多区循环反应器丙烯聚合与模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用革新聚合工艺的方法提高聚丙烯性能,拓宽其应用范围是工业与学术界一直关注的焦点。多区循环反应器是一种新型的丙烯气相聚合反应装置,其不仅构造简单,操作条件宽泛,生产成本较低,而且产品性能优越。但是国外对该工艺技术细节保密,目前公开文献报道较少。
     本文采用多段序贯聚合法模拟多区循环反应器中的聚合反应过程,考察了切换频率对聚合活性、聚合物组成及结构和力学性能的影响。实验结果表明,增加切换频率,不仅提高了聚合活性,而且提升了聚合物的力学性能;采用DSC、13C-NMR、GPC对聚合物分级组分进行表征,结果表明切换频率能调控聚合物链段结构,其中对乙丙嵌段共聚物链段结构影响最为明显;随着切换频率的增加,合金材料样条断面中乙丙无规共聚物分散相尺寸变小且分布更加均匀。
     建立多段序贯聚合实验反应器模型,选用丙烯均聚体系,考察了切换频率、反应时间分配及氢气浓度对聚合产物的影响。模拟结果表明,切换频率对聚合物平均分子量及分子量分布影响不明显;反应时间分配与氢气浓度都能显著改变聚合物的分子量及其分子量分布,其中分子量及分子量分布对氢气浓度最为敏感。
     基于实验研究和模拟结果,进一步考察多区循环反应器中的颗粒流动特性对聚合反应的影响。考虑到气固混合物在提升管和下降管中平推流模型,结合丙烯聚合反应动力学,建立多区循环反应器丙烯气相聚合的过程模型。考察了循环比对单体在反应器内的空间分布以及聚丙烯分子量的影响;同时对提升管与下降管中单体浓度、氢气浓度和聚合物单程停留时间等参数进行了敏感性分析。模拟结果表明,循环比等参数主要通过改变反应器内聚合物颗粒的停留时间及活性位浓度影响聚合产物的分子量及其分子量分布;改变下降管中操作参数对聚合物的性能影响最为明显。
Innovative polymerization process which can improve the performance of polypropylene and broaden its application range is the focus of industry and academia's attention. Multizone circulating reactor is one of the newest propylene gas phase polymerization reactors that has simple structure, wide operating conditions, lower production costs and superior product performance. But the foreign kept the technology of this process secret and the current open literature about it were rarely reported.
     In this paper, polymerization in multizone circulating reactor was simulated by multi-stage sequential polymerization experiments and the effect of switching frequency on the catalyst activity, mechanical properties and polymer composition were studied. The experiment results showed that increasing the switching frequency could not only improve polymerization activity, but also enhance the polymer's mechanical properties. Meanwhile, the results from DSC、13C-NMR、GPC showed that switching frequency could control the polymer chain structure and the block copolymer was the most sensitive to it. The ethylene-propylene random copolymer dispersed phase size became smaller and its size distribution became more uniform in the impact sample fracture with the switching frequency increased.
     Based on this reactor model, parameters sensitivity analysis were performed for the effects of switch frequency, reaction time and hydrogen concentration on polymer properties. The simulation results showed that reaction time ratio and hydrogen concentration could change the polymer average molecular weight and molecular weight distribution obviously, but switching frequency could not. The polymer average molecular weight and molecular weight distribution is the most sensitive to hydrogen concentration.
     Besides, with propylene homopolymerization kinetics mechanism, the multizone circulating reactor model had been developed based on the assumption that riser model and downer model are plug-flow model, in order to investigate the effect of particle flow characteristics on the polymerization process. Moreover, the effect of operating parameters and reactor parameters on the monomer concentration throughout the reactor and polypropylene average molecular weight were investigated. The results from the proposed process model showed that recycling ratio, catalyst feed rate, reactor height and reactor diameter affected the polymer average molecular weight and molecular weight distribution by changing particles residence time and the active site concentration. Changing operating conditions in downer can influence polymer property more obviously than that in riser.
引文
[1]崔小明.我国聚丙烯的供需现状及发展前景.化学工业,2010,28(1),10-14.
    [2]杨茹欣,李玮,何颖.聚丙烯合金技术新进展及其应用.上海塑料,2006,4,14-17.
    [3]杜威,姜涛,宁英男.聚丙烯合金技术的研究进展.石油化工,2008,37(1),191-197.
    [4]王晓峰.多段序贯聚合法调控PP/EPR反应器合金的结构与性能.硕士学位论文,杭州:浙江大学,2006.
    [5]Galli, P.; Collina, G.; Sgarzi, P. Combining Ziegler-Natta and Metallocene catalysis:new heterophasic propylene copolymers from the novel multi-catalyst reactor granule technology. J. Appl. Polym. Sci.,1997,66(9),1831-1837.
    [6]冯连芳.丙烯聚合反应器与过程模拟化研究.博士学位论文,杭州:浙江大学,2006.
    [7]Covezzi, M.; Mei, G. The multizone circulating reactor technology. Chem. Eng. Sci.,2001,56(13),4059-4067.
    [8]Govoni, G.; Rinaldi, R.; Covezzi, M.; Galli, P. Process and apparatus for the gas-phase polymerization of a-olefins. US Patent 5698642,1997.
    [9]Govoni, G.; Covezzi, M. Process and apparatus for the gas-phase polymerization. WO 00/02929,2000.
    [10]Galli, P.; Vecellio, G. Technology:driving force behind innovation and growth of polyolefins. Prog. Polym. Sci.,2001,26(8),1287-1336.
    [11]Mei, G.; Herben, P.; Cagnani, C.; Mazzucco A. The spherizone process:a new PP manufacturing platform. Macromol. Symp.,2006,245-246(1),677-680.
    [12]赵燕,李德旭.多区循环反应器技术聚丙烯技术经济性分析.化工技术经济,2005,23(8),34-38.
    [13]孙春燕,刘伟,费建奇,谢婧新,景振华.多区循环反应器技术及在烯烃聚合中的应用.合成树脂及塑料,2004,21(3),73-76.
    [14]傅智盛,范志强.多段聚合法制备PE基高性能PP/PE合金.浙江大学学报(工学版),2005,39(4),534-537.
    [15]楼均勤,傅智盛,范志强.多段气相法制备聚乙烯-聚丙烯-无规乙丙共聚物原位合金.石油化工,2005,34(4),376-379.
    [16]Fu, Z. S.; Xu, J. T.; Zhang, Y. Z.; Fan, Z. Q. Chain structure and mechanical properties of polyethylene/polypropylene/poly(ethylene-co-propylene) in-react or alloys synthesized with a spherical Ziegler-Natta catalyst by gas-phase polymerization. J. Appl. Polym. Sci.,2005,97(2),640-647.
    [17]Fan, Z. Q.; Deng, J.; Zuo, Y. M.; Fu, Z. H. Influence of copolymerization conditions on the structure and mechanical properties of polyethylene/poly-propylene/poly(ethylene-co-propylene) in-reactor alloys synthesized in gas-phase with spherical Ziegler-Natta catalyst. J, Appl. Polym. Sci.,2006,102(3), 2481-2487.
    [18]Kaminsky, W.; Laban, A. Metallocene catalysis. Appl. Catal.,2001,222(1-2), 47-61.
    [19]Steve, C. P.; Swogger, K. W. Olefin polymer technologies history and recent progress at the Dow Chemical Company. Prog. Polym. Sci.,2008,33(8), 797-819.
    [20]Reddy, S. S.; Sivaram, S. Homogeneous metallocene-methylaluminoxane catalyst systems for ethylene polymerization. Prog. Polym. Sci.,1995,20(2), 309-367.
    [21]董金勇,朱博超,韩志超.一种复合催化剂、催化剂的制备及其在聚烯烃合金中的应用.China Patent CN1982341,2006.
    [22]Du, J.; Niu, H.; Dong, J. Y.; Dong, X.; Wang, D.; He, A.; Han, C. C. Nascent phase separation and crystallization kinetics of an iPP/PEOc polymer alloy prepared on a single multicatalyst reactor granule. Macromolecule,2008,41(4), 1421-1429.
    [23]Lu, L.; Fan, H.; Li, BG. Polypropylene and ethylene-propylene copolymer reactor alloys prepared by Metallocene/Ziegler-Natta hybrid catalyst. Ind. Eng. Chem. Res.,2009,48(18),8349-8355.
    [24]Dong, Q.; Wang, X. F.; Fu, Z. S.; Xu, J. T.; Fan Z.Q. Regulation of morphology and mechanical properities of polyethylene/polypropylene/poly(ethylene-co-propylene)in-reactor alloys by multistage sequential polymerization. Polymer, 2007,48(20),5905-5916.
    [25]Li, Y.; Xu, J. T.; Dong, Q.; Fu, Z. S.; Fan, Z. Q. Morphology of polypropylene/ poly(ethylene-co-propylene) in-reactor alloys by multistage sequential polymeri-zation and two-stage polymerization. Polymer,2009,50(21),5134-5141.
    [26]Fan, Y. D.; Zhang, C.Y.; Xue, Y. H.; Nie, W. Effect of copolymerization time on the microstructure and properties of polypropylene/poly(ethylene-co-propylene) in-reactor alloys. Polymer Journal,2009,41(12),1098-1104.
    [27]Zhang, C. H.; Shangguan, Y. G.; Chen, R. F. Morphology, microstructure and compatibility of impact polypropylene copolymer. Polymer,2010,57(21), 4969-4977.
    [28]Floyd, S.; Chio, K. Y.; Taylor, T. W. Polymerization of olefins through heterogeneous catalysis. Ⅲ. Polymer particle modeling with all analysis of intra-particle heat and mass transfer effects. J. Appl. Polym. Sci.,1986,52(1), 2935-2960.
    [29]Hutchinson, R. A.; Chen, C. M.; Ray, W. H. Polymerization of olefins through heterogeneous catalysis X:Modeling of particle growth and morphology. J. Appl. Polym. Sci.,1992,44(8),1389-1414.
    [30]Zacca, J. J.; Debling, J.; Ray, W. H. Reactor residence time distribution effects on the multistage polymerization of olefin. I. Basic principles and illustrative examples, polypropylene. Chem. Eng. Sci.,1996,57(12),4859-4886.
    [31]Sun, J. Z.; Eberstein, C.; Reichert, K. H. Particle growth modeling of gas phase polymerization of butadiene. J. Appl. Polym. Sci.,1997,64(2),203-212.
    [32]范顺杰,徐用懋.丙烯聚合建模研究:扩散作用的影响.化工学报,2000,51(6),771-777.
    [33]Chen, Y.; Chen, Y.; Chen, W.; Yang, D. C. Morphology of high impact poly-propylene particles. Polymer,2006,47(19),6808-6813.
    [34]Wang, W.; Zheng, Z. W.; Luo, Z. H. Coupled-single-particle and monte carlo model for propylene polymerization. J. Appl. Polym. Sci.,2011,119(11),352-362.
    [35]罗正鸿,温少桦,苏培林,王炜.环管反应器中聚丙烯颗粒内部的质量与热量传递模型.产校化学工程学报,2009,23(2),258-262.
    [36]崔雅萍.烯烃气相聚合过程中颗粒生长的模型化.浙江大学,硕士学位论文,杭州:浙江大学,2008.
    [37]Schmeal, W. R.; Street, J. R. Polymerization in expanding catalyst particles. AIChE J,1971,17(5),1188-1197.
    [38]Nagel, E. J.; Krillov, V. A.; Ray, W. H. Prediction of molecular weight distribu tions for high density polyolefins. Ind. Eng. Chem. Prod. Res. Dev.,1980,19(3), 372-379.
    [39]ROnkkO, H. L. Particle growth and fragmentation of solid self-supported Ziegler-Natta type catalysts in propylene polymerization. Journal of Molecular Catalysis A:Chemical,2009,309(1-2),40-49.
    [40]Pater, J. T. M.; Weickert, G.; Swaaij, W. P. M. V. Optical and infrared imaging of growing polyolefin particles. AIChE J,2003,49(2),450-464.
    [41]Choi, K. Y.; Ray, W. H. Polymerization of olefins through heterogeneous catalysis. Ⅱ. Kinetics of gas phase propylene polymerization with Ziegler-Natta catalysts. J. Appl. Polym. Sci.,1985,30(3),1065-1081.
    [42]Cecchin, G.; Marchetti, E.; Baruzzi, G. On the mechanism of polypropene growth over MgCl2/TiCl4 catalyst systems. Macromol. Chem. Phys.,2001, 202(10),1987-1994.
    [43]雷华,徐宏彬,冯连芳,杨爱武,翁志学,徐国斌Ziegler-Natta催化丙烯聚合中氢气的作用.石油化工,2003,32(12),1087-1090.
    [44]Ali, M. A.; Betlem, B.; Roffel, B.; Weickert, G. Hydrogen response in liquid propylene polymerization:towards a generalized model. AIChE J,2006,52(5), 1866-1876.
    [45]Ali, E. M.; Ali, M. A. Broadening the polyethylene molecular weight distribu-tion by controlling the hydrogen concentration and catalyst feed rates. ISA Transactions,2010,49(1),177-187.
    [46]Ali, E. M.; Ali, M. A. Control of molecular weight distribution and density of polyethylene in gas phase reactors. Journal Of Chemical Engineering Of Japan, 2010, 43(10),880-891.
    [47]黄杏冰,王靖岱,阳永荣,蒋斌波.氢气振荡操作生产双峰聚乙烯的模拟.浙江大学学报(工学版),2007,41(7),1209-1213.
    [48]罗正鸿,郑屹,温少桦.物料阶跃变化下的本体法环管式丙烯聚合过程模拟.石油学报(石油加工),2007,23(5),105-110.
    [49]Ali, M. A.; Stroomer, J.; Betlem, B.; Weickert, G.; Roffel B. Molecular weight distribution broadening of polypropylene by periodic switching of hydrogen and catalyst additions. J. Appl. Polym. Sci.,2008,705(4),2446-2457.
    [50]Chen, X. L.; Liu, D. B.; Wang, H. T. Synthesis of bimodal polyethylene using Ziegler-Natta catalysts by multiple H2 concentration switching in a single slurry reactor. Macromol. React. Eng.,2010,4(5),342-346.
    [51]历伟,黄杏冰,王靖岱,阳永荣.乙烯气相聚合过程中氢气振荡操作制备双峰聚乙烯.化工学报,2009,60(2),365-371.
    [52]Chadwick. J. C.; Morini. G.; Balbontin, G.; Mingozzi, I. Propene polymerization with MgCl2-supported catalysts:effects of using a diether as external donor. Macromol. Chem. Phys.,1997,198(4),1181-1188.
    [53]Busico, V.; Corradini, P.; Martino, L. D.; Graziano, F. Propene polymerization in the presence of MgCl2-supported Ziegler-Natta catalysts,4. Effects of Lewis based on polymer stereochemistry. Macromol. Chem. Phys.,1991,192(1), 49-57.
    [54]Chadwick, J. C.; Gerard, M. M.; Kessel, V.; Sudmeijer, O. Regio- and stereo specificity in propylene polymerization with MgCl2 supported Ziegler-Natta catalysts:effects of hydrogen and the external donor. Macromol. Chem. Phys., 1995,196(5),1431-1437.
    [55]Chadwick, J. C.; Morini, G.; Albizzatil, E.; Balbontin G. Aspects of hydrogen activation in propylene polymerization using MgCl2/TiCl4/diether catalysts. Macromol. Chem. Phys.,1996,197(8),2501-2510.
    [56]李娜,王晓峰,董奇,傅智盛,范志强.氢气对负载型Z-N高效催化剂的乙烯-丙烯共聚产物链结构影响.高分子学报,2006,4,632-635.
    [57]Kyoung, S. H.; Yoo, K. Y.; Rhee, H. K. Modeling and analysis of a slurry reactor system for heterogeneous olefin polymerization:the effects of hydrogen concentration and initial catalyst size. J. Appl. Polym. Sci.,2001,79(13),2480-2493.
    [58]Pater, J. T. M.; Weickert, G.; Van Swaaij, W. P. M. Polymerization of liquid propylene with a 4th generation Ziegler-Natta catalyst-influence of temperature, hydrogen and monomer concentration and prepolymerization method on poly-merization kinetics. Chem. Eng. Sci.,2002,57(16),3461-3477.
    [59]Busico, V.; Cipullo, R.; Corradini, P. Hydrooligomerization of propylene:a "fingerprint" of a Ziegler-Natta catalyst,1. Preliminary results for MgCl2-supported systems. Macromol. Chem. Rapid. Commun.,1992,13(1),15-20.
    [60]Chadwick, J. C.; Miedema, A.; Sudmeijer, O. Hydrogen activation in propylene polymerization with MgCl2-supported Ziegler-Natta catalysts:the effect of the external donor. Macromol. Chem. Phys.,1994,195(1),167-172.
    [61]Kojoh, S.; Kioka, M.; Kashiwa, N.; Itoh, N. M.; Mizuno, A. A study of chain-end structures of polypropylene prepared with MgC12-supported titanium catalyst. Polymer,1995,36(26),5015-5018.
    [62]Mori, H.; Tashino, K.; Terano, M. Study of the chain transfer reaction by hydrogen in the initial stage of propylene polymerization. Macromol. Chem. Phys.,1995,16(9),651-657.
    [63]Carvill, A.; Tritto, I.; Locatelli, P.; Sacchi, M. C. Polymer microstructure as a probe into hydrogen activation effect in ansa-zirconocene/methyl-aluminoxane catalyzed propene polymerizations. Macromolecules,1997,30(23),7056.
    [64]Carvill, A.; Zetta, L.; Zannoni, G.; Sacchi, M. C. Ansa-zirconocene-catalyzed solution polymerization of propylene:influence of polymerization conditions on the unsaturated chain-end groups. Macromolecules,1998,31(12),3783.
    [65]Camurati, I.; Cavicchi, B.; Dall'Occo, T.; Piemontesi, F. Synthesis and characterization of ethylene/1-olefin copolymers obtained by "Single Centre" catalysis. Macromol. Chem. Phys.,2001,202(5),701-709.
    [66]Hayashi, T.; Inoue, Y.; Chujo, R.; Asakura, T. Chain-end structures in polypropylene prepared with delta-TiCl3/Et2AlCl catalytic system in the presence of hydrogen. Macromolecules,1988,21(9),2675.
    [67]Moscardi, G.; Piemontezi, F.; Resconi, L. Organometallics,1999,18(13),5264.
    [68]Yury V. K.; Laura, A. R. Hydrogen effects in propylene polymerization reactions with Titanium-based Ziegler-Natta catalysts. Ⅰ. chemical mechanism of catalyst activation. Journal of Polymer Science:Part A:Polymer Chemistry, 2002,40(11),1353-1365.
    [69]Yury, V. K.; Laura, A. R.; Elizabeth, I. V. Hydrogen effects in propylene polymerization reactions with Titanium-based Ziegler-Natta catalysts. Ⅱ. mechanism of the chain-transfer reaction. Journal of Polymer Science:Part A: Polymer Chemistry,2002,40(11),1899-1911.
    [70]Soares, J. B. P.; Hamielec, A. E. Kinetics of propylene polymerization with a non-supported heterogeneous Ziegler-Natta catalyst-effect of hydrogen on rate of polymerization, stereoregularity and molecular weight distribution. Polymer, 1996,57(20),4607-4614.
    [71]白丁荣,金涌,俞芷青.循环流化床内颗粒的加速作用及气固两相间的动量交换.化学反应工程与工艺,1991,7(3),260-270.
    [72]Yang, W. C. A Model for the dynamics of a circulating fluidized bed loop. Circulating Fluidized Bed Technology Ⅱ,1988,181-192.
    [73]Li, Y.; Kwauk, M. The dynamics of fast fluidization. Grace Matsen(Ed.), Fluidization, Plenum, New York.,1980.
    [74]Bai, D. R.; Jin, Y.; Yu, Z. Q.; Zhu, J. X. The axial distribution of the cross-sectionally averaged voidage in fast fluidized bed. Powder Technology,1992, 77(1),51-58.
    [75]Zhang, W.; Tung, Y.; Joansson, F. Radial voidage profiles in the fast fluidized beds of different diameters. Chem. Eng. Sci.,1991,46(12),3045-3052.
    [76]Bai, D.; Shibuya, E.; Masuda, Y.; Nishio, K.; Nakagawa, N.; Kato, K. Distinc-tion between upward and downward flows in circulating fluidized beds. Powder Technology,1995,84(1),75-81.
    [77]Werther, J. Fliud mechanics of large-scale CFD units. A.A.Avidan(Ed.), Circulating Fluidized Beds Technology, AICHE Publications, New York,1993.
    [78]Shamiri, A.; Hussain, M. A.; Mjalli, F. S.; Mostoufi, N. Kinetic modeling of propylene homopolymerization in a gas-phase fluidized-bed reactor. Chemical Engineering Journal,2010,161(1-2),240-249.
    [79]白丁荣,金涌,俞芷青.快速流态化两通道模型.化工学报,1990,1(1),10-18.
    [80]Pugley, T. S.; Berruti, F. The circulating fluidized bed catalytic reactor:reactor model validation and simulation of the oxidative coupling of methane. Chem. Eng. Sci.,1996,51 (11),2751-2756.
    [81]Huang, Y.; Turton, R.; Parkb, J.; Famourib, P.; Edward, J. B. Dynamic model of the riser in circulating fluidized bed. Powder Technology,2006,163(1-2), 23-31.
    [82]Fabiano, A. N. F.; Liliane, M. F. L. Multizone circulating reactor modeling for gas-phase polymerization. I. reactor modeling. J. Appl. Polym. Sci.,2004,93(3), 1042-1052.
    [83]Fabiano, A. N. F.; Liliane, M. F. L. Multizone circulating reactor modeling for gas-phase polymerization. Ⅱ. reactor operating with gas barrier in the downer section. J. Appl. Polym. Sci.,2004,93(3),1053-1059.
    [84]Nayef, M. G.; Wee, L. A.; Mohamed, A. H. Dynamic and stability of ethylene polymerization in multizone circulating reactor. Korean J. Chem. Eng.,2009, 26(3),603-611.
    [85]Santos, J. L.; Asua, J. M. Modeling of olefin gas-phase polymerization in multizone circulating reactor. Ind. Eng. Chem. Res.,2006,45(9),3081-3089.
    [86]张文峰.丙烯气相聚合流化床反应器冷态模拟研究.硕士学位论文,杭州:浙江大学,2006.
    [87]陈燕清.丙烯聚合多区循环反应器建模研究.硕士学位论文,杭州:浙江大学,2007.
    [88]Dong, Q.; Fan, Z. Q.; Fu, Z. S.; Xu, J. T. Fractionation and characterization of an ethylene-propylene copolymer produced with a MgCl2/SiO2/TiCl4/diester-type Ziegler-Natta catalyst. J. Appl. Polym. Sci.,2008,107(2),1301-1309.
    [89]Soares, J. B. P. Mathematical modeling of the microstructure of polyolefin made by coordination polymerization:a review [J]. Chem. Eng. Sci.,2001,56(13), 4131-4153.
    [90]Aspen polymers plus examples&applications:C11 polypropylene gas phase polumerization processes.
    [91]Zacca, J. J.; Ray, W. H. Modeling of the liquid phase polymerization of olefins in loop reactors. Chem. Eng. Sci.,1993,48(22),3743-3765.
    [92]Honig, J. A. J.; Gloor, P. E.; MacGregor, J. F.; Hamielec, A. E. A mathematical model for the Ziegler-Natta polymerization of butadiene. J. Appl. Polym. Sci., 1987,34(2),829-845.
    [93]Han-Adebekun, G. C.; Ray, W. H. Polymerization of olefins through hetero-geneous catalysis.ⅩⅦ. Experimental study and model interpretation of some aspects of olefin polymerization over a TiCl4/MgCl2 catalyst. J. Appl. Polym. Sci.,1997,65(6),1037-1052.
    [94]Doi, Y.; Murata, M.; Yano, K.; Keii, T. Gas-phase polymerization of propylene with the supported Ziegler catalyst:TiCl4/MgCl2/C6H5COOC2H5/Al(C2H5)3. Ind. Eng. Chem., Prod. Res. Dev.,1982,21(4):580-585.
    [95]Debling, J. A.; Ray, W. H. Heat and mass transfer effects in multistage polymeri-zation processes:impact polypropylene. Ind. Eng. Chem. Res.,1995,34(10), 3466-3480.
    [96]Debling, J. A.; Ray, W. H. Morphological development of impact polypropylene produced in gas phase with a TiCl4/MgCl2 catalyst. J. Appl. Polym. Sci.,2001, 81(13),3085-3106.
    [97]Soga, K.; Ohgizawa, M.; Shiono, T. Evaluation of propagation rate constants for isotactic and atactic polymerization of propylene with magnesium chloride-supported catalysts. Makromolekulare Chemie, Rapid Communications,1989, 10(9),503-507.
    [98]Bukatov, G. D.; Goncharov, V. S.; Zakharov, V. A. Number of active centers and propagation rate constants in the propylene polymerization on supported Ti-Mg catalysts in the presence of hydrogen. Macromol. Chem. Phys.,1995,196(5), 1751-1759.
    [99]Lu, H. B.; Qiao, J. L.; Xu, Y. B. Effect of isotacticity distribution on the crystallization and melting behavior of polypropylene. J. Appl. Polym. Sci.,2002, 85(2),333-341.
    [100]Stern, C.; Frick, A.; Weiekert, G. Relationship between the structure and mechanical properties of polypropylene:Effects of the molecular weight and shear-induced structure. J. Appl. Polym. Sci.,2007,103(1),519-533.
    [101]吕南斗.分子量分布对聚丙烯力学性能的影响.北京化工大学学报,1995,22(3),53-57.
    [102]李文东,杨桂生.分子量及其分布对聚丙烯力学性能和结晶行为的影响.高分子材料科学与工程,1996,12(1),41-45.
    [103]McKenna, T. F. L.; Martino, A. D.; Weickert, G.; Soares, J. B. P. Particle growth during the polymerisation of olefins on supported catalysts,1-nascent polymer structures. Macromol. React. Eng.,2010,4(1),40-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700