. Hoffman, R. L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment Polymer. 38: 3151-3212 (1997)
    113. J. P. Armistead, J. D. Hoffrnan, Direct evidence of regimes Ⅰ, Ⅱ, and Ⅲ in linear polyethylene fractions as revealed by spherulite growth rates. Macromolecules. 35: 3895-3913 (2002)
    114. M. L. Mansfield, Solution of the growth equations of a sector of a polymer crystal including consideration of the changing size of the crystal. Polymer. 29: 1755-1760 (1988)
    115. M. L. Mansfield, Computer-simulation solution to the Frank equations with moving boundary conditions. Polym. Commun. 31: 283-285 (1990)
    116. A. Toda, Growth of polyethylene single-crystals from the melt - change in lateral habit and regime Ⅰ-Ⅱ-transition. Colloid Polym. Sci. 270: 667 (1992)
    117. A. Toda, A. Keller, Growth of polyethylene single-crystal form the melt - morphology Colloid Polym. Sci. 271: 328 (1993)
    118.廖凯荣,卢泽俭,林尚安,沈坚,等规聚苯乙烯的合成及其结晶性能.高分子学报,263-268 (1994)
    119. J. N. Hay, Crystallization kinetics of high polymers: isotactic polystyrene. J. Polym. Sci., Part A: Polym. Chem. 3: 433-447 (1965)
    120. B. C. Edwards, P. J. Phillips, Crystallization studies of isotactic polystyrene. Polymer. 15: 351-362 (1974)
    121. M. A. Kennedy, G. Turturro, G. R. Brown, L. E. ST-Pierre, Retardation of spherulitic growth rate in the crystallization of isotactic polystyrene due to the presence of nucleant. J. Polym. Sci., Part B: Polym. Phys. 21: 1403-1413 (1983)
    122. G. Xue, Y. Wang, X. Gu, Y. Lu, Rapid crystallization of isotactic polystyrene by shock-cooling and subsequent freeze-drying of its very dilute solution. Macromolecules. 27: 4016-4017 (1994)
    123. E. Petrillol, G. Romano, R. Russo, V. Vittoria, Crystallization Behavior of lsotactic Polystyrene Quenched at Different Temperatures. Polymers for Advanced Technologies. 7: 478-482 (1996)
    124. T. Kimura, H. Ezure, S. Tanaka, In situ FTIR spectroscopic study on crystallization process of isotactic polystyrene, J. Polym. Sci., Part B: Polym. Phys. 36: 1227-1233 (1998)
    125. J. Radhakrishnan, A. K. Dikshit, A. Kaito, Structure formation during isothermal crystallization of oriented isotactic polystyrene. J. Polym. Sci., Part B: Polym. Phys. 38: 2912-2921 (2000)
    126. M. AI-Hussein, G. Strobl, The melting line, the crystallization line, and the equilibrium melting temperature of isotactic polystyrene. Macromolecules. 35: 1672-1676 (2002)
    127. H. D. Keith, R. G. Vadimsky, F. J. Padden, Crystallization of isotactic polystyrene from solution. J. Polym. Sci., Part B: Polym. Phys. 8: 1687-1696 (1970)
    128. P. J. Lemstra, G. Challa, Crystallization of isotactic polystyrene from dilute solutions, J. Polym. Sci., Part B: Polym. Phys. 13: 1809-1817 (1975)
    129. G. Xue, Y. Wang, S. Liu, Y.-T. Liao, FT-IR study of concentration dependence for crystallization of isotactic polystyrene arising from freeze-drying dilute solutions. Macromolecules. 28: 4344-4346 (1995)
    130. Y. Li, G. Xue, Rapid crystallization of isotactic polystyrene from large molecule solvent octadecyl benzoate. Macromolecules. 32: 3984-3988 (1999)
    131. N. Overbergh, H. Berghmans, H. Reynaers, Influence of crystallization and annealing conditions on the morphology of bulk-crystallized isotactic polystyrene, J. Polym. Sci., Part B: Polym. Phys. 14: 1177-1186 (1976)
    132. T. Liu, J. Petermann, C. He, Z. Liu, T.-S. Chung, Transmission electron microscopy observations on lamellar melting of cold-crystallized isotactic polystyrene. Macromolecules. 34: 4305-4307 (2001)
    133. D. C. Bassett, A. S. Vaughan, On the lamellar morpholohy of melt-crystallized isotactic polystyrene. Polymer. 26: 717-725 (1985)
    134. U. Hachmann, J Petermann, Diffusion-controlled growth of lamellar crystals in an isotactic polystyrene-polyphenylene oxide blencL J. Polym. Sci., Part B: Polym. Phys. 20: 1633-1639 (1982)
    135. T. X. Liu, I. Lieberwirth, J. Petermann, Morphology and melting behavior of lamellar overgrowths after heat treatments of isotactic polystyrene. Macromol. Chem. Phys. 202: 2921-2925 (2001)
    136. A. S. Vaughan, D. C. Bassett, Early stages of spherulite growth in melt-crystallized polystyrene. Polymer. 29: 1397-1401 (1988)
    137. C. Wang, C. C. Chen, Y. W. Cheng, W. P. Liao, M. L. Wang, Simultaneous presence of positive and negative spherulites in syndiotactic polystyrene and its blends with atactic polystyrene. Polymer. 43: 5271-5279 (2002)
    138. T. X. Liu, W. W. C. Tjiu, J. Petermann, TEM observations on fine structures of shish-kebab crystals of isotactic polystyrene by partial melting, d. Cryst. Growth. 243: 218-223 (2002)
    139. K. Feit, A. Karbach, J. Petermann, On the lateral size of shish crystals, d. Polym. Sci., Part B: Polym. Phys. 22: 993-999 (1984)
    140. A. W. Monks, H. M. White, D. C. Bassett, On shish-kebab morphologies in crystalline polymers. Polymer. 37: 5933-5936 (1996)
    141. I. Lieberwirth, J. Loos, J. Petermann, A. Keller, Observation of shish crystal growth into nondeformed melts. J. Polym. Sci., Part B: Polym. Phys. 38: 1183-1187 (2000)
    142.陈尔强,卜海山,许胜勇,高分子的单链单晶.自然科学进展—国家重点实验室通讯 5:98-104 (1995)
    143.卜海山,曹杰,许胜勇,张泽,等规聚苯乙烯单链单晶的结构和耐辐照性能.复旦学报(自然科学版).36:387-393 (1997)
    144.王松,戴庆平,程镕时,洪建民,严晓虎,冰冻升华极稀溶液制备的等规聚苯乙烯超细粉末结晶的结构与性质.高等学校化学学报.19:1526-1528 (1998)
    145. Y. K. Godovsky, S. N. Magonov, Atomic forcemicroscopy visualization of morphology and nanostructure of an ultrathin layer of polyethylene during melting and crystallization. Langmuir. 16: 3549-3552 (2000)
    146. J. K. Hobbs, A. D. L. Humphris, M. J. Miles, In-situ atomic force microscopy of polyethylene crystallization. 1. crystallization from an oriented backbone. Macromolecules. 34: 5508-5519 (2001)
    147. L. Li, C.-M. Chan, K. L. Yeung, J.-X. Li, K.-M. Ng, Y. Lei, Direct observation of growth of lamellae and spherulites of a semicrystalline polymer by AFM Macromolecules. 34: 316-325 (2001)
    148. L. Markey, J. J. Janimak, G. C. Stevens, Modelling and simulation of the permanganic etching of banded spherulitic polyethylene: correlation with AFM observations. Polymer. 42: 6221-6230 (2001)
    149. J. Nakamura, A. Kawaguchi, In situ observations of annealing behavior of polyethylene single crystals on various substrates by AFM. Macromolecules. 37: 3725-3734 (2004)
    150. S. S. Sheiko, Imaging of polymers using scanning force microscopy: from superstrtures to individual molecules. Adv. Polym. Sci. 151: 61-174 (2000)
    151. J. Boon, G. Challa, D. W. V. Krevelen, Crystallization kinetics of isotactic polystyrene. Ⅰ. Spherulitic growth rate. J. Polym. Sci., Part B: Polym. Phys. 6: 1791-1801 (1968)
    152. J. Boon, G. Challa, D. W. V. Krevelen, Crystallization kinetics of isotactic polystyrene. 2. influence of thermal history on number on nuclei. J. Polym. Sci., Part B: Polym. Phys. 6: 1835-1851 (1968)
    153. H. N. Beck, Heterogeneous nucleating agents for the crystallization of isotactic polystyrene. J. Appl. Polym. Sci. 19: 2601-2608 (1975)
    154. P. J. Lemstra, A. J. Schouten, G. Challa, Secondary crystallization of isotactic polystyrene, J. Polym. Sci., Part B: Polym. Phys. 12: 1565-1574 (1974)
    155. M. Al-Hussein, G. Strobl, The mechanisms of recrystallization after melting in syndiotactic polypropylene and isotactic polystyrene. Eur. Phys. J. E. 6: 305-314 (2001)
    156. Y. X. Duan, J. M. Zhang, S. K. Yan, D. Y. Shen, In situ FTIR studies on the cold-crystallization process and multiple melting behavior of isotactic polystyrene. Macromolecules. 36: 4874-4879 (2003)
    157. N. J. Tyrer, T. L. Bluhm, ER. Sundararajan, Solvent-induced cocrystallization of the α (threefold helical) and β (extended) structures of isotactic polystyrene: determination of X-ray crystallinity and disorder parameter. Macromolecules. 17: 2296-2303 (1984)
    158. G. Xue, J. Zhang, J. Chen, Yuqin Li, J. Ma, G. Wang, P. Sun, Gelation crystallization ofisotactic polystyrene in solvents of varying molecular size. Macromolecules. 33: 2299-2301 (2000)
    159.许光学,卢泽俭,林尚安,等规聚苯乙烯结构与性能研究进展.高分子通报 65-71 (1994)
    160.窦红静,朱诚身,何素芹,聚苯乙烯结晶及其晶型转化.高分子通报,56-60 (2000)
    161. J. M. Zhang, S. K. Yah, Y. Ozaki, Y. X. Duan, D. Y. Shen, I. Noda, Structure changes during the induction period of cold crystallization of isotactic polystyrene investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules. 37: 3292-3298 (2004)
    162. Y. Miyamoto, Y. Tanzawa, H. Miyaji, H. Kiho, Growth rate of isotactioc polystyrene crystals in concentrated solutions and in the melt Polymer. 33: 2496-2501 (1992)
    163. S. J. Sutton, K. Izumi, Y. Miyamoto, H. Miyaji, S. Miyashita, The morphology of isotactic polystyrene crystals grown in thin films: the effect of substrate material. J. Mater. Sci. 32: 5621-5627 (1997)
    164. M. Tsuji, M. Fujita, T. Shimizu, S. Kohjiya, Fine structures of curved edge-on lamellae in crystalline thin films of isotactic polystyrene as revealed by TEM. Macromolecules. 34: 4827-4833 (2001)
    165. L. L. Beers, J. F. Douglas, A. Karim, E. J. Amis, Combinatorial measurements of crystallization growth rate and morphology in thin films of isotactic polystyrene. Langmuir. 19: 3935-3940 (2003)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700