射频等离子法制备的TiO_2纳米晶、PAN预氧化纤维纳米尺度微观结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料及材料的纳米尺度微观结构研究是材料科学的两个重要领域。纳米材料的结构与制备条件密切相关,表征是准确判断制备条件对其结构影响的唯一途径。材料的微观结构表征应采用多种手段,从多角度、多尺度下进行,表征手段应准确、方便、有效,且各种手段对同一结构特征的表征结果应一致,才能指导实验并为新的制备技术提供依据。
     等离子体系统,可在“快速、纯净、高活性”条件下使反应发生。等离子体在材料制备中的作用,一是可用于纳米材料的制备;二是可提高所制备材料微晶结构的有序化。
     射频等离子体的最大特点是采用无极放电,不存在电极损耗污染。射频高温等离子体,由于其高效、清洁等特点尤其适于制备纳米催化材料或半导体材料,如作为光催化剂的TiO_2纳米晶。而利用射频低温等离子体的高能量,可使制备碳纤维、石墨化纤维所用原丝,如PAN(聚丙烯腈),在预氧化阶段的较低温度下,其微观结构向有序化方向转变。纳米TiO_2及PAN预氧化纤维是高、低温射频等离子制备技术应用中具有代表性的两类材料,其制备过程、表征手段等对等离子法制备的其它纳米材料,或在纳米尺度下研究材料微观结构的工作具有一定的借鉴作用和参考价值。
     TiO_2纳米晶的粒径、尺寸分布、晶型及晶相组成等对光催化活性影响很大,由于其它方法制备的TiO_2结晶度较差且易引起颗粒硬团聚等原因,
Nano materials and microstructures of materials at nano scales are two key regions on the study of material science. The structures of nano materials are closely related to the preparation conditions, and characterization is the unique way to accurately judge how the preparation conditions affect the structures. The microstructures of materials should be characterized using varied means, in different angles and multiple scales. The characterization meanes should also be accurate, convenient and effective. At the mean time, only the identical characterization results for the same structure feature using different means that can guide experiments and provide scientific basis for the new preparation techniques.
    Plasma system can make the reactions happen under conditions of fastness, purity and high activity. The roles of plasma playing on material preparation are: one is for the preparing of nano materials, the other one is for the increasing microcrystalline structure ordering of the prepared materials.
    The maximum characteristic of radio frequency plasma is that there is no electric pole in the discharge space, so it is in nonexistence of dissipation
引文
[1] 白春礼.全面理解纳米科技内涵促进纳米科技在我国的健康发展[J].微纳电子技术,2003.1:1~3
    [2] 姚骏恩.纳米测量仪器和纳米加工技术[J].中国工程科学,2003,5(1):33~37
    [3] 师昌绪,李克健,吴述尧.关于发展我国纳米科学技术的几点思考[J].新材料产业,2001,(9):1~5
    [4] Hu Y, Chen J F, Chert W M, et al. Synthesis of novelnickel sulfide submicrometer hollow spheres [J]. Adv Mater, 2003, 15:726~729
    [5] Wang H, Zhu J J, Zhu J M, et al. Sonochemical method for the preparation of bismuth sulfide nanorods [J]. J Phys Chem B, 2002, 106:3848~3854
    [6] Wang H, Lu Y N, Zhu J J, et al. Sonochemical fabracation and characterization of stibnite nanorods [J]. Inorg Chem, 2003, 42:6404~6411
    [7] Seo W S, Jo H H, Lee K, et al. Preparation and optical properties of highly crystalline, colloidal, ands size-controlled indium oxide nanoparticles [J]. Adv Mater, 2003, 15:795~797
    [8] Gou L, Murphy C J. Solution-phase synthesis of Cu_2O nanocubes [J]. Nano Lett, 2003, 3:231~234[9] Hyeon T, Lee S S, Palk J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J]. J Am Chem Soc, 2001, 123:12798~12801
    [10] Yu S H, Liu B, Mo M S, et al. General synthesis of single-crystal tungstate nanorods/nanowires:a facile, low-temperature solution approach [J]. Adv Funct Mater, 2003,13: 639~647
    [11] Ma C, Moore D, Li J, et al. Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS [J]. Adv Mater, 2003, 15:228~231
    [12] Li Y B, Bando Y, Golberg D. Single-crystalline In_2O_3 nanotubes filled with In [J]. Adv Mater, 2003, 15:581~585
    [13] Zhu Y C, Bando Y, Uemura Y. ZnS-Zn nanocables and ZnS nanotubes [J]. Chem Communn, 2003, 836~837
    [14] Li X G, Takallashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction [J]. Magn and Magn Mater, 2000, 214:195~203
    [15] Jiang X L, Boulos M I. Particle melting, flattening, and stacking behaviors in the induction plasma deposition of tungsten [J]. Trans Nonferrous Met Soc China, 2001, 11(5):811~816
    [16] Sun D M. Kinetics of the growth of Al-oxidized films in a high-frequency oxygen plasma [J]. Vacuum, 1995, 47(2):113~117
    [17] 李志杰,潘学铃,孙维民,等.A_3O_3N纳米线的制备与表征[J].物理学报,2005,54(1):450~453
    [18] 解思深.关于我国发展纳米科技的一些思考[J].中国科学基金,2004,6:326~329
    [19] 白春礼.纳米科技及其发展前景[J].科学通报,2001,46(2):89~92
    [20] 张立德.纳米测量学的发展与展望[J].现代科学仪器,1998,(1-2):30~33
    [21] Hirano H. Factors promoting research and development in electron microcopy in Japan [J]. JEOL News (Electron Optics Instrumentation), 1999, 34E(1): 8~9
    [22] Ono A. Development of electron optical technology for JEOL's electron probe instruments [J]. JEOL News (Electron Optics Instrumentation), 1999, 34E(1): 64~66
    [23] Yao J E. Development and production of electron microcopes in China: A historical??survey[J].电子显微学报,2002,21(3):354~367
    [24] Gao W, Robert J. Chen H, et al. Construction and testing of a nanomachining instrument [J]. Precision Engineering, 2000, 24:320~328
    [25] Mike H, Robert H, David T. The long-range scanning stage: a novel platform for scanned probe microscopy [J]. Precision Engineering, 2000, 24:191~209
    [26] 陈新谋.用现代加工技术改造碳纤维传统制造方法[J].高科技纤维及应用,2004,29(6):46~52
    [27] 陈杰瑢.低温等离子体化学及应用[M].北京:科学出版社,2001
    [28] Li X G, Chiba A, Takahashi S. Preparation oxidationand magnetic properties of Fe-Cr ultrafine powders by hydrogen plasma-metal reaction [J]. J Magn Magn Mater, 1997, 173:101~108
    [29] Sarma D I M et al. Surface modification of polymers under cold plasma condition [J].Appl J, 1996, (8): 187~204
    [30] Wang X Z, Hu Z, Chen X, et al. Preparation of carbon nanotubes and nano-particals by microwave plasma-enhanced chemical vapor deposition [J]. Scripta Mater, 2001, 44:1567~1570
    [31] Jonne Y P, Kwong Chart, Kwan Moon Sin, et al. Study of physico-chemical surface treaments on dyeing properties of polyamides. Part 1: effect of tetrafluoromethane low temperature plasma [J]. Color Technol, 2002, 118(1): 26~30
    [32] Tanaka K, Ishizaki K, Uda M, et al. Production of ultra-fine silicon powders by the arc plasma method [J]. J of Mater Sci, 1987, 22:2192~2198
    [33] Ohno S, Uda M. Preparation for ultrafine particles of Fe-Ni, Fe-Cu and Fe-Si alloys by hydrogen plasma-metal reaction [J]. Jpn.Inst Metals, 1989, 53(9): 946~952
    [34] Uda M. Production of ultrafine meal and alloy powders by hydrogen thermal plasma [J]. Nanostructured Materials, 1992, 1(1):101~106
    [35] Gleiter H. Studying on ultrafine particles: crystallography, methods of preparation and technological application [J]. Prog in Mater Sci, 1989, 33:223~315
    [36] Smith R W. Reactive plasma spray forming for advanced materials synthesis [J]. Powder Metallurgy International, 1993, 25:9~16[37] Iwama S, Fukaya T, Tanaka K, et al. Nanocomposite powders of Fe-C system produced by the flowing gas plasma processing [J]. Nanostructured Materials, 1999, 12:241~244
    [38] Smith R W, Mutasim Z Z.Reactive plasma spraying of wearresistant coating[J].Joumal of Thermal Spray Technology, 1992, 1:57~63
    [39] Cai Z, Hwang Y J, Park Y C, et al. Preliminary investigation of atmospheric pressure plasma-aided desizing for cotton fabrics [J]. A Atcc-Review, 2002, 2(12):18~21
    [40] Mihaela Pascu, Cornelia Vasile, Mariana Gheorghiu. Modification of polymer blend properties by argon plasma/electron beam Treatment: Surface properties [J]. Materials Chemistry and Physics, 2003, 80:548~554
    [41] Loan I. Gulescu N E Characterizing polyester tabrics treated in electrical discharges of radio-frequency plasma [J]. Fextile Res J, 2000, (1): 1~7
    [42] 金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1983
    [43] Fujishima A, Honda K. Photolysis-decomposition of water at surface of an irradiated semiconductor [J]. Nature, 1972, 37(1):238~245
    [44] Tsai S J, Cheng S. Effect of TiO_2 crystalline structure in photocatalytic degradation of phenolic contaminants [J]. Catalysis Today, 1997, 33:227~235
    [45] Mattews R W. Photo-oxidation of organic material in aqueous suspensoins of titanium dioxide [J]. Wat Rev, 1990, 24:569~578
    [46] Hoffman M R, Martin S T. Environmental applications of semiconductor photocatalysis [J]. Chem Rev, 1995, 95(I): 69~96
    [47] Bickley R. A structural investigatjon of titanium dioxide photocatalysis [J]. Solid State Chem, 1991, 92:178~190
    [48] Nersisyan H H, Lee J H, Won C W. Combustion of TiO_2-Mg and TiO_2-Mg-C systems in the presence of NaCI to synthesize nanocrystalline Ti and TiC powders [J]. Materials Research Bulletin, 2003, 38(7):1135~1146
    [49] Yassine B, Didier R, Jean V W. Synthesis of photocatalytic TiO_2 nanoparticles: optimization of the preparation condations [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 157(1):47~53
    [50] Alam M J, Cameron D C. Preparation and characterizaation of TiO_2 thin films by sol-gel??method [J]. Joumal of Sol-Gel Science and Technology, 2002, 25:137~145
    [51] Goberman D. Microstructure development of Al_2O_3-13% TiO_2 plasma sprayed coatings derived from nanocrystalline powders [J].Acta Materials, 2002, 50:1141~1152
    [52] Ko T H, Ting H Y, Lin C H. The microstructure of stabilized fibers [J]. Journal of Applied Polymer Science, 1988, 35:863~874
    [53] Zhao L R, Jang B Z. The oxidation behavior of low temperature heat-treated carbon fibres [J]. Journal of Materials Science, 1997, (32):2811~2819
    [54] Paiva M C, Bemardo C A, Nardin M. Mechanical, surface and interfacial characterization of pitch and PAN-based carbon fibers [J]. Carbon, 2000, 38(9):1323~1338
    [55] Migoshi K, Yuezhen B, Dan Z, et al. Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages [J]. Carbon, 2003, 41(5):915~926
    [56] 赵稼祥.美国2002年世界碳纤维会议报告.(内部),2003
    [57] 高绪珊,吴达诚.纤维应用物理学[M].北京:中国纺织工业出版社,2001
    [58] J.B.唐纳特,R.C.班萨尔.碳纤维[M].北京:科学出版社,1989
    [59] Maria C C, Rosana M A, Raguel C R S, et al. Destruction of malodorous compounds using heterogeneous photocatalysis [J]. Environ Sci Technol, 1999, 33(16):2788~2792
    [60] Huang Z, Maness P C, Blake D M, et al. Bactericidal mode of titanium dioxide photocatalysis [J]. J of Photochem and Photobio A: Chem, 2000, 130:163~170
    [61] 徐兆瑜.纳米TiO_2的新功能及其应用进展[J].化工技术与开发,2003,32(6):27~33
    [62] Traversa E, Divona M, Luisa L S, et al. Sol-gel processed TiO_2-based nano-sixed powders for use in thick-film gas sensors for atmospheric pollutant monitoring [J]. Journal of Sol-Gel Science and Technology, 2001, 22(2): 167~179
    [63] Masashi S, Haruo O. Influence of particle size of titanium dioxide on UV-ray shielding property [J]. Jap Soc Colour Mater, 1995, 168(4):203~209
    [64] Jacoby W A, Maness P C, Wolfrum E J. Mineralization of bacterial cell mass on a photocatalytic surface in air [J]. Environmental Science and Technology, 1998, 32(17): 2650~2653
    [65] Dunford R S, Alinaro A, Cai L, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients [J]. Febs Lett, 1997, 418:87~90[66] Kikuchi Y, Sunada K, Lyoda T, et al. Photocatalytic bactericidal effect of TiO_2 thin film: dynamic view of the active oxygen species responsible for the effect [J]. J of Photochem and Photoblo A: Chem, 1997, 106:51~56
    [67] Blake D M, Maness P C, Huang Z, et al. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells [J]. Separation and Purification Methods, 1999, 28(1):1~50
    [68] Zhang A P, Sun Y P. Photocatalytic killing effect of TiO_2 nanoparticles on Ls-174-thuman colon carcinoma cells [J]. World J Gastroenterol, 2004, 10(21): 3191~3193
    [69] 孟翠省.纳米技术在高分子材料改性中的应用[J].化工新型材料,2001,29(2):3~6
    [70] 王本民.先进陶瓷材料的研究现状[J].化学进展,2000,12(3):357~359
    [71] Sun Y P, Fan C M. Effect of calcium ion on the adsorption of dissolved humic acid onto TiO_2 particles in water [J]. Progress in Natural Science, 2001, 11(10):760~765
    [72] Li X Z, Fan C M, Sun Y P. Enhancement of photocatalytic oxidation of humic acid in TiO_2 suspensions by increasing cation strength [J]. Chemosphere, 2002, 48:453~460
    [73] Alhakimi G, Studnicki L H. Photocatalytic destruction of potassium hydrogen phthalate using TiO_2 and sunlight: application for the treatment of industrial wastewater [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 154(2~3):219~228
    [74] 张梅,杨绪杰,陆路德,等.纳米TiO_2—一种性能优良的光催化剂[J].化工新型材料,2000,28(4):11~13
    [75] 黄汉生.日本TiO_2光催化剂环境净化技术开发动向[J].现代化工,1998,18(12):39~42
    [76] 许鹤鸣.碳纤维[M].北京:科学出版社,1979
    [77] Basova Y V, Hatori H, Yamada Y, et al. Effect of oxidation reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers [J]. Electrochem Commun, 1999,1(11):540~544
    [78] 贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004
    [79] Celler B E. Status and prospects for development ofpolyacrylonitrile fiber production [J]. Fibre Chemistry, 2002, 34(3):151~161
    [80] 赵稼祥.国外碳纤维进展[J].高科技纤维与应用,2001,26(5):7~13[81] Edie D D. The effect of processing on the structure of carbon fibers [J]. Carbon, 1998,36(4): 345~362
    [82] Barron V, Buggy M, Mckenna N H. Frequency effects on the fatigue behaviour on carbon fibre reinforced polymer laminates [J]. Journal of Materials Science, 2001, 36:1755~1761
    [83] Brasquet C, Rousseau B, Strade S H, et al. Observation of activated carbon fibres with SEM and AFM correlation with adsorption data in aqueous solution [J]. Carbon, 2000, 38(3):407~422
    [84] Binning G., Rohrer H. Surface studies by Scanning Tunneling Microscopy [J]. Phys Rev Lett, 1982(a), 49(1):57~61
    [85] Nakom W, Shin H, et. al. Effect of oxidation pre-treatment at 220 to 270℃ on the carbonization and activation behavior of phenolic resin fiber [J]. Carbon, 2003, 41:933~944
    [86] Perepelkin K E. Oxidized polyacrylonitrile fibres-OXYPAN [J]. Fibre Chemistry, 2003, 35(6): 409~416
    [87] Dubinin M M, Stoeckli H F. Homogeneous and heterogeneous micropore structure in carbonaceous adsorbents [J]. J Colloid Interf Sci, 1980, 75(1):34~42
    [88] Kasaoka S, Sakata Y, Tanaka E. Chemistry and industrial chemistry [J]. J Chem Soc Jpn,1987, 6:990~995
    [89] Balasubramanium M, Jain M K, Bliallacharya S K, et al. Conversion of acrylonitrile-based precursors to carbon fiber [J]. Journal of Materials Science, 1987, 22:3864~3872
    [90] Bajaj P, Streekumar T V, Sen K. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers [J]. J Appl Polym Sci, 2002, 86:773~787
    [91] 仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999
    [92] Bokhimi X, Morales A, Aguilar M, et al. International journalof hydrogen energy [J]. 2001, 26:1279~1287
    [93] Zhang Y H, Weidenkaff A, Reller A. Mesoporous structure and phase transition of nanocrystalline TiO_2 [J]. Materials Letters, 2002, 54(1):375~381[94] Ding X Z, Qi Z Z, He Y Z. Effect of tin dioxide on ruffle phase formation in sol-gel-derived nanocrystalline titania powders [J]. Mater Sci Lett, 1994, 4(6):663~668
    [95] Kobata A, Kusakabe K, Morooka S. Growth and transformation of TiO_2 crystallites in aerosol reactor [J]. AIChE J, 1991, 37(3):347~358
    [96] George P P, Sotitis E P. Photocatalytic destruction of phenol and salicylic acid with areosolmade and commercial titania powders [J]. Chem Eng Comm, 1996, 151:251~258
    [97] Ding Z, Lu G Q, Greenfield P F, et al. Role of the crystallite phrase of TiO_2 in heterogeneous Photocatalysis for Phenol oxidation in water [J]. J Phys Chem B, 2000, B104: 4815~4820
    [98] Sciafani A, Palmisano L, Schiavello M. Influence of the preparation method of TiO_2 on the photolytic degragationof phenol in aqueous dispersion [J]. J Phy Chem, 1990, 94:829~834
    [99] Madhusudan R K, Manorama S V, Ramachandra R A. Band gap studies on anatase titanium dioxide nanoparticles [J]. Materials Chemistry and Physics, 2003, 78(1):239~245
    [100] 施利毅,李春忠,房鼎业,等.TiCl_4-O_2体系高温反应制备超细TiO_2光催化材料的研究[J].无机材料学报,1999,14(5):717~725
    [101] Roger I B, Teresita G C, John S L, et al. A structure investigation of titanium dioxide photocatalysts [J]. J Solid State Chem, 1991, 92:178~187
    [102] Porter J F, Li Y G, Chan C K. The effect of calcinations on the microstructural characteristics and photoreactivity of gegussa P-25 TiO_2 [J]. Journal of Materials Science, 1999, 34:1523~1531
    [103] Pan N, Chen H C, Thompson J, et al. Investigation on the strength~size relationship in fibrous structures including composites [J]. Journal of Materials Science, 1998, 33:2667~2672
    [104] Zhang W X, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers [J]. Carbon, 2003, 41:2805~2812
    [105] Wu G P, Lu C X, Zhang R, et al. Effect of moisture on stabilization ofpolyacrylonitrile fibers [J]. Journal of Material Science, 2004, 39:2959~2960
    [106] Diefendorf R J, Tokarsky E. High-performance carbon fibers [J]. Polymer Engineeringand Science, 1975,15: 150-159
    
    [107] Li X J, Luo Q H, Zhu Y J, et al. Evolution of the composition and structure of PAN carbon fiber during preoxidation [J]. Science in China (Series B), 2001,44(2): 199-202
    
    [108] Ko T H, Chang S, Lin L M F. Preparation of graphite fibers from a modified PAN precursor [J]. J Mater Sci, 1992, 27(6): 6071-6078
    
    [109] Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-based carbon fibers [J]. Carbon, 1996, 34(11): 1427-1445
    
    [110] Donnet J B, Qin R Y. Study of Carbon Fiber Surfaces by Scanning Tunneling Microscopy, Part II, PAN-based High Strength Carbon Fibers [J]. Carbon, 1993, 31(1): 7-12
    
    [111] Fan Q C, Chai H F, Jin Z H. Effect of particle size of iron on reaction velocity of synthesis of Ti-C-Fe system [J].Trans Nonferrous Met Soc China, 2002, 12(2): 266-268
    
    [112] Yang J, Li D, Wang X, et al. Rapid synthesis of nanocrystalline TiO_2/SnO_2 binary oxides and their photoinduced decomposition of methyl orange [J]. Journal of Solid State Chemistry, 2002, 165(1): 193-198
    
    [113] Yang J, Mei S, Ferreira J M F. Hydrothermal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristics [J]. J Am Ceram Soc, 2001, 84(8): 1696-1702
    
    [114] Yasushige M, Yasuhiro O, et al. Titanium dioxide nanoparticles produced in water-in-oil emulsion [J]. Journal of Nanoparticle Research, 2001,2(3): 219-225
    
    [115] Ihara T, Miyoshi M, Ando M, et al. Preparation of a visible-light-active TiO_2 photocatalyst by RF plasma treatment [J]. Journal of Materials Science, 2001, 36: 4201-4207
    
    [116] Curcio F, Musici M, Noraron N, et al. Synthesis of ultrafine titania powders by a CW carbon dioxide laser [J]. Application Surface, 1990, 46(14): 225-232
    
    [117] Dang H X, Mao L Q, Li Q L, et al. Effect of treating temperature on microstructure and photoactivity of nanocrystalline TiO_2 [J]. Chemical Research, 2004,15(2): 1-5
    
    [118] Ahktar M K, Xiong Y, Pratsinis S E. VaPor synthesis of titania powder by tetrachloride oxidation [J]. AIChE J, 1991, 37(10): 1561-1570
    
    [119] Akhtar M K, Protsinis S E. Dopents in vapor-phase synthesis of titania powders [J]. J Mater Res, 1994, 99(50): 1241-1249
    [120] Xiong Y, Prastinis S E. Gas phase production of particles in reactive turbulent flows[J]. J Aerosol Sci, 1991, 22(5):637~655
    [121] Xu Z L, Shang J. The preparation and characterization of TiO_2 ultrafine particles [J]. Mater Sci Eng: B, 1999, 63(3):211~214
    [122] 吴刚平,吕春祥,李永红,等.自制间歇预氧化装置炉内的温度由精密控温仪控制[J].新型炭材料,2003,18(1):25~30
    [123] 陈新谋.聚炳烯腈纤维预氧化处理中消除皮芯的方法[P].中国专利:CN1438364A,2003-08-27
    [124] 吴人杰.复合材料[M].天津:天津大学出版社,2000
    [125] 李风生.超细粉体技术[M].北京:国防工业出版社,2000
    [126] Patteson B M, Unruh K M. Melting and freezing behavior of ultrafine granular metal film [J]. Nanostructured Materials, 1992, 1:65~70
    [127] Robert A, Spurr, Howard M. Quantitative analysis of anatase-rutile mixtures with an X-ray diffract meter [J]. Analytical Chemistry, 1957, 29(5):760~762
    [128] 李芳柏,李湘中.金离子掺杂对二氧化钛光催化性能的影响[J].化学学报,2001,59(7):1072~1077
    [129] 刘从华,邓友全,黄诠,等.莫来石的低温合成与结构研究[J].高等学校化学学报,2003,24(4):698~702
    [130] 黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003
    [131] 时东霞,刘宁,杨海强,等.聚丙烯腈基碳纤维的表面结构研究[J].电子纤维学报,1997,16(6):733~735[1] Serpone N. Size effects on the photophsical properties of colloidal anatase TiO_2 particles??[J]. J Phys Chem, 1995, 99:16646~16654
    [2] Zhang J L, Terukazu A, Madoka M, et al. Investigations of TiO_2 photocatalysts for the decomposition of NO in the flow system [J]. Journal of Catalysis, 2001, 198(1):1~8
    [3] Maira A J, Young K L, Lee C Y, et al. Size effect in gas-phase photo-oxidation of trichloroethyiene using nanometer-sized TiO_2 catalysis [J]. J Cataly, 2000, 192:185~192
    [4] Traversa E, Divona M, Luisa L S, et al. Sol-gel processed TiO_2-based nano-sixed powders for use in thick-film gas sensors for atmospheric pollutant monitoring [J]. Journal of Sol-Gel Science and Technology, 2001, 22(2):167~179
    [5] Yang J, Mei S, Ferreira J M F. Hydrothermal synthesis of nanosized titania powders:influence of tetra alkyl ammonium hydroxides on particle characteristics [J]. J Am Ceram Soc, 2001, 84(8):1696~1702
    [6] Iwasawa Y, Onishi H, Fukui K. In situ STM study of surface catalytic reactions on TiO_2(110) relevant to catalyst design [J]. Topics in Catalysis, 2000, 14(4):163~172
    [7] Desilets M, Bilodeau J F, Proulx P. Modelling of the reactive synthesis of ultra-fine powders in a thermal plasma reactor [J]. Phys D: Appl Phys, 1997, 30:1951~1960
    [8] Sotiris E, Pratsinis H B. Kinetics of titanium (Ⅳ) chloride oxidation [J]. J Am Ceram Soc, 1990, 73:2158~2162.
    [9] Morooka S, Yasutakae T, Kobata A, et al. A mechanism for the production of ultrafine particles of TiO_2 by a gas-phase reaction [J]. International Chemical Engineering, 1989, 29(1):119~126
    [10] Akhtar M K, Xiong Y. Vapor synthesis of titania powder by titanium tetrachloride oxidation [J]. AIChE Journal, 1991,37(10):1561~1570
    [11] Shrikant V J, Qibin L. Effect of quenching condition on particle formation and growth in thermal plasma synthesis of fine powders [J]. Plasma Chemistry and Plasma Processing, 1990, 10(2):339~358
    [12] 李风生.特种超细粉体制备及应用[M].北京:国防工业出版社,2002
    [13] Atsuo K, Katsuki K, Shigeharu M. Growth and transformation of TiO_2 crystallites in aerosol reactor [J]. Aiche Journal, 1991, 37(3), 347~358
    [14] Ding X Z, Liu L, Ma X M, et al. The influence of alumina dopant on the structural??information of sol-gel-derived nanocrystalline titania powders [J]. Mater Sci Lett, 1994, 13:462~467
    [15] Tracey L H, Victor L, Ingfid P, et al. Structure of titania sol-gel films: A study by X-ray absorption spectroscopy [J]. J Phys Chem B, 2002, 106:1153~1162
    [16] 曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1995
    [17] 日本化学会编.曹惠民译.无机化合物合成手册[M].北京:化学工业出版社,1983
    [18] 曹茂盛,刘海涛,陈玉金,等.相转移法制备γ′-Te_4NB纳米粒子的合成过程及生长机制[J].中国科学(E辑),2002,32(6):740~746
    [19] 施利毅,李春忠,房鼎业.TiCl_4-O_2体系高温反应制备超细TiO_2光催化材料的研究[J].无机材料学报,1999,14(5):717~120
    [20] 邵艳群,唐电,熊惟皓,等.Sol-gel法制备纳米TiO_2锐钛矿相的晶化动力学[J].材料热处理学报,2003,24(4):46~50
    [21] Takato N, Hiroshige A, Mikiya A, et al. Preparation of titanium dioxide thin films by means of a hot wall technique [J]. Appl SurfSci, 1999, 142:182~189
    [22] 姜海波,李春忠,朱孟钦,等.气相燃烧合成TiO_2纳米颗粒的形态与结构[J].华东理工大学学报,2001,27(2):147~151
    [23] Suyama Y, Kato A. Effect of additives of the formation of TiO_2 particles by vapor phase reaction [J]. J Am Ceram Soc, 1985, 68:C154~156
    [24] Machenzie K. The calcination of titania: the effect of additives on the anatase-rutile transformation [J]. Trans J Brit Ceram Soc, 1975, 74:29~33
    [25] Akhter M K, Pratsinis S E. Dopants in vapor-phase synthesis of titania powders [J]. J Am Ceram Soc, 1992, 75:3408~3415
    [26] Vemury S, Pratsinis S E. Vapor phase synthesis of Al-doped titania powders [J]. J Am Ceram Soc, 1995, 78:2984~2990[1] Pelizzetti E, Minero C. Metal oxides as photocatalysts for environmental detoxification [J]. Comments Inorg Chem, 1993, 15(5): 297~302
    [2] MassianiY, Gamier A, Eyraud M, et al. Electrochemical properties of composites based on nanocrystalline anatase (TiO_2) and copper compounds [J]. Journal of Applied Electrochemistry, 2001, 31(5): 495~500
    [3] Ruya R O, John L F. Investigation of the photocatalytic activity of TiO_2-polyoxometalate systems[J]. Enviro Sci & Technol, 2001, 35:3242~3246
    [4] 张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [5] Kobata A, Kusakabe K, Morooka S. Growth and transformation of TiO_2 crystallites in aerosol reactor [J]. AIChE J, 1991, 37(3):347~358
    [6] 高伟,吴凤清,罗臻.TiO_2晶型与光催化活性关系的研究[J].高等学校化学学报,2001,22(4):660~662
    [7] Sclafani A, Palmisano L, Schiavello M. Influence of the preparation methods of TiO_2 on the photocatalytic degradation of phenol in aqueous dispersions [J]. J Phys Chem, 1990, 94:829~832
    [8] Litter M I. Heterogeneous photocatalysis: Transition metal ions in photocatalytic system[J].Appl Cata: B, 1999, 23(2-3):89~114
    [9] Kim S J, Lee E G, Park S D, et al. Photocatalytic effects of rutile phase TiO_2 ultrafine powder with high specific surface area obtained by a homogeneous precipitation process at low temperatures [J]. Journal of Sol-Gel Science and Technology, 2001, 22:63~74
    [10] 王俊文,孙彦平,梁镇海,等.RF-PCVD法纳米TiO_2的制备及光催化研究[J].稀有金属材料与工程,2004,33(5):478~481
    [11] Kim K S, Masato L. Particle growth and transport in silane plasma chemical vapor deposition [J]. Phys D: Apple Phys, 1996, 27:311~322
    [12] Shrikant V J, Qibin L. Effect of quenching condition on particle formation and growth in thermal plasma synthesis of fine powders [J]. Plasma Chemistry and Plasma Processing, 1990, 10(2):339~358[13] Bouyer E, Schiller G., Muller M, et al. Thermal plasma chemical vapor deposition of Si-based ceramic coatings from liquid precursors [J]. Plasma Chemistry and Plasma Processing, 2001, 21 (4):523~545
    [14] Desilets M, Bilodeau J F, Proulx P. Modelling of the reactive synthesis of ultra-fine powders in a thermal plasma reactor [J]. Phys D: Appl Phys, 1997, 30:1951~1960
    [15] 仲维卓,华素坤著.晶体生长形态学[M].北京:科学出版社,1999
    [16] Zhang Q H, Gao L. Effects of calcinations on the photocatalytic properties of nanosized TiO_2 powder prepared by TICl_4 hydrolysis [J]. Appl Catal: B, 2000, 26(3):207~215
    [17] Morooka S, Yasutakae T, Kobata A, et al. A mechanism for the production of ultrafine particles of TiO_2 by a gas-phase reaction [J]. International Chemical Engineering, 1989, 29(1):119~126
    [18] Robert A, Spurt, Howard M. Quantitative analysis of anatase-rutile mixtures with an X-ray diffract meter [J]. Analytical Chemistry, 1957, 29(5):760~762
    [19] Fotou G P, Vemury S, Pratsinis S E. Synthesis and evaluation of titania powders for photocatalysis of phenol [J]. Chem Eng Sci, 1994, 49:4939~4943
    [20] Porter J F, Li Y G, CHan C K. The effect of calcinations on the microstructural characteristics and photoreactivity of degussa P-25 TiO_2 [J]. Journal of Materials Science,1999, 34:1523~1531[1] Serpone N. Size effects on the photophsical properties of colloidal anatase TiO_2 particles [J]. J Phys Chem, 1995, (99):16646~16654
    [2] Gao W, Wu F Q, Luo Z, et al. Studies on the relationship between the crystal form of TiO_2 and its photocatalyzing degradation efficiency [J]. Chemical Journal of Chinese Universities, 2001, 22(4):660~662
    [3] Yoneyama H, Haga S, Yamanaka S. Photocatalytic activities of microcrystalline TiO_2 incorporated in sheet sillicates of clay [J]. J Phys Chem, 1989, 93:4833~4840
    [4] 孙奉玉,吴鸣,李文钊,等.二氧化钛表面光学特性与光催化活性的关系[J].催化学报,1998,19(3):229~233
    [5] Ding Z, Lu G Q, Greenfield P F, et al. Role of the crystallite phrase of TiO_2 in heterogeneous photocatalysis for phenol oxidation in water [J]. J Phys Chem B, 2000, B104:4815~4820
    [6] Zhang J L, Terukazu A, Madoka M, et al. Investigations of TiO_2 photocatalysts for the decomposition of NO in the flow system [J]. Journal of Catalysis, 2001, 198(1):1~8
    [7] Madhusudan R K, Manorama S V, Ramachandra R A. Studies on anatase titanium dioxide nanoparticles [J]. Materials Chemistry and Physics, 2003, 78(1):239~245
    [8] Porter J F, Li Y G, Chan C K. The effect of calcinations on the microstructural characteristics and photoreactivity of gegussa P-25 TiO_2 [J]. Journal of Materials Science, 1999, 34:1523~1531
    [9] Hoffman M R, Martin S T. Environmental applications of semiconductor photocatalysis [J]. Chem Rev, 1995, 95(1):69~96
    [10] Bacsa R R, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid [J]. Appl Catal B: Environ, 1998, 16:19~29
    [11] Deo G, Turek A M, Wachs I E, et al. Physical and chemical characterization of surface vanadium oxide supported on titania: influence of the titania phase (anatase, rutile, brookite and B) [J]. Appl Catal A: General, 1992, 91:27~42[12] Zheng Y Q, Shi E W, Cui S X, et al. Hydrothermal preparation of nanosized brookite powders [J]. J Am Cerarn Soc, 2000, (83): 2634~2636
    [13] Zhang Q H, Gao L, Sun J. Effect of the calcining temperatures on the properties of nanocrystalline TiO_2 [J]. Journal of Inorganic Material, 2001, 16(5): 833~838
    [14] Ahktar M K, Xiong Y, Pratsinis S E. Vapor synthesis of titania powder by tetrachloride oxidation [J]. AIChE J, 1991, 37(10): 1561~1570
    [15] 卢铁城,林理彬,邹平.金红石TiO_2单晶体生长及制备条件的研究[J].无机材料学报,1998,13(1):13~17
    [16] Sotiris E, Pratsinis H B. Kinetics of titanium (Ⅳ) chloride oxidation [J].J Am Ceram Soc,1990, 73:2158~2162
    [17] 车云霞,申拌文.化学元素周期系[M].天津:南开大学出版社,1999
    [18] 叶瑞伦,方永汉,陆佩文.无机材料物理化学[M].北京:中国建筑出版社,1986
    [19] Rodriguez T R, Vargas S. Modification of the phase transition temperature in titania doped with various cations [J]. J Mater Res, 1997, 12: 439~442
    [20] Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO_2 rare eathoxides for the oxidation of acetone in air [J]. J Photochem Photobiol: A, 1998, 116(1): 63~67
    [21] Lawrence H E, Andreas M G. Role of particle substructure in the sintering of nanosized titania [J]. J Am Ceram Soc, 1988, 71(1): 225~235[1] Inoue H, Uchida H, Hioki A, et al. Structure and composition of (Ti, Al)N films prepared??by RF Planar magnetron sputtering using a composite target [J]. Thin Solide Films, 1995, 271: 15~18
    [2] Jehn H A, Hofmann S. Surface and interface characterization of heat treated (Ti, Al)N coatings on high speed steel substrates [J]. Thin Solide Films, 1987, 153: 45~53
    [3] Otani Y, Hofmann S. High temperature oxidation behaviour of (Ti_(1-x) Cr_x)N coatings [J]. Thin Solide Films, 1996, 287: 188~192
    [4] Jin P, Nakao S, Tanemura S, et al. Evaluation of porosity and composition in reactively RF sputtered Ti_(1-x)Cr_xN films [J]. Thin Solide Films, 1995, 271: 19~25
    [5] Hee D J, Seong K K. Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame reactor [J]. Mater Res Bull, 2001, 36: 627~637
    [6] Machenzie K. The calcination of titania: the effect of additives on the anatase-rutile transformation [J]. Trans J Bait Ceram Soc, 1975, 74: 29~33
    [7] Akhter M K, Pratsinis S E. Dopants in vapor-phase synthesis of titania powders [J]. J Am Ceram Soc, 1992, 75: 3408~3415
    [8] Vemury S, Pratsinis S E. Vapor phase synthesis of Al-doped titania powders [J]. J Am Ceram Soc, 1995, 78: 2984~2990
    [9] 余家国,赵修建,韩建军,等.TiO_2/SiO_2复合薄膜的晶型和晶粒尺寸研究[J].硅酸盐学报,2001,29(3):286~290
    [10] 张青红,高濂,孙静.氧化硅对二氧化钛纳米晶相变和晶粒生长的抑制作用[J].无机材料学报,2002:17(3):415~421
    [11] 黄妙良,伴隆幸,大矢丰,等.溶胶-凝胶法制备金属铂高分散的二氧化钛薄膜[J].催化学报,2001,22(1):74~76
    [12] 周华军,王大志,刘金华.纳米二氧化钛的量子尺寸效应及掺杂氧化锡对其光吸收的影响[J].化学物理学报,2002,15(1):61~64
    [13] Ding X Z, Liu L, Ma X M, et al. The influence of alumina dopant on the structural information of sol-gel-deaived nanocrystalline titania powders [J]. Mater Sci Lett, 1994, 13: 462~467
    [14] Tracey L H, Victor L, Ingaid P, et al. Structure of titania sol-gel films: A study by X-ray absorption spectroscopy [J]. J Phys Chem B, 2002, 106: 1153~1162[15] Guidi V, Carona M C, Ferroni M, et al. Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase and rutile [J]. J Phys Chem B, 2003, 107: 120~128
    [16] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-size TiO_2: correlation between photoreactivity and charge carder recombination dynamics [J]. J Phys Chem, 1994, 98(51): 13669~13674
    [17] 仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999
    [18] Yang J, Mei S, Ferreira J M F. Hydrothermal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristics [J]. J Am Ceram Soc, 2001, 84(8): 1696~1702
    [19] 刘从华,邓友全,黄诠,等.莫来石的低温合成与结构研究[J].高等学校化学学报,2003,24(4):698~702
    [20] Mattews R W. Photo-oxidation of organic material in aqueous suspensoins of titanium dioxide [J]. Wat Rev, 1990, 24: 569~578
    [21] Salvador P. Catalytic role of lattice defects in photoassisted oxidation of water at (001) n-TiO_2 rutile [J]. J Phys Chem, 1992, 96(25): 10349~10353
    [22] Freller H, Haessler H. Ti_xAl_(1-x)N films deposited by ion plating method and arc evaporator [J]. Thin Solide Films, 1987, 153: 67~74
    [23] 唐玉朝,李薇,胡春,等.TiO_2形态结构与光催化活性关系的研究[J].化学进展,2003,15(5):379~384[1] Warner S B, Peebles L H, Uhlmann D R. Oxidative stabilization of acrylic fibers [J]. Journal of Material Science, 1979, 14: 556~564.
    [2] 吴刚平,吕春祥,李永红,等.空气湿度对聚丙烯睛纤维稳定化过程的影响[J].新型炭材料,2003,18(1):25~30
    [3] Edie D D. The effect of processing on the structure and properties of carbon fibers [J]. Carbon, 1998, 36(4): 345~362
    [4] 徐仲榆.我国在生产炭纤维过程中应解决的一些问题[J].材料导报,2000,14(11):16~18
    [5] Zhang W X, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fiber [J]. Carbon, 2003, 41: 2805~2812
    [6] Ko T H, Ting H Y, Lin C H. The microstructure of stabilized fibres [J]. Journal of Applied Polymer Science, 1988, 35: 863~874
    [7] Stephen D, Frank H, Peter M B. Thermal stabilization of polyacrylonitrile fibers [J]. Polymer, 1999, 40: 5531~5543
    [8] J B 唐纳特,R C 班萨尔.碳纤维[M].北京:科学出版社,1989
    [9] 高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社,2001
    [10] 陈新谋.聚丙烯腈纤维预氧化处理中消除皮芯的方法[P].中国专利:CN1438364A,2003-08-27
    [11] 王建华主编.化学反应工程(上册),化学反应工程基本原理[M].成都:成都科技大学出版社,1988
    [12] Kern W, Fernow H. A research on the weight loss of precursor fiber caused by heating [J]. Prakt Chem, 1972, 160: 281~289
    [13] Houtz R C. A research on the control method for oxidation process of precursor fiber [J]. Text Res, 1950, 20: 786~792
    [14] Watt W, Johnson W. Mechanism of oxidization of polyacrylonitrile fibres [J]. Nature, 1975, 257: 210~212
    [15] Balasubramanium M, Jain M K, Bliallacharya S K, et al. Conversion of??acrylonitrile-based precursors to carbon fiber [J]. Journal of Materials Science, 1987, 22: 3864~3872
    [16] Fester W. The experiment research on PAN-based oxidated fiber [J]. Melliand Textilber, 1966, 47: 673~678
    [17] Cupta D K, Paliwal P B. Effect of an acidic comonomer on then-no oxidative stabilization of polyacylonitrile [J]. Journal of Applied Polymer Science, 1995, 58: 1161~1174
    [18] 吴人洁.复合材料[M].天津:天津大学出版社,2000
    [19] 王正烈,周亚平,李松林,等.物理化学(下册)[M].北京:高等教育出版社,2001
    [20] Nakorn W, Shin H, Hiroynki N, et al. Effect of oxidation pre-treatment at 220 to 270℃ on the carbonization and activation behavior of phenolic resin fibe r[J]. Carbon, 2003, 41(5): 933~944[1] 李小佳,罗倩华,朱一钧,等.聚丙烯腈基碳纤维预氧化过程组成结构的演变[J].中国科学(B辑),2001,31(1):72~77
    [2] Stephen D, Frank H, Peter M B. Thermal stabilization of polyacrylonitrile fibres [J]. Polymer, 1999, 40: 5531~5543
    [3] Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-based carbon fibers [J]. Carbon, 1996, 34(11): 1427~1445
    [4] 贺福,杨永岗.提高碳纤维强度的理论基础及其技术途径[J].高科技纤维与应用,2001,26(2):7~10
    [5] 陈新谋.聚丙烯腈纤维预氧化处理中消除皮芯的方法[P].中国专利:CN1438364A,2003-08-27
    [6] 陈新谋.用现代加工技术改造碳纤维传统制造方法[J].高科技纤维及应用,2004,29(6):46~52
    [7] Paiva M C, Bemardo C A, Nardin M. Mechanical, surface and interfacial characterization of pitch and PAN-based carbon fibers [J]. Carbon, 2000, 38(9): 1323~1338
    [8] Zhao L R, Jang B Z. The oxidation behavior of low temperature heat-treated carbon fibres [J]. Journal of Materials Science, 1997, (32): 2811~2819
    [9] Migoshi K, Yuezhen B, Dan Z, et al. Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages [J]. Carbon, 2003, 41(5): 915~926
    [10] 黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003
    [11] Warner S B, Peebles L H, Uhlmann D R. Oxidative stabilization of acrylic fibers [J]. Journal of Material Science, 1979, 14: 556~564
    [12] Ko T H, Chang S, Lin L M F. Preparation of graphite fibers from a modified PAN precursor [J]. J Mater Sci, 1992, 27(6): 6071~6078
    [13] Ko T H, Ting H Y, Lin C H. The microstructure of stabilized fibers [J]. Journal of Applied Polymer Science, 1988, 35: 863~874
    [14] Paiva M C, Kotasthane P, Edie D D, et al. UV stabilization route for melt-processible PAN-based carbon fibers [J]. Carbon, 2003, 41(7): 1399~1409[15] Donnet J B, Qin R Y. Study of carbon fiber surfaces by scanning tunneling microscopy, part Ⅰ: carbon fibers from different precursors and after various heat treatment temperatures [J]. Carbon, 1992, 30(5): 787~796
    [16] Donnet J B, Qin R Y. Study of carbon fiber surfaces by scanning tunneling microscopy, part Ⅱ: PAN-based high strength carbon fibers [J]. Carbon, 1993, 31(1): 7~12
    [17] 贺福,王茂章.碳纤维的制造、性能及其应用[M].北京:科学出版社,1984[1] 陈聚文,潘婉莲,于俊荣,等.纤维分子结构与蠕变性能的关系[J].高分子材料科学与工程,2004,20(2):114~117
    [2] Hoffman W P, Hurley W C, Owens T W, et al. Advantage of the scanning tunneling microscope in documenting changes in carbon fibers surface morphology brought about by various surface treatments [J]. J Mat Sci, 1991, 26(8): 4545~4553
    [3] Buttry D A, Pen J C M, Donnet J B, et al. Immobilization of amines at carbon fiber surfaces [J]. Carbon, 1999, 37(12): 1929~1940
    [4] Brasquet C, Rousseau B, Strade S H, et al. Observation of activated carbon fibres with SEM and AFM correlation with adsorption data in aqueous solution [J]. Carbon, 2000, 38(3): 407~422
    [5] Vickers P E, Watts J F. The surface chemistry and acid-base properties of a PAN-based carbon fibre [J]. Carbon, 2000, 38(5): 675~690
    [6] Edie D D. The effect of processing on the structure of carbon fibers [J]. Carbon, 1998, 36(4): 345~362
    [7] 齐志军,林树波,于振环.影响碳纤维强度的因素分析[J].高科技纤维与应用,2003,28(4):30~35
    [8] 关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,2000
    [9] 贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004
    [10] 贺福,杨永岗,王润娥.用SEM研究PAN原丝的表面缺陷[J].高科技纤维与应用,2002,27(6):25~29
    [11] 黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003
    [12] J B唐纳特,R C班萨尔.碳纤维[M].北京:科学出版社,1989
    [13] Ko T H, Ting H Y, Lin C H. The microstructure of stabilized fibers [J]. Journal of Applied Polymer Science, 1988, 35: 863~874
    [14] 高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社,2001
    [15] 王茂章,贺福.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984
    [16] Pan N, Chen H C, Thompson J, et al. Investigation on the strength-size relationship in??fibrous structures including composites [J]. Journal of Materials Science, 1998, 33: 2667~2672
    [17] 王延相,王成国,蔡华,等.拉伸对聚丙烯腈原丝结构和性能的影响[J].合成纤维,2002,31(5):6~8
    [18] 日本东丽公司.碳纤维用前驱体纤维、复合材料以及其碳纤维的制造方法[P].日本专利:特开平11-241230,1999-09-07[1] Diefendorf R J, Tokarsky E. High-performance carbon fibers [J]. Polymer Engineering and Science, 1975, 15: 150~159
    [2] Edie D D. The effect of processing on the structure and properties of carbon fibers [J]. Carbon, 1998, 36(4): 345~362
    [3] Zielke U, Huttinger K J, Hoffman W P. Surface-oxidized carbon fibers: Part Ⅰ. Surface structure and chemistry [J]. Carbon, 1996, 34(8): 983~998
    [4] Kaburagi M, Bin Y Z, Zhu D, et al. Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages [J]. Carbon, 2003, 41(5): 915~926
    [5] Guigon M, Obrlin A. Heat-treatment of high tensile strength pan-based carbon fibers: Microtexture, structure and mechanical properties [J]. Compos Sci Technol, 1986, 27(1): 1~23
    [6] Binning G, Rohrer H, Gerber C, et al. Surface studies by scanning tunneling microscopy [J]. Phys Rev Lett, 1982, 49(1): 57~61
    [7] Hoffman W P, Elings V B, Gurley J A. Scanning tunneling microscopy on carbon fibers [J]. Carbon, 1988, 26(5): 754~756
    [8] Donnet J B, Qin R Y. Study of carbon fiber surfaces by scanning tunneling microscopy, Part Ⅰ. Carbon fibers from different precursors and after various heat treatment temperatures [J]. Carbon, 1992, 30(5): 787~796
    [9] Donnet J B, Qin R Y. Study of carbon fiber surfaces by scanning tunneling microscopy, part Ⅱ, Pan-based high strength carbon fiers [J]. Carbon, 1993, 31(1): 7~12
    [10] 时东霞,刘宁,杨海强,等.聚丙烯腈基炭纤维的扫描隧道显微镜研究[J].材料研究学报,1997,11(3):305~308
    [11] 黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003
    [12] 李晓冬,王琛.裂纹前方纳米尺度的微结构及原子像研究[J].中国科学(E辑):技术科学,1998,28(1):6~11
    [13] Park S I, Quate C F. Tunneling microscopy of graphite in air [J]. Appl Phys Lett, 1986, 48(2): 112~114[14] 吴琪琳,胡杨,潘鼎.粘胶基碳纤维表面结构的STM研究[J].化学研究与应用,2002,14(2):171~173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700