饱和蒸汽牵伸工艺改进与聚丙烯腈原丝相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯腈纤维是制备高性能碳纤维的主要前躯体。原丝的各项性能对最终产品碳纤维有着重要的影响。聚丙烯腈原丝质量的低下是制约我国碳纤维发展的瓶颈。由于PAN原丝在纺丝过程中形成的各种缺陷,将进一步“遗传”给后续的碳纤维,从而极大的降低其性能。所以研究聚丙烯腈原丝的纺丝工艺与纤维性能的关系,掌握纺丝工艺与原丝性能的相关性,对于改善和提高原丝性能有着十分重要的意义。
     初生纤维的大分子结构缺乏定向排列,纤维的强度低,要制备高性能的碳纤维原丝必须对纤维进行牵伸以提高取向度。由于一级牵伸的倍数十分有限,无法让纤维达到所需的力学性能。因此,必须采用二级或多级牵伸。通过饱和蒸汽对原丝的高倍牵伸是提高原丝性能的关键技术之一。但是,国内现有的饱和蒸汽工艺除了保温性、蒸汽密封性没有达到应有的要求外,由于拉伸方式的限制,丝束无法充分升温、润湿,就被高倍拉伸,导致大量毛丝甚至断丝的发生。
     本文通过对饱和蒸汽拉伸机理的深入分析,通过牵伸装置的多项改进,设计了一个由两个密闭室组成的牵伸装置——两段合一式拉伸装置,在原有的加热拉伸部分前,增添一个密闭的预热部分,而预热部分的饱和蒸汽温度、湿度和蒸汽压力比加热部分低,使得丝束在加热拉伸前,能进行充分的润湿和加热,从而减少拉伸中产生的毛丝数。通过改进前后三个实验装置对原丝的工艺参数和工艺性的对比,证明了两段合一式拉伸方式,具有不可比拟的优越性,也极大地提高了原丝蒸汽拉伸的工艺性,毛丝与断头数大大减轻。
     本文通过X射线衍射、扫描电镜、声速法以及单丝拉伸等测试手段,测试了实验原丝的强度、断裂伸长率、密度、沸水收缩率、结晶度、取向度和晶粒尺寸等参数。系统研究了饱和蒸汽牵伸对PAN原丝结构与性能的影响。结果表明,加热段蒸汽压为5 kg/cm~(2),同管两段不同牵伸域的压力差在2kg/cm~(2)时,原丝的各项力学性能都达到最佳。
     由X-射线衍射得到的原丝结晶度随着拉伸倍数的增加而增加,而晶面间距没有太大的变化;由声速法和X-射线衍射法测定的取向度均随着拉伸程度的增加而提高;纤维沸水收缩率的变化研究,发现纤维的内应力与牵伸的倍数和温度有关。而适当控制牵伸过程中的张力和湿度的大小,可以提高纤维的力学性能。扫描电镜的图片的对比表明,两段合一式饱和蒸汽牵伸装置制得的原丝直径更均匀,表面平整且沟槽清晰、细致和均匀,具有更为优化的微观结构。在三种拉伸方式的对比中结果均表明:两段合一式拉伸方式的原丝具有更加优越的结构性能。为现有原丝生产工艺的改进,为高性能的碳纤维原丝的制备创造了有利的条件。
PAN fiber is the key precursor of the high-performance carbon fiber preparation,which has a significant impact on carbon fiber.The PAN precursor's low quality is the bottleneck that hinders the development of carbon fiber in China.Therefore,research on the relationship between PAN filament spinning process and the fiber properties has great significance for improving and enhancing the performance of the carbon fibers.
     Because the macromolecular structure of the primary fiber is lack of directional orientation, then its strength is very low.For improving the fiber strength,we need increase its orientation by drawing.The effect of single drafting is limited which could not achieve the mechanical requirement.Therefore,we must use two or multi-level drawing.Drafting the fiber by saturated steam is one of the key technologies to improve the performance of the precursor.However,the technology of this field in our country has many defects,which resulted in the occurrence of broken fiber.
     In this paper,X-ray diffraction,scanning electron microscopy,sound velocity method,and single-tow stretch were employed to test experimental precursors' strength,breaking elongation, density,boiling water shrinkage,the degree of crystallinity and orientation,and grain size,etc. Intensive research was carried out on the drafting under the saturated steam's effect on the structure and performance of the PAN.The results showed that the mechanical properties of precursor are best when the vapor pressure is 5 kg/cm~2 and the pressure difference between two different domains in the of drawing tube is 2kg/cm~2.
     The crystallinity degree of the precursor was obtained from X-ray diffraction.With the increasing of draw ratio,the crystal space is not changed.The sound velocity method and X-ray diffraction measurement showed that the degree of orientation increased with the growth of tensility.The research on the change rate of fiber boiling water shrinkage indicated that fiber stress was related to the drawing of the multiple and temperature.The proper control of the drawing tension and humidity can increase the fiber mechanical properties.The comparative picture of scanning electron microscope showed that two-one-type saturated steam drawing device can obtain the precursor with uniform diameter,smooth surface and clear groove,as well as a more optimized micro-architecture.The results of the comparison with three stretching modes showed that two-one-type precursor had more superior structure performances.It improved the existing process of PAN precursor production and created proper experiment conditions for the high-performance carbon fiber precursor preparation.
引文
[1]肖长发.纤维复合材料[M],北京:中国石化出版社,1995:1-55.
    [2]张家杰.国内外碳纤维生产现状及发展趋势[J],化工技术经济,2005,23(4):12-15.
    [3]西鹏,高晶,李文刚.高技术纤维[J],北京:化学工业出版社,2004:166-167.
    [4]赵稼祥.世界碳纤维的需求[J],高科技纤维与应用,2005,30(2):7-10.
    [5]王延相,王成国,朱波,等.网状和皮芯结构对生产高性能碳纤维组织演变的影响[J],材料科学与工程学报.2005.23(3):325-330.
    [6]莫至深,张宏放.晶态聚合物结构和X射线衍射[J],北京:科学出版社,2003:136-229.
    [7]Davidson J A,Jung H T,Hudson S D,etc.Investigation of molecular orientation in melt-spun high acrylonitrile fibers[J],Polymer,2000,41:3357-3364.
    [8]张旺玺.聚丙烯腈基碳纤维的新进展[J],高科技纤维与应用,2001,26(5):12-14.
    [9]Wang Z Q,Zhou A Q,Pen S N,etc.Structure and properties of melt-spun high acrylonitrile copolymer fibers via continuous zone-drawing and zone-annealing processes[J],Thermochimica Acta,2003,396:87-96.
    [10]贺福,杨永岗.突破碳纤维产业化的“瓶颈”原丝已是当务之急[J],高科技纤维与应用,2001,26(6):1-5.
    [11]贺福,杨永岗,王润娥.用SEM研究PAN基碳纤维的表面缺陷[J],高科技纤维与应用,2002,27:25-29.
    [12]张旺玺.提高聚丙烯腈原丝及其碳纤维质量的研究[J],上海纺织科技,2004,32(6):11-14.
    [13]徐梁华,张巍,童元建,等.PAN原丝工艺过程结晶行为的研究[J],新型碳材料 1997,12(3):31-33.
    [14]高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺[J],合成纤维工业,2002,25(4):35-36.
    [15]大卫R.萨利姆著,高绪珊,吴大成译.聚合物纤维结构的形成[J],北京:化学工业出版社2004 355-400.
    [16]贺福.高性能碳纤维原丝与加压水蒸气牵伸机[J],高科技纤维与应用.2004,29(6):13-15.
    [17]贺福.碳纤维及其应用技术[M],北京:化工大学出版社,2004.
    [18]Bhanu V A,Rangarajan P,Wiles K.Synthesis and characterization acrylonitrile methyl acrylate statistical copolymers as melt process able carbon fiber precursors[J],Polymer,2002,43:4841-4850.
    [19]唐春红,张旺玺,曹维宇,刘杰,吴刚.不同牵伸倍数的PAN原丝结构性能的研究[J],塑料工业,2004,32(3):54-57.
    [20]朱岿立,潘鼎.干喷湿纺聚丙烯腈纤维牵伸工艺研究[J],合成纤维工业.2003,26(2):9-12.
    [22]陈方泉,陈惠芳.二次牵伸对干湿法PAN原丝结构性能的影响[J],合成纤维工业.2003,26(2):4-7.
    [23]Zhang W X,Liu J,Wu G..Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J],Carbon,2003,41(14):2805-2812.
    [24]贾文杰.高性能聚丙烯腈原丝制备工艺优化[D],山东大学硕士论文.济南:山东大学,2005.
    [25]Bahrmi S H,Bajaj P,Sen K.Effect of Coagulation Conditions on Properties of Poly(acylonitrile-carboxylic acid) Fibers,Journal of Applied Polymer Science[J],2003,89:1825-1837.
    [26]陈厚.高性能聚丙烯腈原丝纺丝原液的制各及纤维成形机理研究[D],山东大学博士学位论文.济南.:山东大学,2004.
    [27]孙金峰,陈杰,刘伟凌,朱伟平,吴永兴.PAN原丝性能对碳纤维强度影响的讨论[J],高科技纤维与应用,2006,3 1(2):37-46.
    [28]杨茂伟.聚丙烯腈原丝纺丝工艺与性能的相关性研究[D],山东大学硕士学位论文,济南:山东大学,2007.
    [29]韩曙鹏,徐梁华,曹维宇,姚红.X射线衍射法研究聚丙烯腈原丝的晶态结构[J],北京化工大学学报,2005,32(2):63-67.
    [30]王延相,王成国等.聚丙烯腈基碳纤维的组织结构演变过程研究[J],功能高分子学报,2003,16(1):85-90.
    [31]潘鼎.聚丙烯腈(PAN)基碳纤维国内技术新进展[J],技术创新,2005,12(20):65-68
    [32]Mukundan T.A photocrosslinkable melt processible acrylonitrile terpolymer as carbon fiber precursor[J],Polymer,2006,47:4163-4171.
    [33]韩曙鹏,徐梁华,曹维宇,姚红 白丽芳.成纤过程中PAN纤维聚集态结构的形成[J],新型炭材料,2006,21(1):54-57.
    [34]唐春红,吴彤,刘杰,吴刚.聚丙烯腈原丝微结构的X射线衍射分析[J],北京化工大学学报,2004,31(3):55-58
    [35]Hu D X,Wang C G,Bao Y j,Zhou B.Comparison of Structure and Properties among Various PAN Fibers for Carbon Fibers[J],J.Mater.Sci.Technol,2005,21(3):376-380
    [36]Oskar P,Dieter L,Herwig P.Textur of PAN and pitch-based carbon fibers[J].Carbon.2002,40(4):551-555.
    [37]Tse-Hao Ko.Characterization of PAN-based nonburing(nonflammable) fibers[J],Journal of Applied Polymer Science,1993,47(4):707-715
    [38]Law S J,Mukhopadhyay S K.Investigation of wet-spun acrylic fiber morphology by membrane technology techniques[J],Journal of Applied Polymer Science,1996,62:33-37.
    [39]陈蕾,杨明远,毛萍君,聚丙烯腈纤维的牵伸及热定型工艺[J],合成纤维工业,2001,4(2):4-7
    [40]王强.PAN/DMSO纺丝工艺与纤维形态的相关性研究[J],北京化工大学硕士学位论文,北京:北京化工大学,2000.
    [41]齐志军,宋威,林树波.PAN原丝生产过程对碳纤维强度的影响因素[J],高科技纤维与应用,2001,26(5):17-20.
    [42]陈稀,黄象安.化学纤维实验教程[M],北京:纺织工业出版社,1988:201-211
    [43]董纪震.合成纤维生产工艺学[M],北京,中国纺织出版社,1996,.
    [44]安娜.不同牵伸倍数聚丙烯腈原丝的结构表征及其力学性能研究[D],北京化工大学硕士学位论文,北京:北京化工大学,2007
    [45]罗益锋.世界PAN基碳纤维发展透析及对我国的研发建议[J],材料导报,2000,14(11):11-13
    [46]Bang Y H,Lee S,Cho H H.Effect of Methyl Acrylate Composition on the Microstructure Changes of High Molecular Weight Polyacrylonitrile for Heat Treatment[J],Journal of Applied Polymer Science,1998,68:2205
    [47]Bakerl A M,Windle A H.Evidence for a partially ordered component in polyethylene from wide -angle X-ray diffraction[J],Polymer,2001,42:672-679
    [48]张茵,赵炯心,潘鼎.碳纤维的性能缺陷及改进方法[J],化工新型材料,2003,31(8):25-27
    [49]葛曷一.聚丙烯腈原丝与碳纤维结构相关性研究[D],山东大学博士论文,济南:山东大学,2007.
    [50]Chen J C,Harrison I R.Modification of polyacrylonitrile(PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF)[J].Carbon,40(2002):25-45
    [51]Serkov A T,Zlatoustova L.A,Properties and Use of Chemical Fibers[J].Fiber Chemistry,2000,32(4):279-281
    [52]张引枝,贺福,王贸章.PAN高性能碳纤维原丝发展概括[J].合成纤维工业.1993,16(2):53-57
    [53]张旺玺,彭洪修.聚丙烯腈原丝结构与性能的研究[J].合成技术及应用,2000,15(3):5-8
    [54]王伟,张兴华,温月芳.牵伸条件以及牵伸方式对PAN纤维结构的影响[J],化工新型材料,2009,37(6):71-73.
    [55]王琴.PAN原丝制备过程中结构演变规律的研究[D],太原:中国科学院三西煤炭化学研究所,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700