用户名: 密码: 验证码:
活性粉末混凝土的高温力学性能与爆裂的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性粉末混凝土(RPC)是20世纪90年代研发的一种具有超高强度、高韧性的新型水泥基复合材料。本文通过试验和理论分析开展了RPC高温下的力学性能和高温爆裂等方面的研究工作。通过RPC的抗压、三点弯曲和SHPB试验,研究了RPC200的抗压强度、劈拉强度、弯折强度等力学性能随钢纤维掺量变化的规律,以及钢纤维对提高RPC抗裂能力和韧性所起的作用;分析了不同应变率和钢纤维掺量下RPC的破坏模式、破坏强度的变化规律。通过高温力学试验,研究了温度对RPC的抗压强度、弹性模量等力学参数的影响。通过高温试验,实时观测了RPC高温下的爆裂行为,研究了内部温度场随时间和空间的演化关系;分析了不同钢纤维掺量RPC的热传导、热扩散、比热容等热物理参数随温度和钢纤维掺量变化的规律。运用压汞法研究了温度作用后RPC的孔隙率、孔隙体积等孔隙特征。探讨了温度作用下RPC内部蒸汽压的变化规律。本文研究成果对于科学评价RPC的力学性能、发展具有耐高温性能的高性能混凝土,丰富和推动活性粉末混凝土的研究和应用具有重要参考价值。
Reactive powder concrete (RPC), developed in the late1990s, is known as an advanced concrete-based composite with ultra-high strength and outstanding performance. In this paper, based on the laboratory testing and theoretical analysis, the mechanical properties and explosive spalling of RPC exposed to temperatures are probed. By compressive and three-point bending testing, the tendency of compressive strength, split tensile strength, flexural tensile strength of RPC200with the increment of volumetric content of steel fibers have been investigated, the contribution of steel fibers to improve the crack-resistant capacityand toughness with various deformation mechanisms have been analyzed. Based on SHPB testing data, the properties of failure model, strength of RPC with varied fiber volumes and impact strain rates are analyzed. The deterioration of compressive strength, elastic modulus of RPC under high temperature are analyzed, and the explosive behaviour and the changing regularity of temperature field with time and space are analyzed by high temperature testing. The thermophysical properties of RPC, such as thermal conductivity, thermal diffusivity, specific heat capacity et al, with different steel fiber volumetric fractions are investigated by means of high temperature tests. Adopted by the mercury injection method, the effect of temperature on pore structure characteristics such as porosity, pore volume of RPC are investigated. The variation of vapour pressure in RPC under temperature is disclosed. This study attempts to provide an important reference to scientific evaluate the mechanical properties, develop a kind of high temperature resistance and high performance concrete, and promote the research and application of RPC.
引文
1.丁大钧.高性能混凝土及其在工程中的应用[M].机械工业出版社:北京,2007
    2.赵干.高强高性能混凝土在矿井冻结井壁工程中的应用[J].煤,2008, 17(7): 16-18
    3. Phan L T, Carino N J, Duthiuh D, et al. National Institute of Standards and Technology[C]. International Workshop on Fire Performance of High-Strength Concrete. Gaithersburg, MD: NIST Special Publication 919,1997,95-113
    4. Kirkl C J. The fire in the channel tunnel[J]. Tunnelling and Underground Space Technology, 2002,17(2):129-132
    5. Richard P, Cheyrezy M. Reactive powder concrete with high ductility and 200-800 MPa compressive strength[J]. ACI SP144,1994,507-518
    6. Richard P, Cheyrezy M. Composition of reactive powder concrete[J]. Cem Concr Res,1995, 25(7):1501-1511
    7.覃维祖,曹峰.一种超高性能混凝土—活性粉末混凝土.工业建筑,1999,29(4):16-18
    8. Zhang Y S, Sun W, Liu S F, et al. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors[J]. Cem Conc Comps,2008,30(9):831-838
    9. Bonneau O, Vernet C, Moranville M, et al. Characterization of the granular packing and percolation threshold of reactive powder concrete[J]. Cem Concr Res,2000,30(1): 1861-1867
    10. Ju Yang, Jia Yudan, Liu Hongbin, et al. Mesomechanism of steel fiber reinforcement and toughening of reactive powder concrete. Science China E,2007,50 (6):815-832
    11.龙广成,陈瑜.RPC200的强度及收缩影响研究[J].工业建筑,2002, 32(6): 4-7
    12. Bonneau O, Lachemi M, Dallaire E, et al. Mechanical properties and durability of two industrial reactive powder concretes[J]. ACI Mater J,1997,94(4):286-290
    13. Matte V, Moranville M. Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes[J]. Cem Conc Comps,1999,21(1): 1-9
    14. Chan, Y, Chu S H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete[J]. Cem Concr Res,2004,34(7):1167-1172
    15. Lee M G, Wang Y C, Chiu C T. A preliminary study of reactive powder concrete as a new repair material[J]. Construc Building Mater,2007,21(1):182-189
    16. Yazici H, Yardimci M, Aydm S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes[J]. Construc Building Mater, 2009,23(3):1223-1231
    17. Tai Y. S. Uniaxial compression tests at various loading rates for reactive powder concrete[J]. TheorAppl Fract Mech,2009,52(1):14-21
    18.何峰,黄政宇.200-300MPa活性粉末混凝土(RPC)的配制技术研究[J].混凝土与水泥制品,2000,4: 3-7
    19.谢友均,刘宝举,龙广成等.掺超细粉煤灰活性粉末混凝土的研究[J].建筑材料学报, 2001,4(3):280-284
    20.闰光杰,阎贵平,安明品.200 MPa级活性粉末混凝土试验研究[J].铁道学报,2004,26(2):116-119
    21.刘斯风,孙伟,林玮.天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报,2003,31(11):1080-1085
    22.赵曼,阎贵平,郝文秀.高速铁路RPC格构型轨道板的设计与仿真分析[J].北京交通大学学报,2008,32(1):64-68
    23.刘红彬,陈健,贾玉丹等.活性粉末混凝土的制备技术与力学性能研究[J].工业建筑,2008,38(6):74-78
    24. Ju Yang, Liu Hongbin, Chen Jian, et al. Toughness and characterization of reactive powder concrete with ultra-high strength[J]. Sci China E,2009,52(4):1000-1018
    25. Ju Yang, Liu Hongbin, Sheng Guohua, et al. Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts[J]. Sci China E,2010, 53(9):2435-2449
    26.白泓,高日.活性粉末混凝土(RPC)在工程结构中的应用[J].建筑科学,2003, 19(4):51-54
    27.王震宇,陈松来,袁杰.活性粉末混凝土的研究与应用进展[J].混凝土,2003,11,39-44
    28.张燕.活性粉末混凝土(RPC)的结构工程应用及发展空间[J].山东建材,2004, 25(1):46-48
    29.游有鲍.高强混凝土抗火性能改善措施与评价方法研究[D].硕士学位论文,南京:东南大学,2004
    30.熊向军.钢筋硷材料抗火性能研究动态述评[J].四川建筑科学研究,1999, 3, 24-28
    31. ACI Committee 216R-89. Guide for Determining the Fire Endurance of Concrete Elements [C]. Reapproved by Committee 216,1994
    32.王庆霖译.建筑物火灾后混凝土结构鉴定标准[s].苏联建设部混凝土研究院,1987
    33.阂名保,李延和,高本立等.建筑物火灾后诊断与处理[M].南京:江苏科学技术出版社,1994
    34. Jahren P A. Fire resistance of high strength/dense concrete with particular reference to the use of condensed silica fume-A review[C]. In: ACI ed. Proc., Fly ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, ACI SP.114, The Third International Conference, Detroit, USA,1989,1013-1049
    35. Khoury G A. Compressive strength of concrete at high temperature:a reassessment[J]. Mag Concr Res,1992,44(161):291-309
    36. Phan L T, Carino N J. Review of mechanical properties of HSC at elevated temperature[J]. J Mater Civ Eng-ASCE,1998,10(1):58-64
    37. SarShar R, Khoury G A. Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures[J]. Mag Concr Res,1993, 45(162):51-61
    38. Castillo C, Durrani A J. Effect of transient high temperature on high-strength concrete[J]. ACI Mater J,1990,87(1):47-53
    39. Chan Y N, Peng G F, Anson M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperature[J]. Cem Conc Comps,1999,21(1):23-27
    40. Poon C S, Shui Z H, Lam L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures[J]. Cem Concr Res,2004,34 (12):2215-2222
    41. Liu C T, Huang J S. Fire performance of highly flowable reactive powder concrete. Construc Building Mater,2009,23,2072-2079
    42.李卫,过镇海.高温下硷的强度和变形试验研究[J].建筑结构学报,1993, 14(1): 8-16
    43.朋改非,陈延年,冯乃谦.高强混凝土遭受高温的性能衰减特征[J].混凝土,1999, 1,16-19
    44.胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究[J].土木工程学报,2002,35(6): 44-47
    45.吴波,宿晓萍,李惠等.高温后约束高强混凝土力学性能的试验研究[J].土木工程学报,2002,35(2): 26-32
    46.肖建庄,任红梅,王平.高性能混凝土高温后残余抗折强度研究[J].同济大学学报(自然科学版),2006,34(5):580-585
    47.李荣涛.高温下混凝土中化学-热-湿-力学耦合过程的数值模拟及破坏分析[D].博士学位论文,大连:大连理工大学,2006
    48. Hertz K. Heat-induced explosion of dense concretes[J]. Institute of Building Design Report No.166, Technical University of Denmark,1984
    49. Chaboche J L. Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage[J]. Int J Damage Mech,1993,2(4):311-329
    50.宿晓萍,隋艳娥,赵万里.高温后混凝土力学性能的对比分析[J].长春工程学院学报(自然科学版),2001,2(3):26-28
    51.吴波,袁杰,李惠等.高温下高强混凝土的爆裂规律与柱截面温度场计算[J].自然灾害学报,2002,11(2):65-69
    52.王衔,钱春香,李敏等.高强混凝土湿扩散与火灾爆裂关系研究[J].东南大学学报(自然科学版),2003, 33(4): 454-457
    53.刘红彬,李康乐,鞠杨等.钢纤维活性粉末混凝土的高温爆裂试验研究.混凝土,2010, 8,6-8
    54.朋改非,陈延年,Mike Anson.高性能硅灰混凝土的高温爆裂与抗火性[J].建筑材料学报,1999,2(3):193-198
    55. Khoury G A. Effeet of fire on concrete and concrete structures[J]. Prog Struct Eng Mater, 2000,2(4):429-447
    56.肖建庄,李杰,孙振平.高性能混凝土结构抗火研究最新进展[J].工业建筑,2001, 31(6):53-56
    57. Shorter G W, Harmathy T Z. Moisture clog spalling[J]. Proc Inst Civ Eng,1965,20:95-108
    58. Kalifa P, Menneteau F, Quenard D. Spalling and pore pressure in HPC at high temperatures[J]. Cem Concr Res,2000,30(12):1915-1927
    59. Bazant Z P. Analysis of pore pressure, thermal stress and fracture in rapidly heated concrete[C]. National Institute of Standards and Technology. International Workshop on Fire Performance of High-Strength Concrete. Gaithersburg, MD:NIST Special Publication 919, 1997,155-164
    60. Dougill J W. Modes of failure of concrete panels exposed to high temperatures[J]. Mag Concr Res,1972,24(79):71-76
    61. Bentz D P. Spalling of high-performance concrete[J]. ACI Mater J,1999,90(28):351-359
    62. Sertmehmetoglu Y. On a mechanism of spalling of concrete under fire conditions[D]. PhD Thesis, King's College, London,1977
    63.傅宇方,黄玉龙,潘智等.高温条件下混凝土爆裂机理研究进展[J].建筑材料学报,2006,9(3):323-329
    64. Hertz K, Danish D. Investigation on silica fume concrete at elevated temperatures[J]. ACI Mater J,1992,89(4):345-347
    65.王衔,钱春香.胶砂试件高温爆裂程度的外部影响因素[J].混凝土与水泥制品,2003, 5,16-18
    66.朋改非,李斌,马强等.火灾高温中高性能混凝土的裂纹扩展与爆裂关系[J].混凝土,2001,7,15-17
    67.李敏,钱春香,孙伟.高性能混凝土火灾条件下抗爆裂性能的研究[J].工业建筑,2001,31(10):47-49
    68.李惠.高强混凝土及其组合结构[M].北京:科学出版社,2004
    69. Han C G, Han M C, Heo Y S. Improvement of residual compressive strength and spalling resistance of high-strength RC columns subjected to fire[J]. Construc Building Mater,2009. 23(1):107-116
    70.赵军,高丹盈.高温后聚丙烯纤维高强混凝土力学性能试验研究[J].四川建筑科学研究,2008,34(1):133-135
    71. Kodur V K R, Cheng F P, Wang T C, et al. Effect of strength and fiber reinforcement on fire resistance of high-strength concrete columns[J]. ASCE J Struct Eng,2003,129(2):253-259
    72.董香军,丁一宁,王岳华.高温条件下棍凝土的力学性能与抗爆裂[J].工业建筑,2005,S1:703-705
    73.鞠丽艳,张雄.混杂纤维对高性能混凝土高温性能的影响[J].同济大学学报,2006, 34(1):89-92
    74.孙伟,罗欣, Sammy Y N C.高性能混凝土的高温性能研究[J].建筑材料学报,2000, 3(1):27-31
    75.刘红彬.活性粉末混凝土的制配技术及基本力学性能试验研究[0].硕士学位论文.北京:中国矿业大学(北京),2006
    76.中华人民共和国建设部,国家质量监督检验检疫总局.普通混凝土力学性能试验方法标准(GB/T 50081-2002)[S],2003
    77.中华人民共和国建筑工业行业标准.钢纤维混凝土试验方法CECS 13-1989[S]北京:中国工程建设标准化协会(CSIC),1989
    78. Shaheen E, Shrive N G. Optimization of mechanical properties and durability of reactive powder concrete[J]. ACI Mater J.2006,103(6):2006,444-451
    79.陈健.活性粉末混凝土的弯曲及断裂性能研究[D].硕士学位论文,北京:中国矿业大学(北京),2006
    80.姚志雄,周健,周瑞忠.活性粉末混凝土断裂性能的试验研究[J].建筑材料学报,2006,9(6):654-659
    81.余自若,阎贵平.活性粉末混凝土(RPC)的断裂性能[J].中国安全科学学报,2005, 15(8):101-104
    82. Wang Y H, Wang Z D, Liang X Y, et al. Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes[J]. Acta Mech Solida Sinica,2008,21(5): 420-430
    83.赖建中,孙伟,戎志丹.活性粉末混凝土在多次冲击荷载下的力学行为[J].爆炸与冲击,2008,28(6): 532-538
    84.葛涛,潘越峰,谭可可等.活性粉末混凝土抗冲击性能研究[J].岩石力学与工程学报,2007,26(增1):3553-3557
    85. Fujikake K, Senga T, Ueda N, et al. Study on impact response of reactive powder concrete beam and its analytical model[J]. Advan Concr Tech,2006,4(1):99-108
    86.盛国华.活性粉末混凝土(RPC)冲击性能的试验研究[D].硕士学位论文,北京:中国矿业大学(北京),2009
    87. Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pres-sure bar[J]. Exp Mech,2002,42(1):93-106
    88. Lambert D E, Ross C A. Strain rate effects on dynamic fracture and strength[J]. Int J Impact Eng,2000,24(10):985-998
    89. Zhao H. A study on testing techniques for concrete-like materials under compressive impact loading[J]. Cem Conc Comps,1998,20(4):293-299
    90.李康乐.活性粉末混凝土的高温力学性能和爆裂研究[D].硕士学位论文,北京:中国矿业大学(北京),2010
    91.谢狄敏,钱在兹.高温(明火)作用下混凝土强度与变形试验研究[J].工程力学增刊,1996,54-68
    92. Schneider U, Diederichs U, Horvath J, et al. Behaviour of Ultra High Performance Concrete(Uhpc) under Fire Exposure(Abstract) [J]. Beton-und Stahlbetonbau,2003,98(7): 408-417
    93. Zheng Wenzhong, Li Haiyan, Wang Ying, et al. Tensile properties of steel fiber-reinforced reactive powder concrete after high temperature[J]. Adv Mater Res,2012,413:270-276
    94.陈强.高温对活性粉末混凝土高温爆裂行为和力学性能的影响[]].硕士学位论文,北京:北京交通大学,2010
    95.吕天启,赵国藩,林志伸等.高温后静置混凝土的微观分析[J].建筑材料学报,2003,6(2):135-141
    96. Sengula O, Azizi S, Karaosmanoglu F,ea al. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete[J]. Energy Build,2011,43(2-3): 671-676
    97.肖建庄,宋志文,张枫.混凝土导热系数试验与分析[J].建筑材料学报,2010, 13(1): 17-21
    98. Smith J T, Tighe S L. Recycled concrete aggregate coefficient of thermal expansion: Characterization, variability, and impacts on pavement performance[J]. Trans Res Rec,2009, 2113,53-61
    99. Uygunoglu T, Topcu I B. Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature[J]. Construc Building Mater,2009,23(9): 3063-3069
    100. Noumowe A, Siddique R, Ranc G. Thermo-mechanical characteristics of concrete at elevated temperatures up to 310℃ [J]. Nucl Engng Design,2009,23(9):470-476
    101.钱春香,朱晨峰.掺合料及引气剂对水泥混凝土热膨胀系数的影响[J].建筑材料学报,2009,12(3):310-314
    102.张枫.混凝土热工参数实验研究[D].硕士学位论文,上海:同济大学,2009
    103.王巍.超高韧性水泥基复合材料热膨胀性能及导热性能的研究[D].硕士学位论文,大连:大连理工大学,2009
    104. Shahiq K M, Prasad J, Suman B M. Thermal properties of high volume fly ash concrete[J]. Indian J Concr,2008,82(5):35-40
    105. Mnahoncakova E, Pavlikova M, Grzeszczyk S, et al. Hydric, thermal and mechanical properties of self-compacting concrete containing different fillers[J]. Construe Building Mater,2008,22(7):1594-1600
    106. Childs P, Wong A C L, Gowripalan N, et al. Measurement of the coefficient of thermal expansion of ultra-high strength cementitious composites using fibre optic sensors[J]. Cem Concr Res,2007,37 (5):789-795
    107.姚武,郑欣.配合比参数对混凝土热膨胀系数的影响[J].同济大学学报(自然科学版),2007,35(1):77-87
    108. Bijan A Z, Lars B, Ulf W. Using the TPS method for determining the thermal properties of concrete and wood at elevated temperature[J]. Fire Material,2006,30(5):359-369
    109. Won M. Improvements of testing procedures for concrete coefficient of thermal expansion[J]. Transp Res Rec,2005,1919,23-28
    110. Joseph L, Donath M. New measurement of thermal properties of superpave asphalt concrete[J]. J Mater Civ Eng,2005,17(1):72-79
    111.ERMCO. The European guidelines for self-compacting concrete specification, production and use[J]. The European Ready-mix Concrete Organization,2005,10-68
    112. Rodur V K R, Sultan M A. Effect of temperature on thermal properties of high-strength concrete[J]. J Mater Civ Eng,2003,15(2):101-107
    113. Dos Santos W N. Effect of moisture and porosity on the thermal properties of a conventional refractory concrete[J]. J Eur Ceram Soc,2003,23(5):745-755
    114. Li Q B, Yuan L B, Ansari F. Model for measurement of thermal expansion coefficient of concrete by fiber optic sensor[J]. Int J Solids Struct,2002,39(11):2927-2937
    115. Shin K Y, Kim S B, Kim J H, et al. Thermo-physical properties and transient heat transfer of concrete at elevated temperatures[J]. Nucl Engng Design,2002,212(3):233-241
    116. Van Geem M G, Gajda J, Dombrowski K. Thermal properties of commercially available high-strength concretes[J]. Cem Concr Aggre,1997,19(1):38-54
    117. Vodak F, Cerny R, Drchalova J, et al. Thermo-physical properties of concrete for nuclear-safety related structures[J]. Cem Concr Res,1997,27(3):415-426
    118. Neville A M. Properties of concrete[M]. New York:John Wiley & Sons,1995
    119. Shah S P, Ahmad S H. High performance concretes and applications[M]. London :Edward Arnold,1994
    120. Hoff G C. High strength lightweight concrete for Arctic applications-Part2, ACI Symp Performance of Lightweight Concrete[C]. Dallas, Texas,1991, SP136-2
    121. Marshall A L. The thermal properties of concrete[J]. Building Science,1972,7(3):167-174
    122. Ju Yang, Liu Hongbin, Liu JinHui, et al. Investigation on thermophysical properties of reactive powder concrete[J]. Sci China E,2011,54(12):3382-3403
    123.于帆,张欣欣,高光宁.热线法测量半透明固体材料的导热系数[J].计量学报,1998,19(2):112-118
    124.中华人民共和国标准.耐火材料导热系数试验方法(热线法)GB/T 5990-2006[S].北京:中华人民共和国国家质量检验检疫总局,2006
    125.王东,孙晓红,赵维平等.激光闪射法测试耐火材料导热系数的原理与方法[J].计量与测试技术,2009, 36(3): 38-39
    126. Parker W J, Jenkins R J, Butler C P. Flash method of determining thermal diffusivity, heat capacity and thermal conductivity[J]. J Appl Phys,1961,32(9):1679-1684
    127. Turcotte D L, Schubert G. Geodynamics (2nd Edition)[M]. Cambridge University Press, 2002,p.171-174
    128.陆洲导.钢筋混凝土梁对火灾反应的分析[D].博士学位论文,上海:同济大学,1989
    129.贾德昌,宋桂明.无机非金属材[M].北京:科学出版社,2008
    130. Incropera FP, Dewitt D P, Lavine A S, et al. Fundamentals of Heat and Mass Transfer,5th Ed [M]. New York:John Wiley & Sons,2002
    131.赵镇南.传热学[M].北京:高等教育出版社,2002
    132. Touloukian Y S, Powell R W, Ho C Y, et al. Thermophysical Properties of Matter-The TPRC Data Series. V1, Thermal Conductivity-Metallic Elements and Alloys[M]. New York: IFI/Plenum,1970
    133.胡安,章维益.固体物理学[M].北京:高等教育出版社,2008
    134. Shankar R. Principles of Quantum Mechanics (2nd Ed.) [M]. Springer,1994
    135. Ashcroft N W, Mermin N D. Solid State Physics[M]. New York:Holt, Rinehart and Winston, 1976
    136.孙剑,白亦真,杨天鹏等.自持金刚石厚膜上沉积N掺杂ZnO薄膜的生长及电学特性[J].吉林大学学报(理学版),2007,45(5):822-826
    137. ASTM. Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis E 831[S]. Annual Book of ASTM Standards, ASTM,2000
    138. Mindeguia J, Pimienta P, Noumowe A, et al. Temperature, pore pressure and mass variation of concrete subjected to high temperature-Experimental and numerical discussion on spalling risk[J]. Cem Concr Res,2010,40(3):477-487
    139. Fu Y F, Li L C. Study on mechanism of thermal spalling in concrete exposed to elevated temperatures[J]. Mater Struct,2010,44(1):361-376
    140.柳献,袁勇,叶光等.高性能混凝土高温爆裂的机理探讨[J].土木工程学报,2008, 41(6):61-68
    141.钱春香,游有鲲.抑制高强混凝土受火爆裂的措施[J].硅酸盐学报,2005, 33(7): 846-852
    142.柳献,袁勇,叶光等.高性能混凝土高温微观结构演化研究[J].同济大学学报(自然科学版),2008,36(11):1473-1478
    143.钱春香,游有鳗,李敏.高温作用对高强混凝土渗透性能的影响[J].东南大学学报(自然科学版),2006,36(2): 282-287
    144. Heijden G H A van der, Bijnen R M W van, Pel L, et al. Moisture transport in heated concrete, as studied by NMR, and itsconsequences for fire spalling[J]. Cem Concr Res,2007,37(6): 894-901
    145.Noumowe A. Mechanical properties and microstructure of high strength concretecontaining polypropylene fibres exposed to temperatures up to 200℃[J]. Cem Concr Res,2005,35(11): 2192-2198
    146.龙广成,谢友均,王培铭等.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005,33(4):456-461
    147.刘娟红,王栋民,宋少民等.大掺量矿粉活性粉末混凝土性能与微结构研究[J].武汉理工大学学报,2008,30(11):54-57,68
    148.赵铁军.混凝土渗透性[M].北京:科学出版社,2006
    149.廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996
    150.中华人民共和国标准.压汞法和气体吸附法测定固体材料孔径分布和孔隙率第一部分:压汞法GB/T 21650.1-2008[S].北京:中华人民共和国国家质量检验检疫总局,2008
    151.高原,周素红,邹涛等.压汞法常见问题分析[J].中国粉体技术,2008, 14,193-194
    152.冯竟竟,阎培渝,傅宇方.高温下水泥基复合材料孔隙特征试验研究[C].中国硅酸盐学会水泥分会首届学术年会论文集,2009,266-271
    153.赵铁军,朱金铨,冯乃谦.混凝土孔隙分析中的表征参数[C].水泥基复合材料科学与技术(吴中伟院士从事科教工作六十年学术讨论会论文集.阎培渝,姚燕主编),1999,99-102
    154.李清海,姚燕,孙蓓.粉煤灰对水泥基材料热膨胀性能影响的研究[J].武汉理工大学学报,2009,31(8):17-20
    155. Bazant Z P, Thonguthai W. Pore pressure and drying of concrete at high temperature[J]. J Eng Mech Div,1978,104(5):1059-1079
    156. Bazant Z P, Thonguthai W. Pore pressure in heated concrete walls:theoretical prediction[J]. Magazine Concr Res,1979,31(107):67-76
    157. Gary R. C, Michael C M, Jeff W R. Measurement and prediction of pore pressure in cement mortar subjected to elevated temperature[J]. ACI Mater J,1998,95(5):525-536
    158. Bangi M R, Horiguchi T. Pore pressure development in hybrid fiber-reinforced high strength concrete at elevated temperatures[J]. Cem Concr Res,2011,41(11):1150-1156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700