静电纺聚酰亚胺纤维的制备及结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝是制备聚合物纳米连续纤维的最有效的方法,近年来已经通过静电纺丝制备了不同聚合物纳米纤维。静电纺丝的研究主要集中在聚合物的溶液方面,对于熔体研究的很少,而静电纺丝要求聚合物能溶于易挥发的溶剂,这对静电纺丝的发展有一定的影响。目前静电纺丝纤维的应用已经在研发中,主要用来增强纳米复合材料,尽管关于静电纺丝理论的研究已经很深入,但是对于其工业化的研究还有待进一步的发展。
     静电纺丝技术是基于高压电场下导电流体产生高速喷射的原理发展起来的,基本过程是:聚合物溶液或者熔体在几万伏的高压电下表面分布了电荷,克服表面张力后产生射流,射流在运动的过程中伴随着溶剂的挥发,发生固化,最终落到接收板上形成纳米纤维毡,电纺丝制得的纤维直径一般在数十纳米到几微米之间。
     本文研究了聚酰亚胺的静电纺丝纤维,由于聚酰亚胺具有很大的刚性,因此我们使用聚酰亚胺的前驱体聚酰胺酸溶液进行纺丝,转化为聚酰亚胺。首先用PDA和ODPA在DMAc中合成聚酰胺酸溶液,研究了反应物浓度、反应时间等对聚酰胺酸溶液特性粘度的影响,从而找出了反应时间快、溶液特性粘度又比较高的条件,之后对溶液的动态流变性能进行了研究。
     合成的聚酰胺酸溶液,稀释制成了不同质量分数的聚酰胺酸溶液,静电纺丝制备聚酰胺酸纤维,静电纺丝中纤维受到电压、距离、溶液性质等方面的影响,因而我们研究了不同的质量分数溶液、电压和纺丝距离对聚酰胺酸纤维直径的影响,同时比较了加盐前后纤维的直径和形貌的变化,发现电压和接收距离对纤维的直径影响不是很大,加入盐后纤维的直径有大幅度的减小,纤维直径在几十到几百纳米之间。
     静电纺丝得到的聚酰胺酸纤维通过热处理和化学处理成功转化成了聚酰亚胺纳米纤维,转化后聚酰亚胺纤维的直径变小,纤维在转化过程中脱水酰亚胺化。对纤维进行了TGA、DSC热分析,发现酰亚胺化前后纤维的热性能有很大的变化。聚酰亚胺纤维有很高的耐热性。
     聚酰胺酸纤维热转化为聚酰亚胺纤维的过程比较复杂,不同的温度酰亚胺化的程度不同,实验分析了不同酰亚胺化温度下聚酰亚胺的反应动力学和热分解动力学特征,对其分别用Kissinger和Ozawa计算了不同升温速率下的活化能,用两种方法得到的活化能相差不大,同时发现得到的聚酰亚胺纤维的活化能较大,再次证明聚酰亚胺的耐热性能较好。
Electrospinning has been recognized as an efficient technique for the fabrication of polymer nanofibers. Various polymers have been successfully electrospinning into ultrafine fibers in recent years mostly in solvent solution and some in melt form. The solution must be volatile, which has a great effect on the development of electrospinning. Potential applications based on such fibers specifically their use as reinforcement in nanocomposite development have been realized. The theory of electrospinning has already been matured while the applications have been underway.
     Electropinning origins from that electrically charged fluid is forced jets in the high voltage electrostatic field. Electrospinning occurs when the electrical forces at the surface of a polymer solution or melt overcomes the surface tension and causes an electrically charged jet to be ejected. When the jet dries or solidifies, an electrically charged fiber remains. This charged fiber can be directed or accelerated by electrical forces and then collected in mats or other useful geometrical forms. The diameters of electrospun fibers are in the range of tens of nanometers to several micrometers.
     In this paper PDA and ODPA were dissolved in dimethylacetamide(DMAc), which reacted with each other in order to produce the PAA solution. Then the PAA solution was electrospun into nanofibers which was then imidized into PI nanofibers.
     Research about the effects of reaction time, reaction concentrations et al on the intrinsic viscosit of the PAA solution were done. And the best conditions to synthesize the solution with a higher intrinsic viscosit were found. Then the dynamic rheology of the solution was studied.
     There are several effects on the electrospinning of solutions, such as voltage, distance, and solution property. In this paper the solution was diluted into different concentrations in order to study these effects. As a result the voltage and distance had a slight influence on the diameters of the nanofibers. The solutions that added with salt and without salt were electrospun into nanofibers too, the result showed that the diameter of the solution with salt was much smaller than the solution without salt, so the adding of the salt can reforce the electricity of the solution which would get thinner nanofibers.
     The PAA nanofibers were imidized into PI nanofibers by thermal and chemical methods. The diameter of PI nanofibers was much smaller than the PAA nanofibers. The PI nanofibers were characterized by TGA and DSC, which concluded that the PI nanofibers had a high heat resistant.
     The process of the imidization was very complicated, and different tempetature reflected different degree imidization, the thermal dynamics of the PI nanofibers with different degree imidization were analysised. We calculated the reaction activation energy and decompositon activation energy of the PI nanofibers using Kissinger and Ozawa at different calefactive rates by the DSC and TGA. The activation energy was almost equal by this two methods. This also gave the evidence that the PI nanofibers have a high heat resistant property.
引文
[1]芦长椿.纳米纤维技术新进展[J].纺织导报,2008,(5):60-64.
    [2]杨恩龙,王善元,李妮,等.静电纺丝技术及其研究进展[J].产业用纺织品,2007,(8):7-9.
    [3]Formhais A.Process and apparatus for preparing artificial threads[P].US Pat Appl,US 1,975,504,1934.
    [4]Simons H L.Process and apparatus for producing Patterned non-woven fabrics[P].US Pat Appl,US 3,280,229,1966.
    [5]Larrondo L,John R S T.Electrostatic fiber spinning from polymer melts[J].J Polym Sci Polym Phys,1981,19:909.
    [6]Doshi J,Reneker D H.Electrospinning process and applications of electrospun fibers[J].Electrostat,1995,35:151.
    [7]Spovak A F,Dzenis Y A,Reneker D H.A model of steady state jet in the electrospinning process[J].Mech Res Com,2000,27:37.
    [8]Reneker D H.Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J].Appl Phys,2000,87(9):4531.
    [9]Wang L,Yu Y,Chen P C,et al.Electrospinning synthesis of C/Fe_3O_4 composite nanofibers and their application for high performance lithium-ion batteries[J].J Power Sources,2008,183(2):717-723.
    [10]Agarwal S,Wendorff J H,Greiner A.Use of Electrospinning Technique for Biomedical Applications[J].Polymer(2008),doi:10.1016/j.polymer.2008.09.014.
    [11]Sill T J,Von Recum H A.Electrospinning:Applications in drug delivery and tissue engineering[J].Biomaterials,2008,29(13):1989-2006.
    [12]覃小红,王新威,胡祖明,等.静电纺丝聚丙烯睛纳米纤维工艺参数与纤维直径关系的研究[J]_东华大学学报,2005,31(6):16-21.
    [13]黄美荣,李新贵,曾剑峰,等.导电聚合物纳米纤维的成型[J].现代化工,22(12):10-13.
    [14]张锡玮,夏禾,徐纪刚,等.静电纺丝法纺制纳米级聚丙烯腈纤维毡[J].塑料,2000:29(2):16-19.
    [15]刘芸,戴礼兴.静电纺丝纤维形态及其主要影响因素[J].合成技术及应用,2005,31(6):16-21.
    [16]Rutledge G C,Fridrikh S V.Formation of fibers by electrospinning[J].Adv Drug Deliver Rev,2007,59(14):1384-1391.
    [17]Nah C,Han S H,Lee M,et al.Characteristics of polyimide ultrafine fibers prepared through electrospinning[J].Polym Int(2003),doi:10.1002/pi.1106.52:429-432.
    [18]Theron S A,Yarin A L,Zussman E,et al.Multiple jets in electrospinning:experiment and modeling[J].Polymer,2005,46(9):2889-2899.
    [19]Kim G H,Cho Y,Kim W D.Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode[J].Eur Polym J,2006,42(9):2031-2038.
    [20]Liu C K,Sun R,Lai K,et al.Preparation of short submicron-fiber yarn by an annular collector through electrospirming[J].Mater Lett,2008,62(29):4467-4469.
    [21]Han T,Reneker D H,Yarin A L.Buckling of jets in electrospinning[J].Polymer,2007,48(20):6064-6076.
    [22]Desai K,Kit K.Effect of spinning temperature and blend ratios on electrospun chitosan/Poly(acrylamide) blends fibers[J].Polymer,2008,49(19):4046-4050.
    [23]李敏,陈登龙,吴钦缘.静电纺丝仪[P].中国,CN 2006606510125960.6,2006.
    [24]覃小红,王善元.Taylor锥多喷头静电纺丝机[P].中国,CN 10172744.1,2007.
    [25]赵勇,孔中伟,江雷.多流体复合静电纺丝装置[P].中国,CN 10062722.X,2007.
    [26]严玉蓉,邱智华,周怀超.连续静电纺丝的供液装置[P].中国,CN 20050323.7,2007.
    [27]Spivak A F,Dzenis Y A.Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field[J].Appl Phys Lett 1998,73(21):3067-3069.
    [28]Shin Y M,Hohman M M,Brenner M R et al.Experimental characterization of electrospinning:the electrically forced jet and instabilities[J].Polymer,2001,42(25):9955-9967.
    [29]He J,Wu Y,Zuo W.Critical length of straight jet in electrospinning[J].Polymer,2005,46(26):12637-12640.
    [30]Qin x H,Wang Y Q,He J H,et al.Effect of LiCl on electrospinning of PAN polymer solution:theoretical analysis and experiraental verification[J].Polymer,2004,45(18):6409-6413.
    [31]Qin X H,Wang S Y,Sandra T,et al.Effect of LiCl on the stability length of electrospinning jet by PAN polymer solution materials[J].Polymer,2005,59:3102-3105.
    [32]Reneker D H,Yarin A L.Electrospinningjets and polymer nanofibers[J].Polymer,2008,49(10):2387-2425.
    [33]李妮,覃小红,王善元.溶液性质对静电纺纤维形态的影响[J].纺织学报,2008,29(4):1-4.
    [34]Thompson C J,Chase G G,Yarin A L.Effects of parameters on nanofiber diameter determined from electrospinning model[J].Polymer,2007,48(23):6913-6922.
    [35]Fong H,Chun I,Reneker D H.et al.Beaded nanofibers formed during electraspinning[J]. Polymer,1999,40(16):4585-4592.
    [36]Satya Shivkuma G E.Bead structure variations during electrospinning of polystyrene[J].Material science,2006,41:5704-5708.
    [37]Yu J,Qiu Y,Zha X.Production of aligned helical polymer nanofibers by electrospinning[J].Eur Polym J,2008,44(9):2838-2844.
    [38]Koski A,Yim K,Shivkumar S.Effect of molecular weight on fibrous PVA produced by electrospinning[J].Mater lett,2004,58(3-4):493-497.
    [39]Huang P C,Chen S,Lai C,et al.Electrospun polymer nanofibers with small diameter[J].Nanotechnology,2006,17:1558-1563.
    [40]Yun K M,Hogan Jr.C J,Matsubayashicet Y,et al.Nanoparticle filtration by electrospun polymer fibers[J].Chem Eng Sci,2007,62(17):4751-4759.
    [41]房乾,陈登龙,姚清华,等.静电纺丝在组织工程支架材料制备中的应用[J].福建师范大学学报,2008,24(1):105-107.
    [42]Pedicin A,Farros R J.Thermally induced color change in electrospun fiber mats[J].Polym Sci Polym Phys,2004,42(5):752-757.
    [43]Sun Z,Reneker D H.Thin,flexible and impermeable films made using clay sheets and clay reinforced polymer nanofibers[J].Polymer Preprints,2003,44:166-167.
    [44]Wang Y,Serrano S,Santiago-Aviles J J.Conductivity measurement of electrospun PAN-based carbon nanofiber[J].Journal of Materials sciences Letters,2002,21:1055-1057.
    [45]蒋大伟,姜其斌,刘跃军,等.聚酰亚胺的研究及应用进展[J].绝缘材料,2009,42(2):33-35.
    [46]何伟,李振中,张文熊.聚酰胺复合材料增强增韧研究进展[J].中国塑料,2006,20(3):1-6.
    [47]李焱,于俊荣,刘兆峰.聚酰胺酸的合成及其酰亚胺化研究[J].合成纤维,2006,35(4):6-9.
    [48]景晓辉.聚酰胺酸合成工艺与聚酰亚胺膜制备及表征[J].应用化工,2004,33(6):33-35.
    [49]Houwink,Relation between the polymerization degree determined by osmotic and viscosimetric methods[J].J P Prakt Chem,1940,157:15-18.
    [50]李婷婷,黄智敏,舒红英.聚酰胺酸的Mark-Houwink方程参数[J].南昌航空大学学报,2008,22(3):49-56.
    [51]梁燕,吕桂琴,张军,等.高分子溶液特性粘度测定的新方法[J].化学学报,2007,65(9):3.
    [52]郑昌仁.高聚物分子量及其分布[M].北京:化学工业出版社,1986,34-36.
    [53]今日光,华幼卿.高分子物理学[M].北京:化学工业出版社,2005,200-207.
    [54]Byelpnikevichn G,Sklizkova V P,Kuddruavtsev V V,et al.Effect of the Thermal dynamic quality of solventonthe viscosity properties of concentrated solutions of poly(4,4prime 2oxydiphenylene) pyromellitamic acid[J].Polymer Science,1988,30(5):1153-1157.
    [55]Jenekh E,Samson A.Rheology and Spin Coating of Polyimide Solutions[J].Polymer Engineering and Science,1983,23(15):830-1134.
    [56]徐鸿升.多组分聚合物的动态流变特性[J].高分子材料科学与工程,2004,20(6):24-28.
    [57]丁孟贤,何天白.聚酰亚胺新型材料[M].北京:科学出版社,1998,11-15.
    [58]Li W H,Wu Z Q,Jiang H.High-performance aromatic polyimide fibers[J].Journal of Materials Science,1996,31(16):4423-4431.
    [59]刘润山,郭铁东,赵文秀.芳香聚酰哑胺化学若干问题[J].高分子材料科学与工程,1994,(2):127.
    [60]梁伯润.高分子物理[M].上海:中国纺织出版社,2001:97.
    [61]钱保功.高聚物的转变和松弛[M].北京:科学出版社,1986:98-99.
    [62]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2001:261.
    [63]张清华,陈大俊,丁孟贤.聚酰亚胺纤维[J]高分子通报,2001,(5):66-73.
    [64]张清华,罗伟强,张春华.聚酰亚胺初生纤维的形态结构[J].合成纤维工业,2003,26(3):9-11.
    [65]张清华,张春华,陈大俊,等.聚酰亚胺高性能纤维研究进展[J].高科技纤维与应用,2002,27(5):11-14.
    [66]刘向阳,顾宜.高性能聚酰亚胺纤维[J].新型化工材料,2005,33(5):14-17.
    [67]Deitzel J M,Koaik W,Mcklight S H,et al.Electrospinning of polymer nanofibers with specific surface chemistry[J].Polymer,2002,43:1025.
    [68]胡建聪.高压静电纺丝法制备聚酰亚胺超细纤维无纺布膜[J].弹性体,2009,19(1):35-37.
    [69]Nah C,Han S H,Lee M,et al.Characteristics of polyimide ultrafine fibers prepared through electrospinning[J].Polym Int,2003,52:429-432.
    [70]Huang C B,Wang S Q,Zhang H A,et al.High strength electrospun polymer nanofibers made from BPDA-PDA polyimide[J].European Polymer Journal,2006,5(42):1099-1104.
    [71]王岩,邵正彬,张玉军,等.静电纺聚酰亚胺非织造布的制备与表征[J].合成纤维,2007,36(2):5-7,11.
    [72]周浩生.荷电射流雾化研究[J].江苏理工大学学报,1995.16(4):32-35.
    [73]Frost L W,Kesse J.Spontaneous degradation of aromatic polypromellitamic acids[J].J Appl Polym Sci,1964,8(3):1039-1051.
    [74]Kreuz J A,Endrey A L,Gay F P,et al.Studies of thermal cyclizations of polyamic acids and tertiary amine salts[J].J Polym Sci Pol Chem,1966,4(10):2607-2616.
    [75]Kumar D.Condensation polymerization of pyromellitic dianhydride with aromatic diamine in aprotic solvent:a reaction mechanism[J].Polym Sci Polym Chem,1981,19(3):795-805.
    [76]Kumar D.Structure of aromatic polyimides[J].Polym Sci Polym Chem,1980,18(4):1375-1385.
    [77]Endry A G.Process for preparing polyimides by treating polyamide-acids with lower fatty monocarboxylic acid anhydrides[P].美国,US 3179630,1965.
    [78]Endry A G.Aromatic polyimide particles from polycyclic diamines[P].美国,US 3179631,1965.
    [79]Hendrix W R.Vatve for compressors for ice making apparatus[P].美国,US 317963,1885.
    [80]刘叶,丁孟贤,徐纪平.聚酰胺酸化学环化研究[J].高分子材料科学与工程,1994,10(1):24 - 27.
    Liu Ye,Ding Mengxian,Xu Jiping.Investigation on chemical cyclization of poly(amic acid)[J].PolymerMaterials Science and Engineering,1994,10(1):24 - 27.
    [81]王少峰,朱梦冰,蒋远媛,等.聚酰胺酸薄膜的化学亚胺化[J].南京工业大学学报,2007,30(6):42-43.
    [82]Navarre M.In Polyimides:Synthesis,Characterization and Application,Vol.1,K.L Mittal,ed[M].Plenum Press,New York,1984:429.
    [83]Ding Y,Benjamin B,Nelson Joyce K.Polyimide membranes derived from poly(amic acid)salt precursorpolymers[J].Composite membrane,Macromolecules,2001,35(3):905.
    [84]Liu W B,Qiu Q H,Wang J,et al.Curing kinetics and properties of epoxy resin-fluorenyl diamine systems[J].Polymer,2008,49(20):4399-4405.
    [85]Catalani A,Bonicelli M G.Kinetics of the curing reaction ofa diglycidyl ether of bisphenol A with a modified polyamine[J].Thermochim A cta,2005,438(1 ):126-129.
    [86]Rou D,Musta F,Cacaval C N.Investigation of the curing reactions of some multifunctional epoxy resins using differential scanning calorimetry[J].Thermochim Acta,2001,370(1):105-110.
    [87]Lopez J,Lopez-Bueno I,Nogueira P,et al.Effect of poly(styrene-co-acrylonitrile) on the curing of an epoxy/amine resin[J].Polymer,2001,42(4):1669-1677.
    [88]Wang C S,Lin C S.Novel phosphorus-containing epoxy resins.Part Ⅱ:curing kinetics[J].Polymer,2000,41(24):8579-8586.
    [89]Macan J,Brnardic I,Orlic S,et al.Thermal degradation of epoxy-silica organic-inorganic hybrid materials[J].Polym Degrad Stab,2006,91(1):122-127.
    [90]Lee J Y,Song Y W,Shim M J,et al.Cure rate of DGEBA/MDA/GN/HQ system by differential scanning calorimetry analysis[J].Mater Chem Phys,1997,50(3):256-260.
    [91]Chu F X,McKenna T,Lu S D.Curing kinetics of an acrylic resin/epoxy resin system using dynamic scanning calorimetry[J].Eur Polym J,1997.33(6):837-840.
    [92]Shim S B,Seferis J C,Eom Y S,et al.Thermal characterization and comparison of structural prepregs with different cure temperatures[J].Thermochim Acta,1997,291(1):73-79.
    [93]de Miranda M I,Tomedi C,Bica C D,et al.Kinetic study on the effect of filler concentration on crosslinking of diglycidylether of bisphenol-A with 4,4'-diaminodiphenylmethane[J].Polymer,1997,38(5):1017-1020.
    [94]de Miranda M I,Bica C D,Samios D.Application of the half-width kinetic method on the amine-initiated cross-linking of an epoxy resin with cyclic anhydrides[J].Polymer,1997,38(19):4843-4846.
    [95]Montserrat S,Flaque C,Calafell M,et al.Thermal characterization and comparison of structural prepregs with different cure temperatures[J].Thermochim Acta,1995,269(20):213-229.
    [96]Kissinger H E.Reaction kinetics in differential thermal analysis[J].Anal Chem,1957,29(11):1702-1706.
    [97]Ozawa T.Kinetic analysis of derivative curves in thermal ananlysis[J].J Therm Anal,1970,2:301-324.
    [98]Harsch M,Karger-Kocsis J,Holst M.Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin[J].Eur Polym J,2007,43(4):1168-1178.
    [99]Sourour S,Kamal M R.Differential scanning calorimetry of epoxy cure:isothermal cure kinetics[J].Thermochim Acta,1976,14:41-59.
    [100]Ho T H,Leu T S,Sun Y M,et al.Thermal degradation kinetics and flame retardancy of phosphorus-containing dicyclopentadiene epoxy resins[J].Polym Degrad Stab,2006,91(1):2347-2356.
    [101]Wang Q F,Shi W F.Kinetics study of thermal decomposition of epoxy resins containing flame retardant components[J].Polym Degrad Stab,2006,91(8):1747-1756.
    [102]Macan J,Brnardic Ⅰ,Orlic S,et al.Thermal degradation of epoxy-silica organic-inorganic hybrid materials[J].Polym Degrad Stab,2006,91(10):122-127.
    [103]Liang H B,Ding J,Shi W F.Kinetics and mechanism of thermal oxidative degradation of UV cured epoxy acrylate/phosphate triacrylate blends[J].Polym Degrad Stab,2004,86(2):217-223.
    [104]Dyakonov T,Mann P J,Chen Y,et al.Thermal analysis of some aromatic amine cured model epoxy resin systems-Ⅱ:Residues of degradation[J].Polym Degrad Stab,1996,54(1):67-82.
    [105]闰明涛.聚对苯二甲酸甲二醋的热分解行为及其动力学研究[J].中国塑料,2005,19(9):57-60.
    [106]陈镜乱,李传儒.热分析及其应用[M].北京:科学出版社.1985,126-127.
    [107]罗建新,张敏,邹志强.聚碳酸亚环己酯的热分解性能及动力学[J].高分子材料科学与工程,2009,25(5):86-88.
    [108]张莉,隋坤艳,杨明,等.聚萘二甲酸乙二酯的热降解动力学-非等温热降解动力学[J].高分子材料科学与工程,2009,25(2):109-111.
    [109]赵春秋,刘胜平,刘敏.酚改性二甲苯甲醛树脂的热分解动力学[J].高分子材料科学与工程.2008,24(11):107-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700