光谱指纹纤维防伪原理与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素具有未充满的4f5d电子组态,能级跃迁通道多达20余万个,具有约30000条可被观察到的谱线,基于此,提出了一种新的防伪原理,将稀土材料与纤维基质相结合制备了具有光谱指纹特征的防伪纤维,该纤维在特定的激发光照射下具有相应的发射光谱曲线,它类似于人的指纹,具有唯一性,根据该发射光谱曲线即可鉴别真伪。
     稀土发光材料是光谱指纹纤维的发光来源,阐明其发射光谱特性是研究光谱指纹纤维防伪原理的前提和基础。为此,本文首先研究了防伪纤维用稀土发光材料的发射光谱特性。根据光谱指纹防伪纤维的特性要求,选取稀土铝酸锶为发光材料研究对象,借助XRD和荧光分光光度计等手段,对其发射光谱特性进行了研究。结果表明,烧结温度、助熔剂添加量、激活剂和辅助激活剂掺杂量、A1/Sr比率对制造光谱指纹防伪纤维用稀土铝酸锶的发射光谱影响很大,可以通过控制这些影响因素来制备具有不同发射光谱特性的光谱指纹防伪纤维用稀土发光材料,从防伪原料的角度增加光谱指纹纤维的防伪力度。
     为分析光谱指纹纤维的发光过程寻求理论支持,研究了光谱指纹纤维结构和光谱特性,并在此基础上分析了其发光过程。结果表明,稀土发光材料在聚合物基材中分散良好,复杂的纺丝工艺没有对稀土铝酸锶的晶体结构造成破坏,纤维各组分具有良好的独立性。光谱指纹纤维与分散其中的稀土发光材料具有相似的光谱特性,光谱指纹纤维在防伪检测时的发光来源于稀土发光材料,归属于Eu2+离子的及时特征发光。光谱指纹纤维的发光过程受到了激发光源、聚合物基材、无机透明色料等因素的影响。
     随后,对光谱指纹纤维光谱特性的影响因素进行了深入研究。通过改变激发光强度、激发光波长等激发条件,借助荧光分光光度计观察并记录光谱指纹防伪纤维的发射光谱特征,研究了激发条件对光谱指纹纤维发射光谱特性的影响。结果表明,激发条件的变化对光谱指纹纤维的发射光谱曲线有一定的影响。因此,为了保证光谱指纹纤维发射光谱曲线的准确性和唯一性,在防伪鉴别时,必须在确定的激发光作用下进行;分别选取三种不同聚合物为基材,制备光谱指纹防伪纤维样品,研究了聚合物基材对其发射光谱的影响。结果表明,聚合物的种类和添加量没有对光谱指纹纤维的发射光谱曲线的波长特征造成影响,但对其强度特征影响很大,不同种类聚合物基材制备的光谱指纹纤维具有不同发光强度的发射光谱曲线;分别选取五种具有不同颜色的无机透明色料,制备了彩色光谱指纹防伪纤维样品,研究了无机透明色料对其发射光谱特性的影响。结果表明,无机透明色料的添加并没有对光谱指纹纤维的微观形态和结构造成改变,但它降低了光谱指纹纤维的光照激发效率和光子发射效率,使纤维的发光波长发生了不同程度的红移或蓝移,无机透明色料自身颜色波长与稀土发光材料发光波长的差异越大,无机透明色料的添加量越大,该影响就越明显;在其他条件不变的情况下,通过改变牵伸倍数制得光谱指纹防伪纤维样品,研究了牵伸倍数对其发射光谱的影响。结果表明,不同牵伸倍数制得的光谱指纹纤维具有不同的发射光谱曲线。
     最后,研究了光谱指纹防伪纤维的防伪应用特性。结果表明,光谱指纹纤维的发射光谱曲线具有一定的耐热性、耐光性、耐水洗性、耐久性和耐酸碱性。但长时间存放或者酸碱侵蚀会造成发光强度的降低。因此,在使用的过程中尽量保持存储环境的干燥,尽量避免酸碱的长时间侵蚀。
Rare-earth element has an unfilled and external shielded4f5d electronic configuration, over200thousand energy level transition channels and about30thousand spectral lines, on the basic of which, anew anti-counterfeiting principle was presented and an anti-counterfeiting fiber with spectrum-fingerprintcharactoristics was made. Under a special exciting light, this fiber had a corresponding emission spectralcurve, which is different from one to another, just like the fingerprint of human beings. And by detectingthe emission spectral curive of the fiber can be used to discriminate product identity. The security principleand charactoristics of spectrum-fingerprint fiber were studied deeply.
     Rare-earth luminescent material was the light emitting source of spectrum-fingerprintanti-counterfeiting fiber, presenting the emission spectrum properties of which was the premise andfoundation of investigating the security principle and characteristics of spectrum-fingerprint fiber. For thispurpose, in this paper, the emission spectrum properties of rare-earth luminescent material foranti-counterfeiting fiber application were studied. According to the applicability requirements of rare-earthluminescnet material of manufacturing spectrum-fingprint anti-counterfeiting fiber, rare-earth StrontiumAluminate luminescent material was selected and rare-earth Strontium Aluminate samples foranti-counterfeiting application were prepared and the effects of raw material formula and processparameters of rare-earth luminescent material on its emission spectrum were investigated systematically bymeans of XRD and Fluorescence spectrophotometer. The results showed that sintering temperature,theaddition of H3BO3,the doping of Eu2+and Dy3+and the A1/Sr ratios effected the emission spectra ofrare-earth Strontium Aluminate in various degree. It is a feasible way to make suitable rare-earth StrontiumAluminate luminescent material to meet the security needs through controlling parameters of process andformulation of raw materials of making rare-earth Strontium Aluminate.
     In order to seek theoretical support for analyzing the luminescent process, the structure and spectralproperties of spectrum-fingerprint fiber were studied and on the basic of which, the luminescent process ofthe fiber was simulatically analyzed. The results showed that the rare-earth Strontium Aluminateluminescent material particles were dispersed within the fiber frandomly, the complex manufacturingprocess did not destroy the phase of Strontium Aluminate in the fiber, and fiber components keeped a goodindependence each other. The spectral properties of spectrum-fingerprint fiber were similar to that ofrare-earth luminescent material dispersed in it, and the luminescence of spectrum-fingerprint fiber whenanti-counterfeiting detecting originates from rare-earth luminescent material dispersed in the fiber andbelongs to the timely characteristic luminescence of Eu2+ion of rare-earth luminescent material. Theluminescent of spectrum-fingerprint fiber was a complex process and was affected by fiber matrix,transparent inorganic pigment, exciting light source and so on.
     And then the effect elements of the spectral properties of spectrum-fingerprint fiber were investigateddeeply. In this paper, the effects of excitation condition on the spectral properties were studied by means ofFluorescence spectrophotometer through changing the excitation intensity and wavelength. The resultsshowed that the change of excitation condition had certain effects on the emission spectral curve ofspectrum-fingerprint fiber. Therefore in order to ensure the accuracy and uniqueness of the emissionspectral line of spectrum-fingerprint fiber, the measurement of emission spectrum must be conducted undera certain exciting light when the fiber was applied for identity discrimination. The effects of fiber matrix onthe spectral properties were studied by changing the type and content of fiber matrix to manufacture threedifferent spectrum-fingerprint fiber. The results showed that the content and type of polymer matrix hadlittle effect on the emission wavelength, but greatly on the emission intensity. Spectrum-fingerprint fiberwith different type and content matrix had different emission spectral curve with different intensity. Theeffects of transparent inorganic pigment on the spectral properties were studied by selecting five kinds ofand different content of transparent inorganic pigment to manufacture different spectrum-fingerprint fibers.The results showed that the addition of transparent inorganic pigment had no effect on the dispersion stateand phase structure of rare-earth luminescent material in spectrum-fingerprint fiber. However, transparentinorganic pigment influenced the excitation and emission process of spectrum-fingerprint fiber anddecreased its excitation and emission efficiency. The change of the type and content of transparentinorganic pigment both had much effect on the excitation and emission spectra of the fiber. The greater the degree of color interval between the color of transparent inorganic pigment and the emission wavelength ofrare-earth luminescent material was, the more obvious the shift to red or blue was. And the more thecontent of transparent inorganic pigment, the greater the degree of the effects. The effects of draw ratio onthe spectral properties were studied by changing draw ratio of spinning to manufacture differentspectrum-fingerprint fibers. The results showed that spectrum-fingerprint fibers with different draw ratiohad different emission spectral curves.
     Finally, the anti-counterfeiting application characteristics of the fiber were studied with the help offluorescence spectrophotometer. The results showed that the emission spectral curve ofspectrum-fingerprint fiber had good heat resistance, light resistance, waterproof property, durability andresistance to acid and alkali. But the emission intensity decreased after being stored and after being treatedby acide or base for long time meanwhile the emission wavelength had no change. Therefore the fibershould be stored in a dry environment and long-time erosion of acid and basic should be avoided inapplication.
引文
[1]秦开.论假冒伪劣与社会稳定的关系[J].中国防伪,2011,1:61-62.
    [2]叶柏林.防伪——21世纪的朝阳产业[J].中国品牌与防伪,2008,9:62-65.
    [3] Wang Y L, Xu S P, Lin J H. Nuclear track anti-counterfeiting technique and its application in secureID[J]. Radiation Measurements,2008,43:659-661.
    [4] Benjamin Jun. Security chips to battle piracy and counterfeiting[J]. Card Technology Today,2009,7:11-12.
    [5] Jin W M, Ma L H, Yan C J. Real color fractional Fourier transform holograms[J]. OpticsCommunications,2006,259:513-516.
    [6]中华人民共和国国家标准.GB/T17004-1997《防伪技术术语》.
    [7] Pucherta T, Lochmannb D, Menezesc J C, et al. Near-infrared chemical imaging (NIR-CI) forcounterfeit drug identification-A four-stage concept with a novel approach of data processing (LinearImage Signature)[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,51:138–145.
    [8] Hohberger C, Davis R, Briggs, et al. Applying radio-frequency identification (RFID) technology intransfusion medicine [J]. Computers in Industry,2011,62(7):708-718.
    [9] Chen L, Zhang Y, Luo A Q, et al. The temperature-sensitive luminescence of (Y,Gd)VO34:Bi+,Eu3+andits application for stealth anti-counterfeiting[J]. Physica Status Solidi-Rapid Research Letters,2012,6(7):321-323.
    [10]徐胜林.国外防伪技术的应用及发展[J].中国防伪报道,2003,1:189-191.
    [11]刘尊忠.防伪印刷与应用[M].北京:印刷工业出版社,2008年1月第1版
    [13]刘秘.隐含磁码防伪技术[J].中国防伪报道,2000,10:65-72.
    [13]Robert L, Shanmugapriya T. A Study on digital watermarking techniques[J]. International Journal ofRecent Trends in Engineering,2009,1(2):223-225.
    [14] Hisato Nagashima. A novel half-Tone screening for anti-counterfeiting[J]. Journal of Printing Scienceand Technology,2004,41(4):217-223.
    [15]杨靖华.防伪技术与印刷技术应密切结合[J].中国防伪报道,2003,3:9-12.
    [16] Singh V K, Singh A K. Dual level digital watermarking for images[J]. AIP Conference Proceedings,2010,1324(1):284-287.
    [17] Aggeliki G, Konstantinos P, Konstantinos B, et al. Using digital watermarking to enhance security inwireless medical image transmission[J]. Telemedicine and e-Health,2010,16(3):306-311
    [18]倪兴元,张志华,魏建东,等.具有纳米结构的TiO2透明激光全息防伪薄膜[J].真空科学与技术学报2004,z2:38-41.
    [19]崔璐,杨君顺.浅析全息影像技术及其应用[J].美与时代,2009,9:115-117.
    [20] He X M, Wan C R. Manufacture of anti-bogus label by track-etching technique [J]. RadiationMeasurements,2006,41:120-122.
    [21]段瑞斌,黄颖为.二维图像组合防伪技术的研究[J].包装工程,2007,28(12):64-65.
    [22]高珊珊,宋晓明.数码防伪技术[J].广东印刷,2009,2:47-48.
    [23] Choi S H, Poon C H. An RFID-based anti-counterfeiting system[J]. IAENG International Journal ofComputer Science,2008,35(1):80-91.
    [24]张伟,徐研.基于RFID的射频防伪系统[J].计算机与数字工程,2011,39(4):191-193.
    [25] Cheung H H, Choi S H. Implementation issues in RFID-based anti-counterfeiting systems[J].Computers in Industry,2011,62(7):708-718.
    [26]李瑞,孟迪.防伪油墨——防伪技术领域的主力军[J].印刷世界,2010,6:34-36.
    [27]徐飞,于慧,吴启南,等.电化学技术在中药质量控制方面的研究进展[J].南京师大学报(自然科学版),2011,34(4):77-82.
    [28] Wang M, Sean A Vail, Amy E Keirstead, et al. Preparation of photochromic poly(vinylidenefluoride-co-hexafluoropropylene) fibers by electrospinning[J]. Polymer,2009,50:3974-3980.
    [29] Neebe M, Rhinow, Schromczyk N, et al. Thermochromism of bacteriorhodopsin and its pHdependence[J]. Journal of Physical Chemistry. B,2008,112(23):6946-6951.
    [30] Guan Y J, Hu J, Li Y P, et al. A new anti-counterfeiting method: fluorescent labeling by safranine T intobacco seed[J]. Acta Physiologiae Plantarum,2011,33(4):1271-1276.
    [31] Zhao M, Xi P, Gu X H, et al. Synthesis, characterization and fluorescence properties of a novel rareearth complex for anti-counterfeiting material[J]. Journal of Rare Earths,2010,28(s1):75-78.
    [32]刘秋君,高磊,王雷,等.新型吡唑啉类荧光化合物的合成及光谱分析[J].光谱学与光谱分析杂志,2009,10,2810-2814.
    [33]王芳.生物防伪技术及其应用[J].中国防伪报道,2011,07:57-60.
    [34] Han C C, Cheng H L, Lin C L, et al. Personal authentication using palmprint features[J]. PatternRecognition,2003,36(2):371-381.
    [35]代亮亮,李传富,周保琢,等.指纹识别技术在电子病历系统中的应用[J].中国医疗器械杂志,2009,33(3):172-175.
    [36]王志刚,吴建新. DNA甲基转移酶分类、功能及其研究进展[J].遗传,2009,9:903-912.
    [37] Anil K Jain, Arun Ross, Salil Prabhakar. An introduction to biometric recognition[J]. IEEE Trans. onCircuits and Systems for Video Technology,2004,14(1):4-20.
    [38]张玉勇,常月,柴雅琴,等.新型电化学条形码量子点的合成研究[J].分析化学,2009,37(A03):158-159.
    [39]孙鹏,杨洪臣.基于生物特征识别的数字水印防伪技术[J].警察技术,2011,4:20-22.
    [40] Lee R A. Micro-Technology for Anti-Counterfeiting[J]. Microelectronic Engineering,2000,53:513-516
    [41]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004年10月第1版.
    [42]刘光华.稀土材料与应用技术[M].北京:化学工业出版社,2005年7月第1版
    [43]孙继兵,王海容,安雅琴,等.长余辉发光材料研究进展[J].稀有金属材料与工程,2008,37(2):189-192.
    [44] Qiu G M, Chen Y J, Cui J Q, et al. Synthesis of long afterglow phosphors doped B SrA1204: Eu2+,Dy3+and its luminescent properties[J]. Journal of Rare Earths,2007,25,(Sl,):86-89.
    [45] Page P, Ghildiyal R, Murthy K V R. Synthesis, characterization and luminescence of Sr3Al2O6phosphor with trivalent rare earth dopan [J]. Materials Research Bulletin,2006,41:1854-1860.
    [46]孙宾宾,杨博,王明远.光致变色功能纤维的制备方法及研发趋势[J].甘肃科技,2011,27(2):64-66.
    [47]张焱,陆春华,许仲梓.光学功能纤维的现状及其发展趋势[J].材料导报,2005,19(11):31-34.
    [48]万震,王炜,谢均.光敏变色材料及其在纺织品上的应用[J].针织工业,2003,6:87-89.
    [49]冯社永,倪恨美,梁春梅,等.光敏变色聚丙烯纤维的研究[J].合成纤维,1998,27(5):20-24.
    [50]杨佳庆,顾利霞.热敏变色纤维材料[J].合成技术与应用,1998,13(4):23-26.
    [51] Kyo.Nosse. The fibres development sicience[J]. TextileMonth,1992,16:16-18.
    [52]孟婕,孙诚,王建清,等.铕配合物对胶印荧光防伪油墨荧光性能的影响[J].包装工程,2012,7:21-23,117.
    [53] Fuentes F F, Martinez E A, Hinrichsen P V. Assessment of genetic diversity patterns in Chileanquinoa (Chenopodium quinoa Willd) germplasm using multiplex fluorescent microsatellite markers[J].Conservation Genetics,2009,10(2):369-377.
    [54] Li J F, Bai G, Lin P H, et al. Syntheses of some organic fluorescent dyes for security tickers[J].Chemical Research in Chinese University,2004,20(2):216-220.
    [55]王艳忠,黄素.荧光防伪纤维的制造方法及其应用[J].合成纤维,2009,29(4):20-22.
    [56]龚静华,黄素萍,秦伟.双波长荧光防伪纤维的研究[J].上海纺织科技,2002,30(5):14-15.
    [57]黄素萍,龚静华.双波长荧光复合纤维及其制造方法[P].中国,No.02137637.
    [58]孙显林.激发光光角变化致荧光纤维变色的防伪纤维及防伪材料[P].中国,No.200810101204
    [59] Li Z R, Xi P, Zhao M. Preparation and characterization of rare earth fluorescent anti-counterfeitingfiber via sol-gel method[J]. Journal of Rare Earths,2010,28(S1):211-214.
    [60]孙显林.一种波浪状防伪纤维及其含有该防伪纤维的纸和纸板[P].中国, No.200910226-051.
    [61]翼德.俄罗斯研制出防伪纤维[N].纺织装饰科技,2011,4:22.
    [62]李晓伟,张敏,李策等.一种复合防伪纤维[P].中国,No.200410067373.7
    [63]日商开发出可刻文字和图案的新型防伪纤维[N].江苏纺织,2003,7:30.
    [64] Chang Y L, Hsiang H, Liang M T. Characterizations of Eu, Dy co-doped SrAl2O4phosphors preparedby the solid-state reaction with B2O3addition[J]. Journal of Alloys and Compounds2008,461:598-603.
    [65]肖志国.蓄光型发光材料及其制品[M].北京:化学工业出版社,2005年4月第2版.
    [66] Palilla F C, Luvine A X, Tomkus M R. Fluorescent properties of alkaline earth aluminatesof the typeMA12O4activated by divalent europium[J]. Journal of Electro Chemical Society,1968,115(6):642-648.
    [67]宋庆梅,陈暨跃.铝酸锶铕的合成与发光的研究[J].发光学报,1991,12(2):144-149.
    [68]张天之,苏锵. MA122O4:Eu+,Dy3+长余辉发光性质的研究[J].发光学报,1999,2:171-175.
    [69]松尺隆嗣,等.日本第248回荧光体同学会讲演予稿.1993.1:1.
    [70] Matusuazawa T, AokiY, Takeuchi N, et al. A new long phosphorescent phosphor with high brightnessSrA12O4:Eu2+,Dy3+[J]. Journal of Electro Chemical Society,1996,143(8):2670-2675.
    [71] Kamada M, Murakami J, Ohno N. Excitation spectra of a long-persistent phosphor SrA12O4:Eu,Dyin vacuum ultraviolet region[J]. Journal of Luminescence,2000,76-77:424-428.
    [72] Huang P, Cui C E, Hao H Z. Eu, Dy co-doped SrAl2O4phosphors prepared by sol-gel-combustionprocessing[J]. Journal of Sol-gel Science and Technology,2009,50(3):308-313.
    [73] Shafia E, Bodaghi M, Tahriri M. The influence of some processing conditions on host crystal structureand phosphorescence properties of SrAl2O4:Eu2+, Dy3+nanoparticle pigments synthesized by combustiontechnique[J]. Current Applied Physics,2010,10(2):596-600.
    [74] Qiu G M, Chen Y J, Geng X J, et al. Synthesis of long aferglow phosphors MAl2O4:Eu2+, Dy3+(M=Ca,Sr,Ba) by microemulsion method and their luminescent properties[J]. Journal of Rare Earths,2005,10(23):629-632.
    [75]袁赵欣,常程康,毛大立. H2+3BO3对化学共沉淀法制备Sr4Al14O25:Eu,Dy3+的影响[J].功能材料,2004,35(1):94-96.
    [76]宋会花,刘文芳,高元哲. SrAl2O4:Eu2+, Dy3+长余辉发光材料的微波合成及其发光特性[J].人工晶体学报,2008,37(2):327-331.
    [77]宋洁,徐晓,张娜,等.水热法合成Sr24Al14O25:Eu+,Dy3+长余辉发光材料及性能研究[J].中国稀土学报,2011,29(1):82-87.
    [78] Xiao L Y, Xiao Q, Liu Y L, et al. A transparent surface-crystallized Eu2+,Dy3+co-doped strontiumaluminate long-lasting phosphorescent glass-ceramic[J]. Journal of Alloys and Compounds,2010,495(1):72-75.
    [79] Kim J S, Sohn K S, Kwon Y N. Detection of crack propagation in Alumina using SrAl2O4:Eu,DyLluminescent paint[J]. Journal of Alloys and Compounds,2007,539(3):2264-2268.
    [80] Ge M Q, Guo X F, Yan Y H. Preparation and study on the structure and properties of rare-earthluminescent fiber[J]. Textile Research Journal,2012,82(7):677-684.
    [81]昝昕武,冯斌,符欲梅,等.长余辉发光材料在传感方面的应用[J].传感器与微系统,2009,28(5):8-11.
    [82]李卫珍,吴鸣,徐燃霞,等.稀土铝酸锶夜光材料的制备工艺[J].江南大学学报(自然科学版),2009,3:340-344.
    [83]姜洪义,徐博.高温固相法制备硅酸盐长余辉发光材料[J].硅酸盐学报.2006,9(34):1154-1157.
    [84]张希艳,卢利平,柏朝晖,等.稀土发光材料[M].北京:国防工业出版社,2005年1月第1版.
    [85] Poort S H M, Blokpoel W P, Blasse G. Luminescence of Eu2+in barium and strontium aluminate andgallate [J]. Chemistry of Materials,1995,7:1547-1551.
    [86] Peng M Y, Pei Z W, Hong G Y, et al. Study on the reduction of Eu3+→Eu2+in Sr4Al14O25: Euprepared in air atmosphere[J]. Chemical Physics Letters,2003:371:1-6.
    [87] Ryu H, Bartwal K S. Defect structureanditsrelevancetophotoluminescence in SrAl2O4:Eu2+, Nd3+[J].Physica B,2009,404:1714-1718.
    [88] Haranath D, ShankerV, Chander H, et al. Studies on the decay characteristics of strontium aluminatephosphor on thermal treatment[J]. Materials Chemistry and Physics,2003,78(1):6-10.
    [89] Lee S H, Koo H Y, Jung D S, et al. Effects of BaF2flux on the properties of yellow-light-emittingterbium aluminum garnet phosphor powders prepared by spray pyrolysis[J]. Optical Materials,2009,31:870-875.
    [90]沈毅,张平,郑振太,等.不同添加剂对SrAl2O4:(Eu,Dy)磷光体发光性能的影响[J].硅酸盐学报,2006,34(10):1177-1180.
    [91] Chen J T,Gu F, Li C Z. Influence of Precalcination and boron-doping on the initial photoluminescentproperties of SrAl2O4:Eu,Dy phosphors[J]. Crystal Growth and Design,2008,8(9):3179-3175.
    [92]杨志平,徐小岭,熊志军,等. B2O3对SrAl2O4:Eu;Dy材料热释光谱和长余辉性能的影响[J].功能材料与器件学报,2007,13(2):129-133.
    [93]林元华,唐子龙,张中太,等.不同添加剂对Sr4Al14O25:Eu, Dy长余辉光致发光性能的影响[J].硅酸盐学报,2001,29(3):218
    [94]王光辉,梁小平,顾玉芬.硼酸掺量对SrAl2O4长余辉发光材料的发光性能影响[J].光谱学与光谱分析,2008,28(5):1020-1022
    [95]许少鸿.固体发光[M].北京:清华大学出版社,2011年7月第1版.
    [96]张中太,张俊英.无机光致发光材料[M].北京:化学工业出版社,2011年3月第2版.
    [97]张平,徐明霞,沈毅,等. Eu2+对纳米SrAl2O4:Eu,Dy发光性能的影响[J].中国稀土学报,2005,23(s1):12-15.
    [98] Lü X D, Shu W G. Roles of crystal defects in the persistent luminescence of Eu2+, Dy3+co-dopedstrontium aluminate based phosphors[J]. Rare Metals,2007,26(4):305-310.
    [99]吕兴栋,舒万艮. SrAl+2O4:Eu2, Dy3+晶格点缺陷的形成及其在发光材料中的作用[J].无机化学学报,2006,22(5):808-812.
    [100]栾林,郭崇峰,黄德修.锶铝比例对铝酸锶长余辉发光材料性能的影响[J].无机材料学报,2009,24(1):53-56.
    [101]吕兴栋,舒万艮,方勤.基质组成对xSrO·yAl3+2O3Eu2+, Dy发光性能的影响[J].稀有金属材料与工程,2007,1:63-67
    [102]吕兴栋,舒万艮,黄可龙. SrO/Al2O3比率对SrAl2O4:Eu,Dy发光性能的影响[J].发光学报,2004,25(6):673-677.
    [103]吕兴栋.铝酸锶长余辉发光材料的超细粉体制备、构效关系及其应用研究[D]:[博士学位论文].长沙:中南大学,2005.
    [103]徐艳娜.夜光纤维的结构与性能研究[D]:[硕士学位论文].无锡:江南大学,2008.
    [104] Zhu Y, Zeng J H, Li W Y. Encapsulation of strontium aluminate phosphors to enhance waterresistance and luminescence[J]. Applied Surface Science,2009,255(17):7580-7585.
    [104] Yu X,+Zhou C, He X, et al.The influence of some processing conditions on luminescence ofSrAl2O4:Eu2nanoparticles produced by combustion method[J]. Material Letters,2004,58:1087-1091.
    [105] Lü X D, Shu W G, Qin F,et al. Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+,RE3+phosphors[J]. Journal of Materials Science,2007,42(15):6240-6245.
    [106]张平,徐明霞,沈毅,等. Eu2+对纳米SrAl2O4:Eu, Dy发光性能的影响[J].中国稀土学报,2005,23(s2):12-15.
    [107] Clabau F, Rocquefelte X, Jobic S,et al. Mechanism of phosphorescence appropriate for thelong-lasting phosphors Eu2+-doped SrAl2O4with codopants Dy3+and B3+[J]. Chemistry of Materials,2005,17,3904-3912.
    [108] Shen Y,Zheng Z T, Zhang P,et al. Luminescent properties of SrAl2O4:Eu,Dy material prepared bycombustion method[J]. Journal of Rare Earths,2006,24(S1):33-36.
    [109] Chen R, Wang Y H, Hu Y H,et al. Modification on luminescent properties of SrAl2O4:Eu2+,Dy3+phosphor by Yb3+ions doping [J]. Journal of Luminescence2008,128:1180-1184.
    [110]耿杰,吴召平,陈玮,等. SrAl2O4:Eu2+,Dy3+发光粉体的长余辉特性研究[J].无机材料学报,2003,3(18):480-484.
    [111]张玉军,尹衍升. Eu2+,Dy3+共激活铝酸锶发光材料长余辉发光机理探讨[J].人工晶体学报,2004,2(33):67-70.
    [112]赵淑金,林元华,张中太,等. Eu2+离子在Sr2Al6O11基磷光体中发光行为的研究[J].无机材料学报,2003,1(18):225-228.
    [113]张瑞俭,宋桂玲.发光体MA12O4:Eu2+,RE3+的长余辉机理[J].光电子技术2003,23(1):30-34.
    [114] Qiu J R, Hirao K. Long lasting phosphorescence in Eu2+-doped calcium aluminoborate glasses[J].Solid State Communications,1998,106(12):795-798.
    [115] Mishra S B, Mishra A K, Revaprasadu N, et al. Strontium aluminate/polymer composites:morphology, luminescent properties,and durability[J]. Journal of Applied Polymer Science,2009,112(6):3347-3354.
    [116] Zhong H T, Dong, Y, Jiang J Q,et al. Effect of organic solvent and resin on luminescent capability ofSrAl2O4:Eu2+, Dy3+phosphor[J]. Journal of Rare Earths2006,24(2):160-161.
    [117] Peng L L, Luo Y Y, Dan Y, et al. The study of preparation and luminescence of polymethylmethacrylate/rare earth composite luminescent materials[J]. Colloid and Polymer Science2006,285(2):153-160.
    [118] Hamza A A, Fouda I M, Kabeel M A, et al. The optical behaviour of polyethylene fibres withdifferent draw ratios[J]. Polymer Testing,1989,8(3):201-212.
    [119]冯伊利.无机物的显色规律和原理[J].青海师范大学学报(自然科学版),1999,4:41-45.
    [120]胡威捷,汤顺青,朱正芳.现代颜色技术原理及应用[M].北京:北京科文图书业信息技术有限公司,2007年1月第1版.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700