磺化PP无纺布血液相容性与吸附低密度脂蛋白性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用60Co伽马射线共辐射接枝法,在对苯乙烯磺酸钠(SSS)单体水溶液中分别添加N-乙烯基-2-吡咯烷酮(NVP)、丙烯酰胺(AAm)和丙烯酸(AAc)三种单体,以实现SSS在聚丙烯(PP)无纺布上的接枝,从而制备磺化PP无纺布,并对磺化PP无纺布进行表征和亲水性测试以及对其血液相容性、抗凝血效果和吸附低密度脂蛋白(LDL)性能进行考察。
     一、共辐射接枝制备磺化PP无纺布
     本论文分别系统地考察了吸收剂量、剂量率、二元单体总浓度以及二元单体摩尔浓度比对总接枝率(DGT)和SSS接枝率(DGSSS)的影响。研究结果表明可以通过调整上述参数制备不同接枝率的PP无纺布。
     二、表征
     全反射傅里叶变换红外光谱:经过poly(NVP-co-SSS)、poly(AAm-co-SSS)和poly(AAc-co-SSS)三种接枝链修饰后的PP无纺布的红外谱图均在1125、1039和1009cm-1附近处出现了属于磺酸基(-SO-3)的特征吸收峰;此外,三种磺化PP无纺布的红外谱图分别出现了属于NVP中内酰胺基(1673cm-1)、AAm中酰胺基(1667cm-1)和AAc中羧基(1715cm-1)的特征吸收峰。X射线光电子能谱:与原PP无纺布的谱图相比,磺化PP无纺布的谱图均在168eV附近处出现了属于硫元素(S2p)的特征吸收峰,同时氧元素(O1s,531eV)的吸收峰强度均明显增强;此外,PP-g-P(NVP-co-SSS)和PP-g-P(AAm-co-SSS)两个样品的谱图中出现了属于氮元素(N1s,399eV)的信号峰。无纺布表面形貌:通过扫描电子显微镜观察可以发现,与原PP无纺布相比,磺化PP无纺布的纤维直径明显增大,并且纤维结构显得更为紧密。亲水性:吸液率测试结果表明,磺化PP无纺布具有优良的亲水性。
     三、血液相容性
     溶血:磺化PP无纺布的溶血率均低于5%,符合医用材料对溶血的要求。牛血清蛋白(BSA)吸附:三组样品的BSA吸附量均随着接枝率的增加而下降,并且PP-g-P(AAm-co-SSS)样品比其他两组样品具有更好的抑制BSA吸附效果。血浆总蛋白吸附:与另两组样品相比,PP-g-P(AAm-co-SSS)样品具有更好的抗血浆总蛋白吸附效果;此外,PP-g-P(AAc-co-SSS)样品对血浆总蛋白的吸附量较高,且接枝率的高低对吸附量的大小没有明显的影响。血小板黏附数量:三组样品单位面积黏附血小板的数量均随着接枝率的增加而呈现下降的趋势,并且PP-g-P(AAm-co-SSS)样品表现出更好的抑制血小板黏附效果。黏附血小板形态:通过扫描电镜所拍摄的图片可以明显地看出有大量的血小板聚集和黏附于未改性的PP无纺布上,并且血小板形貌发生明显的变形(伸出伪足和胞基质扩展);然而未能够明显地观察到有血小板黏附于磺化PP无纺布表面,表明磺化PP无纺布具有良好的抑制血小板黏附性能。血液相容性评估结果表明:经过接枝改性,PP无纺布的血液相容性得到了有效地改善。
     四、抗凝血效果
     本文通过检测活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)和凝血酶时间(TT)来评价磺化PP无纺布的抗凝血效果。结果显示,磺酸基团的引入能够有效地提高PP无纺布的抗凝血效果,尤其是延长内源性凝血系统的凝血时间,即APTT。此外,羧基具有良好的协同抗凝血作用,能够进一步地增强磺化PP无纺布的抗凝血效果,而酰胺基并没有显示出协同抗凝抗凝作用。
     五、吸附LDL性能
     本文通过测定所制备的磺化PP无纺布对血浆中LDL和高密度脂蛋白(HDL)的吸附率来评价其选择性吸附性能。结果显示,磺化PP无纺布虽然具有一定的吸附LDL的性能,但是磺化PP无纺布对HDL也有一定的吸附作用。因此,所制备的磺化PP无纺布并没有显示出良好的选择性吸附特性,还有待于进一步对工艺和材料进行改进和优化,从而提高其选择性吸附LDL效果,并降低HDL的吸附率。
Sodium styrenesulfonate (SSS) was grafted onto polypropylene (PP) non-wovenfabric via60Co γ-ray simultaneous radiation grafting method with the addition ofN-vinyl-2-pyrrolidone (NVP), acryl amide (AAm) and acrylic acid (AAc),respectively. The sulfonated PP non-woven fabrics were characterized and theirproperties, including hydrophilicity, blood compatibility, anticoagulant effect andadsorption properties of low density lipoprotein (LDL), were evaluated.
     1. Preparation of sulfonated PP non-woven fabric via simultaneous radiationinduced graft copolymerization
     In this paper, we systematically studied the effect of absorbed dose, dose rate,total molar concentration and molar concentration ratio of binary monomers on theDGTand DGSSS, respectively. The results showed that different DGTand DGSSScouldbe attained by adjustment of the above parameters.
     2. Characterization
     Attenuated total reflection Fourier transform infrared spectroscopy: As comparedwith the spectrum of pristine PP non-woven fabric, the new bands at about1125,1039,and1009cm-1in the spectra of sulfonated PP non-woven fabrics inculdingPP-g-P(NVP-co-SSS), PP-g-P(AAm-co-SSS) and PP-g-P(AAc-co-SSS), belonged tosulfonate group (-SO3-). Besides, the peaks at about1673,1667and1715cm-1couldbe assigned to the stretching vibration of C=O from NVP, AAm and AAc,respectively. X-ray photoelectron spectroscopy: A fresh peak at168eV (S2p) appeared in the spectra of sulfonated PP non-woven fabrics. The intensity of O1s (531eV) peak of sulfonated PP non-woven fabrics was stronger than that of neat PPnon-woven fabric. Moreover, an original peak at399eV (N1s) emerged in the spectraof PP-g-P(NVP-co-SSS) and PP-g-P(AAm-co-SSS) samples. Suface morphology ofPP non-woven fabrics: According to the picture of scan electron microscope, thediameter of modified fibers was apparently larger than that of virgin fiber. Besides,the configuration of modified fibres seemed to be more compacted. Hydrophilicity:The consequence of adsorption percentage of deionized water and phosphate buffersolution (PBS)(pH,7.4) demonstrated that the sulfonated PP non-woven fabrics hadexcellent hydrophilicity.
     3. Blood compatibility
     Hemolysis: The hemolytic ratio of sulfonated PP non-woven fabrics was below5%, which met what the medical materials required. Adsorption density of BSA: Theadsorption density of BSA decreased with the increase of DG. Furthermore, the groupof PP-g-P(AAm-co-SSS) samples was more effective to resist the BSA adsorptionthan the other two groups. Adsorption density of total protein: The group ofPP-g-P(AAm-co-SSS) samples was more efficient to limit the total protein adsorptionthan the other two groups. However, the PP-g-P(AAc-co-SSS) samples showed moreattraction to total protein and the DG had little effect on the adsorption density.Number of adhered platelets: The amount of adhered platelets reduced with theraising of DG, and PP-g-P(AAm-co-SSS) samples were more proficient in restrictingthe adhesion of platelets than the other two group of samples. Morphology of adheredplatelets: A lot of platelets aggregated and adhered onto virgin PP non-woven fabric.The deposited platelets exhibited an activated morphology, as demonstrated byextended pseudopodia and surface spreading. On the contrary, there’s few plateletsadhered and aggregated on the surface of sulfonated PP non-woven fabrics, whichillustrated that sulfonated PP non-woven fabrics could effectively restrict the adhesionof platelets. The above results demonstrated that the hemocompatibility of PPnon-woven fabric was greatly improved after modfication.
     4. Anticoagulant effect
     We evaluated the anticoagulant effect of sulfonated PP non-woven fabrics viaexamination of clotting times, including activated partial thromboplastin time (APTT),prothrombin time (PT) and thrombin time (TT). The results proved that sulfonategroup showed good anticoagulative activity, especially lengthening the APTT(intrinsic coagulant pathway). Besides, the carboxyl group had a synergetic effect toextend the clotting time. However, the amide group did not indicate this kind ofeffect.
     5. Adsorption properties of LDL
     In this paper, we assessed the selectivity of adsorbing LDL of sulfonated PPnon-woven fabrics by means of determination of adsorption percentage of LDL andhigh density lipoprotein (HDL). The prepared sulfonated PP non-woven fabrics, to acentain degree, presented the property of adsorbing LDL. However, the sulfonated PPnon-woven fabrics also showed adsorbing effect on HDL. Hence, the sulfonated PPnon-woven fabrics did not show good selectivity to adsorbing LDL, which should beameliorated in order to reduce the adsorption percentage of HDL and enhance theselective property of adsorbing LDL.
引文
[1]郭锐,贾凌云,冯红芹,等.医用血液净化材料的发展现状及研究进展[J].中国血液净化,2004,3(1):43–47.
    [2]肖文海,朱红梅,毛建玉.白细胞过滤器去除白细胞的效果及临床应用[J].国外医学临床生物化学与检验学分册,2004,25(4):372.
    [3] S.T. Wortham, G.A. Ortolano, B. Wenz. A brief history of blood filtration: clotscreens, microaggregate removal, and leukocyte reduction[J]. Transfusion MedicineReviews,2003,17(3):216–222.
    [4] M.M. Mangano, L.A. Chambers, M.S. Kruskall. Limited efficacy of leukopoorplatelets for prevention of febrile transfusion reactions[J]. American Journal ofClinical Pathology,1991,95:733–738.
    [5] L. Muylle. The role of cytokines in blood transfusion reactions[J]. Blood Reviews,1995,9(2):77–83.
    [6] L. Muylle, M. Joos, E. Wouters, et al. Increased tumor necrosis factor alpha (TNFalpha), interleukin1, and interleukin6(IL-6) levels in the plasma of stored plateletconcentrates: relationship between TNF alpha and IL-6levels and febrile transfusionreactions[J]. Transfusion,1993,33(3):195–199.
    [7] I. Sniecinski, M.R. O’Donnell, B. Nowicki, et al. Prevention of refractoriness andHLA-alloimmunization using filtered blood products[J]. Blood,1988,71(5):1402–1407.
    [8] M.V.M. Kooy, H.C.V. Prooijen, M. Moes, et al. Use of leukocyte–depletedplatelet concentrates for the prevention of refractoriness and primary HLAalloimmunization: a prospective, randomized trial[J]. Blood,1991,77(1):201–205.
    [9] U.M. Saarinen, R. Kekomaki, M.A. Siimes, et al. Effective prophylaxis againstplatelet refractoriness in multitransfused patients by use of leukocyte-free bloodcomponents[J]. Blood,1990,75(2):512–517.
    [10] G.L. Gilbert, K. Hayes, I.L. Hudson, et al. Prevention of transfusion–acquiredcytomegalovirus infection in infants by blood filtration to remove leucocytes.Neonatal cytomegalovirus infection study group[J]. Lancet,1989,333(8649):1228–1231.
    [11] R.A. Bowden, S.J. Slichter, M. Sayers, et al. A comparison of filteredleukocyte–reduced and cytomegalovirus (CMV) seronegative blood products for theprevention of transfusion–associated CMV infection after marrow transplant[J].Blood,1995,86(9):3598–3603.
    [12] T.D. Witte, A. Schattenberg, B.A.V. Dijk, et al. Prevention of primarycytomegalovirus infection after allogeneic bone marrow transplantation by usingleukocytepoor random blood products from cytomegalovirus-unscreened blood-bankdonors[J]. Transplantation,1990,50(6):964–968.
    [13]谢如锋,许亚勇,徐澄清,等.白细胞过滤器及其临床应用[J].中国输血杂志,1995,8(2):102–104.
    [14]孙雪梅,胡盼盼.白细胞过滤用熔喷非织造布的接枝改性研究[J].纺织学报,2001,22(3):151–154.
    [15]刘景汉,欧阳锡林.去白细胞输血基础和临床应用研究进展[J].中国输血杂志,2001,14(4):252–253.
    [16]汪传喜,张明炎,田兆嵩.减除血液中白细胞及起临床意义[J].中国输血杂志,2001,14(4):258.
    [17]王明山.滤除白细胞输血技术的应用进展[J].国外医学输血及血液学分册,2003,26(1):75–77.
    [18]柯勤飞,贺福敏.用于白细胞过滤的非织造布滤材研制[J].中国纺织大学学报,1999,25(2):73–75.
    [19] A.T. Callserts. The mechanism of white cell reduction by synthetic fiber cellfilters[J]. Transfusion,1993,33(2):134–138.
    [20]柯勤飞.新型高效白细胞过滤材料[C].上海:面向21世纪非织造技术创新及市场开拓研讨会论文集,2000:94–99.
    [21]杨海华,柯勤飞.血液过滤用非织造布的发展[J].非织造布,1999,13(2):19–22.
    [22]杨海华.血液过滤用非织造布的发展现状与趋势[J].产业用无纺布,1999,17(100):22–25.
    [23]赵连江.低密度脂蛋白与阴离子配基的相互作用研究[D].上海:上海交通大学,2012.
    [24]王文,朱曼璐,王拥军,等.《中国心血管病报告2012》概要[J].中国循环杂志,2013,28(6):408–412.
    [25]王文,朱曼璐,王拥军,等.心血管病已成为我国重要的公共卫生问题——《中国心血管病报告2011》概要[J].中国循环杂志,2012,27(6):409–411.
    [26] K.W. Ma, X.Z. Dai, S.Y. Feng, et al. Heparinized polyvinyl alcohol tospecifically adsorb low-density lipoprotein from plasma[J]. Transfusion andApheresis Science,2011,44(1):3–9.
    [27] A.Y.Y. Cheng, L.A. Leiter. Implications of recent clinical trials for the NationalCholesterol Education Program Adult Treatment Panel III guidelines[J]. CurrentOpinion in Cardiology,2006,21(4):400–404.
    [28]江国虹, B. Washboume.膳食干预对血浆脂质水平的影响[J].中国慢性病预防与控制杂志,2000,8(3):138–139.
    [29] M.L. Stefanick, S. Mackey, M. Sheehan, et a1. Effects of diet and exercise inmen and postmenopausal women with low levels of HDL cholesterol and high levelsof LDL cholesterol[J]. The New English Journal of Medicine,1998,339(1):12–20.
    [30] D.B. Huninghake.Drug treatment of dyslipoproteinemia[J]. Endocrinology andMetabolism Clinics of North America,1990,19(2):345–360.
    [31] S. Yokoyama. Brief history of low-density lipoprotein apheresis[J]. TherapeuticApheresis and Dialysis,2003,7(4):378–381.
    [32] J. Thiery, A.K. Walli, G. Janning, et al. Low-density lipoprotein plasmaphaeresiswith and without lovastatin in the treatment of the homozygous form of familialhypercholesterolaemia[J]. European Journal of Pediatrics,1990,149(10):716–721.
    [33] F. Blessing, Y. Wang, A.K. Walli, et al. Heparin-mediated extracorporeallow-density lipoprotein precipitation: rationale for a specific adjuvant therapy incardiovascular disease[J]. Transfusion and Apheresis Science,2004,30(3):255–266.
    [34] B. Maud, M. Gorbet, M.V. Sefton. Biomaterial-associated thrombosis: roles ofcoagulation factors, complement, platelets and leukocytes [J]. Biomaterials,2004,25(26):5681–5703.
    [35]杨立峰,许建霞,奚廷斐.生物材料血液相容性的研究与评价[J].生物医学工程学杂志,2009,26(5):1162–1166.
    [36]魏文,程为庄.血液相容性及表面改性的研究[J].高分子通报,2004,5:39–43.
    [37]刘振梅.聚丙烯微孔膜表面的生物相容性改性研究[D].浙江:浙江大学,2004.
    [38]虞鸣.辐射接枝法制备含环氧基团前驱体的新型聚合物及其功能化[D].北京:中国科学院研究生院,2010.
    [39]陈剑.低温等离子体接枝改性聚合物膜基础研究及应用[D].北京:清华大学,2005.
    [40] B. Gupta, K. Krishnanand, B.L. Deopura. Oxygen plasma-induced graftpolymerization of acrylic acid on polycaprolactone monofilament[J]. EuropeanPolymer Journal,2012,48(11):1940–1948.
    [41] S.N. Dmitriev, L.I. Kravets, V.V. Sleptsov, et al. Plasma-induced graftpolymerisation of2-methyl-5-vinylpyridine on the surface of poly(ethyleneterephthalate) track membranes[J]. Polymer Degradation and Stability,2005,90(20):374–378.
    [42] D.S. Wavhal, E.R. Fisher. Hydrophilic modification of polyethersulfonemembranes by low temperature plasma–induced graft polymerization[J]. Journal ofMembrane Science,2002,209(1):255–269.
    [43] Z.P. Zhao, J.D. Li, D.X. Zhang, et al. Nanofiltration membrane prepared frompolyacrylonitrile ultrafiltration membrane by low-temperature plasma I. Graft ofacrylic acid in gas[J]. Journal of Membrane Science,2004,232(1–2):1–8.
    [44] J. Sun, L. Yao, Z.Q. Gao, et al. Surface modification of PET films byatmospheric pressure plasma-induced acrylic acid inverse emulsion graftpolymerization[J]. Surface and Coatings Technology,2010,204(24):4101–4106.
    [45] M. Ulbricht, G. Belfort. Surface modification of ultrafiltration membranes bylow temperature plasma II. Graft polymerization onto polyacrylonitrile andpolysulfone[J]. Journal of Membrane Science,1996,111(2):193–215.
    [46] Y.J. Kim, I.K. Kang, M.W. Huh, et al. Surface characterization and in vitro bloodcompatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparinusing plasma glow discharge[J]. Biomaterials,2000,21(2):121–130.
    [47] Z.M. Liu, Z.K. Xu, L.S. Wan, et al. Surface modification of polypropylenemicrofiltration membranes by the immobilization of poly(N-vinyl–2-pyrrolidone): afacile plasma approach[J]. Journal of Membrane Science,2005,249(1–2):21–31.
    [48] J.P. Deng, L.F.Wang, L.Y. Liu, et al. Developments and new applications ofUV–induced surface graft Polymerizations[J]. Progress in Polymer Science,2009,34(2):156–193.
    [49] S. Kim, E. Kim, S. Kim, et al. Surface modification of silica nanoparticles byUV-induced graft polymerization of methyl methacrylate[J]. Journal of Colloid andInterface Science,2005,292(1):93–98.
    [50] K.H. Hong, N. Liu, G. Sun. UV-induced graft polymerization of acrylamide oncellulose by using immobilized benzophenone as a photo-initiator[J]. EuropeanPolymer Journal,2009,45(8):2443–2449.
    [51] S.F. Luan, J. Zhao, H.W. Yang, et al. Surface modification ofpoly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graftpolymerization of N-vinyl pyrrolidone[J]. Colloids and Surfaces B: Biointerfaces,2012,93(1):127–134.
    [52] M. Ulbricht, H. Matuschewski, A. Oechel, et al. Photo–induced graftpolymerization surface modifications for the preparation of hydrophilic andlow-protein-adsorbing ultrafiltration membranes[J]. Journal of Membrane Science,1996,115(1):31–47.
    [53] Z. Li, W. Zhang, X.W. Wang, et al. Surface modification of ultra high molecularweight polyethylene fibers via the sequential photoinduced graft polymerization[J].Applied Surface Science,2011,257(17):7600–7608.
    [54] Y. Cao, H. Wang, C. Yang, et al. In vitro studies of PBT nonwoven fabricsadsorbent for the removal of low density lipoprotein from hyperlipemia plasma[J].Applied Surface Science,2011,257(17):7521–7528.
    [55] J. Zhao, Q. Shi, S.F. Luan, et al. Improved biocompatibility and antifoulingproperty of polypropylene non-woven fabric membrane by surface graftingzwitterionic polymer[J]. Journal of Membrane Science,2011,369(1–2):5–12.
    [56] J.O. Karlsson, P. Gatenholm. Solid–supported wettable hydrogels prepared byozone induced grafting[J]. Polymer,1996,37(19):4251–4256.
    [57] Y. Wang, J.H. Kim, K.H. Choo, et al. Hydrophilic modification of polypropylenemicrofiltration membranes by ozone–induced graft polymerization[J]. Journal ofMembrane Science,2000,169(2):269–276.
    [58] J. Zhou, J. Yuan, X.P. Zang, et al. Platelet adhesion and protein adsorption onsilicone rubber surface by ozone-induced grafted polymerization with carboxybetainemonomer[J]. Colloids and Surfaces B: Biointerfaces,2005,41(1):55–62.
    [59] K. Pan, P. Fang, B. Cao. Novel composite membranes prepared by interfacialpolymerization on polypropylene fiber supports pretreated by ozone-inducedpolymerization[J]. Desalination,2012,294:36–43.
    [60] Y. Chang, Y.J. Shih, R.C. Ruaan, et al. Preparation of poly(vinylidene fluoride)microfiltration membrane with uniform surface–copolymerized poly(ethylene glycol)methacrylate and improvement of blood compatibility[J]. Journal of MembraneScience,2008,309(1–2):165–174.
    [61] J.M. Xu, Y.L. Yuan, B. Shan, et al. Ozone-induced grafting phosphorylcholinepolymer onto silicone film grafting2-methacryloyloxyethyl phosphorylcholine ontosilicone film to improve hemocompatibility[J]. Colloids and Surfaces B: Biointerfaces,2003,30(3):215–223.
    [62] F.J. Wolman, E.E. Smolko, O. Cascone, et al. Peptide imprinted polymersynthesized by radiation-induced graft polymerization[J]. Reactive and FunctionalPolymers,2006,66(11):1199–1205.
    [63] B. Deng, J.Y. Li, Z.C. Hou, et al. Microfiltration membranes prepared frompolyethersulfone powder grafted with acrylic acid by simultaneous irradiation andtheir pH dependence[J]. Radiation Physics and Chemistry,2008,77(7):898–906.
    [64] C.H. Jung, D.K. Kim, J.H. Choi. Surface modification of multi-walled carbonnanotubes by radiation–induced graft polymerization[J]. Current Applied Physics2009,9(1): S85–S87.
    [65] Q. Qin, Z.C. Hou, X.F. Lu, et al. Microfiltration membranes prepared frompoly(N-vinyl-2-pyrrolidone) grafted poly(vinylidenefluoride) synthesized bysimultaneous irradiation[J]. Journal of Membrane Science2013,427(15):303–310.
    [66] R. Li, H.D. Wang, W.F. Wang, et al. Simultaneous radiation induced graftpolymerization of N-vinyl-2-pyrrolidone onto polypropylene non–woven fabric forimprovement of blood compatibility[J]. Radiation Physics and Chemistry,2013,88:65–69.
    [67] Z.M. Liu, Z.K. Xu, J.Q. Wang, et al. Surface modification of polypropylenemicrofiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone[J].European Polymer Journal,2004,40(9):2077–2087.
    [68] I. Enomoto, Y. Katsumura, H. Kudo, et al. Graft polymerization usingradiation-induced peroxides and application to textile dyeing[J]. Radiation Physicsand Chemistry,2011,80(2):169–174.
    [69] H.Z. Liu, M. Yu, B. Deng, et al. Pre-irradiation induced emulsion graftpolymerization of acrylonitrile onto polyethylene nonwoven fabric[J]. RadiationPhysics and Chemistry,2012,81(1):93–96.
    [70] L.F. Li, B. Deng, Y.L. Ji, et al. A novel approach to prepare proton exchangemembranes from fluoropolymer powder by pre-irradiation induced graftpolymerization[J]. Journal of Membrane Science,2010,346(1):113–120.
    [71] Z. Xing, M.H. Wang, W.H. Liu, et al. Crystal structure and mechanicalproperties of UHMWPE-g-PMA fiber prepared by radiation grafting[J]. RadiationPhysics and Chemistry,2013,86:84–89.
    [72] N.C. Young, K.H. Oh, J. Chen. Introduction of phosphoric acid group topolypropylene film by radiation grafting and its blood compatibility[J]. RadiationPhysics and Chemistry,2002,64(1):67–75.
    [73] N.C. Young, K.H. Oh. Blood compatibility of AAc, HEMA, andPEGMA–grafted cellulose film[J]. Radiation Physics and Chemistry,2003,66(4):299–307.
    [74]王鉴,赵洪坤,杨鹤红,等.聚丙烯接枝改性技术研究进展[J].炼油与化工,2010,21(5):1–5.
    [75] J. Jin, C. Zhang, W. Jiang, et al. Melting grafting polypropylene with hydrophilicmonomers for improving hemocompatibility[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,407:141–149.
    [76] T. Meng, X. Gao, J. Zhang, et al. Graft copolymers prepared by atom transferradical polymerization (ATRP) from cellulose[J]. Polymer,2009,50(2):447–454.
    [77] J.Q. Meng, C.L. Chen, L.P. Huang, et al. Surface modification of PVDFmembrane via AGET ATRP directly from the membrane surface[J]. Applied SurfaceScience,2011,257(14):6282–6290.
    [78] Y. Sui, X.L. Gao, Z.N. Wang, et al. Antifouling and antibacterial improvement ofsurface–functionalized poly(vinylidene fluoride) membrane prepared viadihydroxyphenylalanine-initiated atom transfer radical graft polymerizations[J].Journal of Membrane Science,2012,394–395:107–119.
    [79] Y. Sui, Z.N. Wang, X.L. Gao, et al. Antifouling PVDF ultrafiltration membranesincorporating PVDF-g-PHEMA additive via atom transfer radical graftpolymerizations[J]. Journal of Membrane Science,2012,413–414:38–47.
    [80] X.Y. Qiu, X.Q. Ren, S.W. Hu. Fabrication of dual-responsive cellulose-basedmembrane via simplified surface–initiated ATRP[J]. Carbohydrate Polymers,2013,92(2):1887–1895.
    [81] C.H. Liu, C.Y. Pan. Grafting polystyrene onto silica nanoparticles via RAFTpolymerization[J]. Polymer,2007,48(13):3679–3685.
    [82] K. Yuan, Z.F. Li, L.L. Lü, et al. Synthesis and characterization of well-definedpolymer brushes grafted from silicon surface via surface reversibleaddition-fragmentation chain transfer (RAFT) polymerization[J]. Materials Letters,2007,61(10):2033–2036.
    [83] D.B. Hua, J. Tang, J.X. Cheng, et al. A novel method of controlled graftingmodification of chitosan via RAFT polymerization using chitosan-RAFT agent[J].Carbohydrate Polymers,2008,73(1):98–104.
    [84] H.Y. Yu, W. Li, J. Zhou, et al. Thermo-and pH-responsive polypropylenemicroporous membrane prepared by the photoinduced RAFT-mediated graftcopolymerization[J]. Journal of Membrane Science,2009,343(1–2):82–89.
    [85] H. Kitano, Y. Liu, K. Tokuwa, et al. Polymer brush with pendent glucosylureagroups constructed on a glass substrate by RAFT polymerization[J]. EuropeanPolymer Journal,2012,48(11):1875–1882.
    [86] J. Zhang, Y.L. Yuan, K.H. Wu, et al. Surface modification of segmentedpoly(ether urethane) by grafting sulfo ammonium zwitterionic monomer to improvehemocompatibilities[J]. Colloids and Surfaces B: Biointerfaces,2003,28(1):1–9.
    [87] J. Yuan, J.Q. Meng, Y.L. Kang, et al. Facile surface glycosylation of PVDFmicroporous membrane via direct surface-initiated AGET ATRP and improvement ofantifouling property and biocompatibility[J]. Applied Surface Science,2012,258(7):2856–2863.
    [88] Q. Ma, H. Zhang, J. Zhao, et al. Fabrication of cell outer membrane mimeticpolymer brush on polysulfone surface via RAFT technique[J]. Applied SurfaceScience,2012,258(24):9711–9717.
    [89] J. Zhao Q. Shi, L.G. Yin, et al. Polypropylene modified with2-hydroxyethylacrylate-g-2-methacryloyloxyethyl phosphorycholine and its hemocompatibility[J].Applied Surface Science,2010,256(23):7071–7076.
    [90] A. Higuchi, K. Shirano, M. Harashima, et al. Chemically modified polysulfonehollow fibers with vinylpyrrolidone having improved blood compatibility[J].Biomaterials,2002,23(13):2659–2666.
    [91]陈民才,刘景汉,郭广宏,等.去白细胞滤器对血脂滤过效果观察[J].中国输血杂志,2002,15(1):58–59.
    [92] Y. Cheng, S.Q. Wang, Y.T. Yu, et al. In vitro, in vivo studies of a newamphiphilic adsorbent for the removal of low-density lipoprotein[J]. Biomaterials,2003,24(13):2189–2194.
    [93] S.Q. Wang, X.J. Guo, L.Y. Wang, et al. Effect of PEG spacer on celluloseadsorbent for the removal of low density lipoprotein-eholesterol[J]. Artificial Cells,Blood Substitutes and Biotechnology,2006,34(1):101–112.
    [94]赵辉,陈晶晶,方波,等.膳食纤维固定化牛磺酸及其吸附LDL-C的性能研究[J].生物医学工程研究,2008,27(3):217–220.
    [95] W.C. Wang, H. Xie, L.S. Sun, et al. Macroporous poly (vinyl alcohol)microspheres bearing phosphate groups as a new adsorbent for LDL apheresis[J].Biomedical Materials,2009,4(6):1–8.
    [96]王为超,谢慧,薛俊,等.一种新型体外血浆脂类过滤器的性能评价[J].国际生物医学工程杂志,2009,32(2):73–77.
    [97]顾雪蓉,等.用于血液体外循环去除低密度脂蛋白的吸附剂及其制法:中国,200610039132.0[P].2006–10–11.
    [98]麻开旺,等.一种低密度脂蛋白胆固醇的选择性吸附剂及其制备方法:中国,200610095179.9[P].2007–03–07.
    [99]贾凌云.一种用于治疗高脂蛋白血症的低密度脂蛋白吸附材料:中国,200610200095.7[P].2006–12–13.
    [100]曹阿民,等.一种表面固定牛磺酸配基的多孔膜材料、制备方法及其在血脂吸附分离中的应用:中国,200710041060.8[P].2007–10–24.
    [101]孔德领,等.用于体外全血灌流吸附低密度脂蛋白的吸附剂及制备方法:中国,200710061324.6[P].2008–07–23.
    [102]梁小怿,等.对低密度脂蛋白有特意吸附的球状炭气凝胶的制备方法:中国,201110005520.8[P].2011–06–15.
    [103]黄小军,等.一种低密度脂蛋白亲和吸附血液透析膜材料的制备方法:中国,201110106503.3[P].2011–11–30.
    [104] W.C. Lin, T.Y. Liu, M.C. Yang. Hemocompatibility of polyacrylonitriledialysis membrane immobilized with chitosan and heparin conjugate[J]. Biomaterials,2004,25(10):1947–1957.
    [105]史旭波,胡大一.肝素的抗凝机制及临床相关问题[J].临床荟萃,2007,22(18):1293–1295.
    [106] D.J. Lin, D.T. Lin, T.H. Young, et al. Immobilization of heparin on PVDFmembranes with microporous structures[J]. Journal of Membrane Science,2004,245(1):137–146.
    [107] J.H. Jiang, L.P. Zhu, X.L. Li, et al. Surface modification of PE porousmembranes based on the strong adhesion of polydopamine and covalentimmobilization of heparin[J]. Journal of Membrane Science,2010,364(1):194–202.
    [108] G.S. Aldea, P. O'Gara, O.M. Shapira, et al. Effect of anticoagulation protocolon outcome in patients undergoing CABG with heparin-bonded cardiopulmonarybypass circuits[J]. Annals of Thoracic Surgery,1998,65(2):425–433.
    [109]段维勋,易定华,刘剑,等.新型聚氨酯材料酯键共价结合肝素的研究[J].热固性树脂,2005,20(2):28–31.
    [110] I.K. Kang, D.K. Baek, Y.M. Lee, et al. Synthesis and Surface Characterizationof Heparin-Immobilized Polyetherurethanes[J]. Journal of Polymer Science Part A:Polymer Chemistry,1998,36(13):2331–2338.
    [111] G.P.A. Michanetzis, N. Katsala, Y.F. Missirlis. Comparison ofhaemocompatibility improvement of four polymeric biomaterials by twoheparinization techniques[J]. Biomaterials,2003,24(4):677–688.
    [112] F.J. Xu, Y.L. Li, E.T. Kang, et al. Heparin–coupled poly(poly(ethylene glycol)monomethacrylate)-Si(Ⅲ) hybrids and their blood compatible surfaces[J].Biomacromolecules,2005,6(3):1759–1768.
    [113] F.C. Kung, W.L. Chou, M.C. Yang. In vitro evaluation of cellulose acetatehemodialyzer immobilized with heparin[J]. Polymers for Aavanced Technologies,2006,17(6):453–462.
    [114] J. Jin, W. Jiang, Q. shi, et al. Fabrication of PP-g-PEGMA-g-heparin and itshemocompatibility: From protein adsorption to anticoagulant tendency[J]. AppliedSurface Science,2012,258(15):5841–5849.
    [115]文志红,邬素华,陈维涛.医用肝素化抗凝血高分子材料的研究进展[J].塑料,2005,34(2):26–30.
    [116] N.N. Drozd, A.I. Sher, V.A. Makarov, et al. Comparison of antithrombinactivity of the polysulphate chitosan derivatives in vivo and in vitro system[J].Thrombosis Research,2001,102(5):445–455.
    [117] R. Jayakumar, N. Nwe, S. Tokura, et al. Sulfated chitin and chitosan as novelbiomaterials[J]. International Journal of Biological Macromolecules,2007,40(3):175–181.
    [118] W.C. Lin, D.G. Yu, M.C. Yang, et al. Blood compatibility of thermoplasticpolyurethane membrane immobilized with water–soluble chitosan/dextran sulfate[J].Colloids and Surfaces B: Biointerfaces,2005,44(2–3):82–92.
    [119] J.M. Xue, W.F. Zhao, S.Q. Nie, et al. Blood compatibility of polyethersulfonemembrane by blending a sulfated derivative of chitosan[J]. Carbohydrate Polymers,2013,95(1):64–71.
    [120] D.G. Yu, C.H. Jou, W.C. Lin, et al. Surface modification of poly(tetramethyleneadipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan anddextran sulfate polyelectrolyte multiplayer[J]. Colloids and Surfaces B: Biointerfaces,2007,54(2):222–229.
    [121] L.J. Song, J. Zhao, H.W. Yang, et al. Biocompatibility of polypropylenenon–woven fabric membrane via UV-induced graft polymerization of2-acrylamido-2-methylpropane sulfonic acid[J]. Applied Surface Science,2011,258(1):425–430.
    [122] C.H. Lin, W.C. Jao, Y.H. Yeh, et al. Hemocompatibility and cytocompatibilityof styrenesulfonate-grafted PDMS-polyurethane-HEMA hydrogel[J]. Colloids andSurfaces B: Biointerfaces,2009,70(1):132–141.
    [123] J. Yuan, R.B. Bian, L. Tong, et al. Blood compatibility of polyurethane surfacegrafted copolymerization with sulfobetaine monomer[J]. Colloids and Surfaces B:Biointerfaces,2004,36(1):27–33.
    [124] J. Yuan, L. Chen, X.F. Jiang, et al. Chemical graft polymerization ofsulfobetaine monomer on polyurethane surface for reduction in platelet adhesion[J].Colloids and Surfaces B: Biointerfaces,2004,39(1–2):87–94.
    [125] P.S. Liu, Q. Chen, S.S. Wu, et al. Surface modification of cellulose membraneswith zwitterionic polymers for resistance to protein adsorption and plateletadhesion[J]. Journal of Membrane Science,2010,350(1–2):387–394.
    [126]孙康,等.长链不饱和脂肪酸接枝改性PBT无纺布的制备方法:中国,200710036560.2[P].2007-08-01.
    [127] Y.X. Wang, J.L. Robertson, W.B. Spillman, et al. Effects of the chemicalstructure and the surface properties of polymeric biomaterials on theirbiocompatibility[J]. Pharmaceutical Research,2004,21(8):1362–1373.
    [128] C. Sperling, M. Fischer, M.F. Maitz, et al. Blood coagulation on biomaterialsrequires the combination of distinct activation processes[J]. Biomaterials,2009,30(27):4447–4456.
    [129] M.M. Nasef, H. Saidi, K.Z.M. Dahlan. Kinetic investigations of graftcopolymerization of sodium styrene sulfonate onto electron beam irradiatedpoly(vinylidenefluoride) films[J]. Radiation Physics and Chemistry,2011,80(1):66–75.
    [130] M.M. Nasef, H. Saidi, K.Z.M. Dahlan. Acid-synergized grafting of sodiumstyrene sulfonate onto electron beam irradiated-Poly(vinylidene fluoride) films forpreparation of fuel cell membrane[J]. Journal of Applied Polymer Science,2010,118(5):2801–2809.
    [131]王衡东.质子交换膜燃料电池MEA制备研究[D].北京:中国科学院研究生院,2006.
    [132]叶寅,王衡东,邱士龙.预辐射接枝法制备FEP-g-PSSA/AA膜[J].辐射研究与辐射工艺学报,2005,23(4):219–222.
    [133]王衡东,孙解卿,叶寅,等.辐射法制备含氟磺酸型质子交换膜[J].辐射研究与辐射工艺学报,2006,24(6):322–326.
    [134] J.H. Zu, M.H. Wu, H.Y. Fu, et al. Cation-exchange membranes byradiation-induced graft copolymerization of monomers onto HDPE[J]. RadiationPhysics and Chemistry,2005,72(6):759–764.
    [135] M.M. Nasef. Gamma radiation-induced graft copolymerization of styrene ontopoly(ethyleneterephthalate) films[J]. Journal of Applied Polymer Science,2010,77(5):1003–1012.
    [136]蔡仁.辐射接枝法制备超疏水棉织物及其性能研究[D].北京:中国科学院研究生院,2011.
    [137] V. Kumar, Y.K. Bhardwaj, S.N. Jamdar, et al. Preparation of ananion-exchangeadsorbent by the radiation-induced grafting of vinylbenzyltrimethylammoniumchloride onto cotton cellulose and its application for protein adsorption[J]. Journal ofApplied Polymer Science,2006,102(6):5512–5521.
    [138] V. Kumar, Y.K. Bhardwaj, K.P. Rawat, et al. Radiation-induced grafting ofvinylbenzyltrimethylammonium chloride (VBT) onto cotton fabric and study of itsanti-bacterial activities[J]. Radiation Physics and Chemistry,2005,73(3):175–182.
    [139]张月庆,钱晓明.聚丙烯非织造布亲水改性方法与评价指标[J].2011,29(7):33–36.
    [140] C.C. Wang, F.L. Yang, H.M. Zhang. Fabrication of non-woven compositemembrane by chitosan coating for resisting the adsorption of proteins and theadhesion of bacteria[J]. Separation and Purification Technology,2010,75(3):358–365.
    [141] Y.S. Chen, Q. Gao, H.Y. Wan, et al. Surface modification and biocompatibleimprovement of polystyrene film by Ar, O2and Ar+O2plasma[J]. Applied SurfaceScience,2013,265:452–457.
    [142] S. Malik, A. Kumar, M. Ahuja. Synthesis of gumkondagogu-g-poly(N-vinyl-2-pyrrolidone) and its evaluation as a mucoadhesivepolymer[J]. International Journal of Biological Macromolecules,2012,51(5):756–762.
    [143] N.M. El-Sawy, A.Z.A. Elassar. Some modification on radiation graftpolymerization of N-vinyl-2-Pyrrolidone onto low density polyethylene withα,β-unsaturated nitrile[J]. European Polymer Journal,1998,34(8):1073–1080.
    [144] R.R. Feng, C.C. Wang, X.C. Xu, et al. Highly effective antifouling performanceof N-vinyl-2-pyrrolidone modified polypropylene non-woven fabric membranes byATRP method[J]. Journal of Membrane Science,2011,369(1–2):233–242.
    [145] S.W. Lee, Y. Bondar, D.H. Han. Synthesis of a cation-exchange fabric withsulfonate groups by radiation-induced graft copolymerization from binary monomermixtures[J]. Reactive and Functional Polymers,2008,68(2):474–482.
    [146] H.K. Cho, I. Bondar, D.H. Han. Proton exchange membranes prepared byradiation-induced graft copolymerization from binary monomer mixtures ontopoly(tetrafluoroethylene-co-hexafluoropropylene) film[J]. Nuclear Instruments andMethods in Physics Research B,2010,268(10):1588–1593.
    [147] D.R. Li, J.H. Chen, M.L. Zhai, et al. Hydrocarbon proton-conductivemembranes prepared by radiation-grafting of styrenesulfonate onto aromaticpolyamide films[J]. Nuclear Instruments and Methods in Physics Research B,2009,267(1):103–107.
    [148] H.Y. Yu, Z.K. Xu, H. Lei, et al. Photoinduced graft polymerization ofacrylamide on polypropylene microporous membranes for the improvement ofantifouling characteristics in a submerged membrane-bioreactor[J]. Separation andPurification Technology,2007,53(1):119–125.
    [149] C.Y. Tu, C.P. Chen, Y.C. Wang, et al. Acrylamide plasma-inducedpolymerization onto expanded poly(tetrafluoroethylene) membrane for aqueousalcohol mixture vapor permeation separation[J]. European Polymer Journal,2004,40(7):1541–1549.
    [150] F. Liu, B.K. Zhu, Y.Y. Xu, et al. Improving the hydrophilicity ofpoly(vinylidene fluoride) porous membranes by electron beam initiated surfacegrafting of AA/SSS binary monomers[J]. Applied Surface Science,2006,253(4):2096–2101.
    [151] B. Gupta, C. Plummer, I. Bisson. Plasma-induced graft polymerization ofacrylic acid onto poly(ethylene terephthalate) films: characterization and humansmooth muscle cell growth on grafted films[J]. Biomaterials,2002,23(3):863–871.
    [152] S. Ifukua, M. Iwasakia, M. Morimoto, et al. Graft polymerization of acrylic acidonto chitin nanofiber to improve dispersibility in basic water[J]. CarbohydratePolymers,2012,90(1):623–627.
    [153] H.Y. Yu, Z.K. Xu, Q. Yang, et al. Improvement of the antifoulingcharacteristics for polypropylene microporous membranes by the sequentialphotoinduced graft polymerization of acrylic acid[J]. Journal of Membrane Science,2006,281(1–2):658–665.
    [154] U. K nig, M. Nitschke, A. Menning, et al. Durable surface modification ofpoly(tetrafluoroethylene) by low pressure H2O plasma treatment followed by acrylicacid graft polymerization[J]. Colloids and Surfaces B: Biointerfaces,2002,24(1):63–71.
    [155] Z.K. Xu, J.L. Wang, L.Q. Shen, Microporous polypropylene hollow fibermembrane Part I. Surface modification by the graft polymerization of acrylic acid[J].Journal of Membrane Science,2002,196(2):221–229.
    [156] Z.Y. Xi, Y.Y. Xu, L.P. Zhu, et al. Studies on surface grafting of AAc/SSSbinary monomers onto polytetrafluoroethylene by dielectric barrier dischargeinitiation[J]. Applied Surface Science,2008,254(22):7469–7476.
    [157] P.R.S. Reddy, G. Agathian, A. Kumar. Preparation of strong acidcation-exchange membrane using radiation-induced graft polymerization[J].Radiation Physics and Chemistry,2005,73(3):169–174.
    [158]张明华,郑海燕.抗凝血生物材料的血液相容性[J].中国组织工程研究,2013,17(8):1505–1512.
    [159] B.D. Ratner. The catastrophe revisited: Blood compatibility in the21stCentury[J]. Biomaterials,2007,28(34):5144–5147.
    [160] C. Yang, Y. Cao, K. Sun, et al. Functional groups grafted nonwoven fabrics forblood filtration—the effects of functional groups and wettability on the adhesion ofleukocyte and platelet. Appllied Surface Science,2011,257(7):2978–2983.
    [161]张志涛,刘金生,许强,等. Bradford法测定牛奶中蛋白质含量[J].食品与机械,2011,27(5):128–130.
    [162]李荣,王衡东,王文锋,等.聚丙烯无纺布亲水性与血液相容性改性初步研究[J].中国输血杂志,2012,25(11):1165–1169.
    [163]曹晔,王红,杨超,等.聚对苯二甲酸丁二醇酯无纺布接枝丙烯酸制备LDL吸附材料及其血液相容性初步研究[J].中国输血杂志,2010,23(11):187–190.
    [164] T. Xiang, W.W. Yue, R. Wang, et al. Surface hydrophilic modification ofpolyethersulfone membranes bysurface-initiated ATRP with enhanced bloodcompatibility[J]. Colloids and Surfaces B: Biointerfaces,2013,110:15–21.
    [165] G.W. Zhao, Y.S. Chen, X.L. Wang. Surface modification of polyethylene filmby acrylamide graft and alcoholysis for improvement of antithrombogenicity[J].Applied Surface Science,2007,253(10):4709–4714.
    [166] C. Mao, J. Yuan, H. Mei, et al. Introduction of photocrosslinkable chitosan topolyethylene film by radiation grafting and its blood compatibility[J]. MaterialsScience and Engineering C,2004,24(4):479–485.
    [167] C. Mao, C. Zhang, Y.Z. Qiu, et al. Introduction of anticoagulation group topolypropylene film by radiation grafting and its blood compatibility[J]. AppliedSurface Science,2004,228(1–4):26–33.
    [168] Z.W. Dai, F.Q. Nie, Z.K. Xu. Acrylonitrile-based copolymer membranescontaining reactive groups: Fabrication dual-layer biomimetic membranes by theimmobilization of biomacromolecules[J]. Journal of Membrane Science,2005,264(1–2):20–26.
    [169]刘兴光,汪钢,俞世强,等.组织工程心脏瓣膜支架材料的血液相容性[J].中国临床康复,2004,8(30):6659–6661.
    [170]孙皎,刘义荣,钱云芳.生物材料试样形状对溶血率的影响[J].口腔材料器械杂志,1993,2(2):17–19.
    [171]张文云,沈毅,李南,等.牙科纤维/树脂复合材料的生物安全性研究[J].解放军医学杂志,2004,29(4):345–347.
    [172] W.W. Liu, T. Wang, D.S. Zhan. Haemolysis test for evaluating thebiocompatibility of SiC implant materials[J]. Clinical Rehabilitative TissueEngineering Research,2008,12(10):1873–1875.
    [173] Z.K. Xu, F.Q. Nie, C. Qu, et al. Tethering poly(ethylene glycol)s to improve thesurface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetricmembranes[J]. Biomaterials,2005,26(6):589–598.
    [174]文锐.抗凝血液净化滤器膜构建及性能研究[D].湖南:中南大学,2010.
    [175] R. Li, H.D. Wang, W.F. Wang, et al. Gamma-ray co-irradiation induced graftpolymerization of NVP and SSS onto polypropylene non-woven fabric and its bloodcompatibility[J]. Radiation Physics and Chemistry,2013,91:132–137.
    [176]李伯刚,那娟娟,尹光福,等.生物碳素材料表面血小板黏附的实验研究[J].生物医学工程学杂志,2004,21(1):12–15.
    [177]何淑漫,周健.抗凝血生物材料[J].化学进展,2010,22(4):760–772.
    [178]党英萍,蔡绍皙,麻开旺.一种LDL选择性吸附剂的制备及其血液相容性研究[J].中国医学物理学杂志,2007,24(6):435–439.
    [179] X.S. Ren, L. Xu, J.X. Xu, et al. Immobilized heparin and its anticoagulationeffect on polysulfone membrane surface[J]. Journal of Biomaterials Science, PolymerEdition.2013,24(15):1707–1720.
    [180] W.C. Lin, C.H. Tseng, M.C. Yang. In-vitro hemocompatibility evaluation of athermoplastic polyurethane membrane with surface-immobilized water-solublechitosan and heparin[J]. Macromolecular Bioscience,2005,5(10):1013–1021.
    [181]宋玉民,缐萍,李清萍,等.肝素杂化材料的制备及抗凝血性质的初步研究[J].无机化学学报,2011,27(4):631–636.
    [182] Z.L. Yang, J. Wang, R.F. Luo, et al. The covalent immobilization of heparin topulsed-plasma polymeric allylamine films on316L stainless steel and the resultingeffects on hemocompatibility[J]. Biomaterials,2010,31(8):2072–2083.
    [183] X.Q. Sun, D. Li, B. Liu, et al. Preparation and anti-blood coagulation propertyof heparin/fluorocarbon composite film using radio frequency sputtering[J]. Surfaceand Coatings Technology,2007,201(9–11):5659–5663.
    [184] W.F. Zhao, Q.B. Mou, X.X. Zhang, et al. Preparation and characterization ofsulfonated polyethersulfone membranes by a facile approach[J]. European PolymerJournal,2013,49(3):738–751.
    [185] H.T. Wang, L. Yang, X.H. Zhao, et al. Improvement of hydrophilicity and bloodcompatibility on polyethersulfone membrane by blending sulfonatedpolyethersulfone[J]. Chinese Journal of Chemical Engineering,2009,17(2):324–329.
    [186] S.H. Chen, Y. Chang, K.R. Lee, et al. Hemocompatible control ofculfobetaine-grafted polypropylene fibrous membranes in human whole blood viaplasma-induced surface zwitterionization[J]. Langmuir,2012,28(11):1773317742.
    [187]谢槟,李贵才,代璐,等.基于多巴胺自聚合及肝素固定改善钛的血液相容性[J].高等学校化学学报,2012,33(1):90–95.
    [188]胡珂.钛表面固定肝素–多聚赖氨酸纳米颗粒以改善血液相容性的研究[D].四川:西南交通大学,2009.
    [189]孙东,张风梅,张林,等.活化的部分凝血活酶时间异常结果的判定标准[J].临床和实验医学杂志,2005,4(1):15–17.
    [190]魏永春.凝血酶原时间和活化部分凝血活酶时间测定的问题[J].实用医技杂志,2007,14(10):1262–1264.
    [191]王桂香,秦海秋.常见影响凝血酶原时间测定因素的观察分析和探讨[J].齐齐哈尔医学院学报,2009,30(12):1486–1487.
    [192] J.H. Yang, K. Luo, D.L. Li, et al. Preparation, characterization and in vitroanticoagulant activity of highly sulfated Chitosan[J]. International Journal ofBiological Macromolecules,2013,52:25–31.
    [193]尹馨梓,张佩华,陈士国,等.多糖硫酸酯化修饰及其抗凝血作用研究进展[J].天然产物研究与开发,2013,25(4):566–571.
    [194]蒋品,肖春洁.凝血项中纤维蛋白原和凝血酶时间检测结果相关性的分析[J].实用医技杂志,2008,15(2):189–190.
    [195] X.J. Huang, D. Guduru, Z.K. Xu, et al. Immobilization of heparin onpolysulfone surface for selective adsorption of low-density lipoprotein (LDL)[J]. ActaBiomaterialia,2010,6(3):1099–1106.
    [196] X.D. Hou, T. Zhang, A.M. Cao. A heparin modified polypropylene non-wovenfabric membrane adsorbent for selective removal of low density lipoprotein fromplasma[J]. Polymer Advanced Technologies,2013,24(7):660–667.
    [197]徐建宽,卢玲,李海涛,等.磺化交联聚乙烯醇球对低密度脂蛋白的选择性吸附[J].科学通报,2001,46(23):1958–1961.
    [198]张迎庆,干信,谢笔钧,等.硫酸酯化葡甘聚糖凝胶颗粒的微观形貌及其吸附行为研究[J].中国生物医学工程学报,2005,24(6):771–774.
    [199]余艺华,顾汉卿,何炳林.磺化羟乙基化交联壳聚糖对血清中低密度脂蛋白的吸附性能研究[J].高分子学报,1997,5:606–610.
    [200]王涛,王为超,王连永,等.磷酸盐型低密度脂蛋白亲和吸附剂制备与体外吸附试验研究[J].中国生物医学工程学报,2008,2(1):132–136.
    [201] G.Q. Fu, H.Y. Li, H.F. Yu, et al. Synthesis and lipoprotein sorption propertiesof porous chitosan beads grafted with poly(acrylic acid)[J]. Reactive and FunctionalPolymers,2006,66(2):239–246.
    [202] S.Q. Wang, C.M. Li, X.J. Guo, et al. Interaction study of LDL with chargedligands for effective LDL-C-removing adsorbents[J]. Reactive and FunctionalPolymers,2008,68(1):261–267.
    [203]曹晔.聚对苯二甲酸丁二醇酯无纺布材料的改性及其特异性去血脂机制和血液相容性初步研究[D].北京:中国医学科学院输血研究所,2010.
    [204] D.B. Liu, B.J. He, S.Y. Han, et al. An adsorption behavior of low-densitylipoprotein onto cholesterol-modified dextran studied by a quartz crystalmicrobalance[J]. Materials Science and Engineering C,2007,27(4):665–669.
    [205] Y. Sato, T. Agishi. Low–density lipoprotein adsorption for arterioscleroticpatients[J]. Artificial Organs,1996,20(4):324–327.
    [206]姚武位,陈庆伟.高密度脂蛋白胆固醇与冠心病的相关性研究[J].心血管病学进展,2009,30(2):253–256.
    [207] N. Tani. Development of selective low–density lipoprotein (LDL) apheresissystem: immobilized polyanion as LDL-specific adsorption for LDL apheresissystem[J]. Therapeutic Apheresis,2000,4(2):135–141.
    [208]张涛,侯小东,曹阿民.辐射接枝共聚合反应及其在有机生物医用材料制备中的应用[J].有机化学,2006,26(9):1328–1334.
    [209]周成飞.辐射加工技术在医用高分子材料中的应用研究进展[J].橡塑技术与装备,2011,37(11):10–14.
    [210]王俊环,赵革,王锡臣.辐射技术在高分子材料中的应用[J].塑料,2003,2(32):12–18.
    [211]杨颖,李勤,张寒,等.生物医用高分子材料的表面改性[J].2013,30(1):16–19.
    [212]陆炜炜.生物材料血液相容性研究进展[J].国外医学生物医学工程分册,2002,25(5):230–234.
    [213]段长恩,杨秀滨.生物材料的血液相容性研究进展[J].新乡医学院报,2012,29(5):390–392.
    [214] B.D. Ratner. Blood compatibility--a perspective[J]. Journal of BiomaterialsScience Polymer Editon,2000,11(11):1107–1119.
    [215]麻开旺.一种低密度脂蛋白选择性吸附剂的制备及其性能研究[D].重庆:重庆大学,2007.
    [216]刘明伟,杨利荣.高密度脂蛋白胆固醇与冠心病的研究进展[J].中华全科医学,2009,7(8):876–877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700