聚丙烯腈原丝与碳纤维结构相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)为主要表征手段,并以傅立叶红外吸收光谱(FT-IR)、X射线衍射仪(XRD)、热分析(DTA/TG、DSC/TG)等测试技术相辅助,系统地研究了湿法纺聚丙烯腈(PAN)纤维结构成形机理、预氧化纤维的结构演变、碳化过程纤维的结构演变、共聚单体和工艺条件对纤维微观结构的影响以及PAN纤维的缺陷形成与遗传。
     初生纤维在凝固浴中的双扩散致使纤维外层和内部致密化程度不同,呈现出皮芯结构。表皮层的结构致密,芯部较疏松,含有孔洞。在凝固浴浓度较高的情况下,适当提高凝固浴温度可使初生纤维的截面趋于圆形,芯部结构趋于致密,结晶量增加。致密化工艺采用温度150℃、时间60s并结合饱和蒸汽压力0.50MPa、蒸汽温度151.7℃的蒸汽牵伸工艺,可以较大程度消除内部孔洞缺陷,提高原丝的均质性与密度。XRD表明,纤维的晶态结构在初生纤维中已基本形成,牵伸、干燥致密化等过程是在基本的晶态结构上提高分子链的有序性,以减少晶格畸变并提高纤维的结晶度。自制原丝的结晶度、取向度和强度高于日本旭化成原丝,但由前者制得的碳纤维性能却不及后者,说明非晶态结构对碳纤维性能也有较大影响。SEM和TEM分析表明,初生纤维的皮芯结构会遗传至PAN原丝。PAN原丝的皮芯结构有多层组织,最外面是一层极薄的表皮,向内依次为表层、内层和芯部。表皮为片层结构,薄且致密,其分子链结晶度高、晶粒细小且沿轴向取向度好。柱形表层的层状结构中晶粒分布均匀,沿轴向定向较好,每层的厚度约1.5um-2.0um。内层也存在层状结构,但分层较模糊。由表皮至内层,层状结构的厚度逐渐增加。原丝芯部组织较疏松,结晶度较低,微晶杂乱无章且较粗大。根据上述表征结果与分析,建立了PAN原丝的结构模型。
     比较自制原丝和日本旭化成原丝的DTA曲线,后者放热峰温度宽并且有分峰现象,是形成理想的梯形分子结构的主要原因之一。通过FT-IR分析发现,环化反应在较低温度下就开始发生,环化反应先于或优于脱氢反应,侧基氰基团在预氧化阶段逐渐转变成环状结构排列,分子链逐渐发展形成为芳环结构。预氧化纤维O元素含量和密度变化趋势与红外光谱的相对环化率η的变化趋势相同,表明预氧化温度对化学反应的程度有重要的控制作用。XRD分析显示,当温度低于200℃时,氧化、环化反应较弱,但晶区附近非晶区部分的分子链结构能够发生重组,向有序化转变,PAN纤维的分子链晶区有序结构的完善程度提高。结合FT-IR分析可知,预氧化反应首先在非晶区中发生。
     预氧化纤维的皮芯多层结构与原丝的皮芯结构具有密切的相关性,它由原丝的特定结构经过复杂的化学反应演变而来。预氧化纤维表皮由紧密堆积的片层构成,与纤维轴几乎垂直,皮层呈柱形层状结构,含有尚未环化的PAN晶粒。芯部的层状结构变得十分模糊、不规则并带有微孔。由表皮至芯部,层状结构的厚度逐渐增加,纤维结构的有序性和致密性逐步降低。HRTEM照片显示,预氧化纤维内部存在许多球形结构由原丝的类同结构演变而来,球形颗粒的外层是完全非晶组织,围绕球心呈层状环形结构,而芯部存在部分未完全预氧化的晶区。这种结构表明,PAN原丝的晶粒尺寸及均匀性将直接影响预氧化的程度以及预氧化纤维的组织结构,细晶化是制备优质原丝以及高性能碳纤维的关键因素之一。同时,PAN原丝中分子链的取向性将直接影响预氧化纤维的分子链排列。
     FT-IR分析表明,预氧化阶段中未环化的—C≡N基团在中温碳化阶段继续反应,中温碳化脱H反应的比例大于脱N反应。预氧化反应形成的N六元环结构经过中温碳化脱H后,再在高温碳化下进一步脱H、脱N形成C的六元环结构,其中碳的含量高达94.54%。
     SEM和TEM研究表明,碳纤维的皮芯结构与原丝、预氧化纤维的结构极其类似。表皮由许多类似鱼鳞的片层堆叠而成,几乎与纤维轴垂直,结构致密,而芯部结构疏松,含有孔洞。表皮由含有许多纳米级微晶的石墨层平面构成,沿纤维轴向排列有序,微晶沿纤维轴取向好。碳纤维这种皮芯微观结构的非均质性是由原丝和预氧化纤维结构遗传而来。
     HRTEM研究表明,PAN基碳纤维的分子结构中存在条带结构和球形结构。条带结构的碳层与PAN原丝中的PAN链条带结构状态十分相似。球形结构中的碳网面围绕球心排列,与PAN预氧化纤维的球形结构类似,表明在PAN原丝至碳纤维的演变过程中纤维分子链结构的变化具有密切的相关性。
     由XRD分析可知,T-700碳纤维和自制碳纤维的002衍射峰都比较宽,但前者的002衍射峰的强度明显高于后者。T-700碳纤维的层面间距d_(002)小,石墨网堆叠厚度Lc大以及结晶度高是其拉伸强度高的结构因素。
     原丝至碳纤维的表面缺陷具有遗传性,如沟槽、划伤和孔洞等。改进聚合及纤维生产工艺、提高生产环境的洁净度及设备的制造精度可有效地减少表面缺陷。原丝至碳纤维的内部缺陷具有极强的相关性,如皮芯结构、芯部疏松和孔洞。通过调整凝固阶段工艺参数能够增大初生纤维皮层比例,提高芯部致密性;通过改善致密化和蒸汽牵伸工艺可以减少内部孔洞;预氧化阶段中采用合适温度和时间使氧的扩散更充分可增大预氧化纤维皮层比例。
     PAN原丝至碳纤维结构转化的相关性与缺陷形成和遗传的研究表明,提高纤维结构的均质性,增加表皮和皮层厚度,降低芯部比例和缺陷,优化PAN原丝和预氧化纤维的分子链结构以及提高碳纤维碳层的取向和有序堆叠程度是获得高性能碳纤维的必要条件。
     此外,以(NH_4)_2IA作为第二共聚单体改性PAN的研究证实,P[AN-co-(NH_4)_2IA]较好的亲水性可使其在纺丝工艺中的牵伸倍数提高到12倍。P[AN-co-(NH_4)_2IA]原丝表面缺陷少、芯部结构较致密、结晶度高、晶粒定向程度高。原丝较优的微观结构使P[AN-co-(NH_4)_2IA]在预氧化工艺中的牵伸率提高到10%。同时,(NH_4)_2IA能显著降低纤维预氧化过程中的放热量,减少了预氧化纤维内部热量的蓄积,抑制PAN大分子主链的断裂。最终制得的P[AN-co-(NH_4)_2IA]基碳纤维的拉伸强度为3810MPa,其内部存在许多微晶择优取向的条带结构。
In this paper, the structural evolution and interrelationship from PAN nascent fibers to carbon fibers was systematically investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), differential scanning calorimetry (DSC) /were also been used for fibers characterization.
     In PAN wet-spinning process, the counterdiffusion of the solvent DMSO and coagulation reagent H_2O caused the obvious skin-core structure of PAN nascent fibers, which had compact skin and loose core with pores. It has been found that the temperatures of coagulation baths would greatly influence the cross section and skin-core texture of PAN fiber. With high concentration of coagulation baths, higher temperature increased the rate of counterdiffusion, which led to circular cross section, reduction of defects in the core and higher crystallization. Suitable collapse process and steam drawing process could make the fibers more homogeneous. XRD showed that the crystal structure was initially formed in nascent fibers. The regularity of molecular chains and crystallization were gradually improved by the latter processes. The crystallization, the orientation and the tensile strength of self-made precursor fibers were higher than those of Japanese fibers. However, the properties of the resultant self-made carbon fibers were lower than the latter, which might be accounted for the influence of the non-crystal structure. The images of SEM and TEM indicated that the skin-core structure of PAN precursor fibers was inherited from that of nascent fibers. PAN precursor fibers were composed of four parts. The sheet-like skin, which was compact and homogeneous, had high crystallization and highly oriented structure. The core with low crystallization and some voids was loose, somewhat disorderly and unsystematic. Moreover, the precursor fiber had a pillar-like layered structure along the fiber axis. The average thickness of each layer increased gradually from the skin to the endothecium. Meanwhile, a structural model of PAN precursor fibers has been built.
     The Japanese precursor fibers had broader exothermic regime and double separated exothermic peaks, which might lead to better cyclization reaction and structure. The result of FTIR spectra of PAN fibers and the stabilized fibers revealed that cyclization reaction took place before dehydrogenation reaction.—C(?)N groups were gradually transformed to cyclization structure. The changes of oxygen element content and density of the fibers in the stabilization process consisted with relative cyclization index (η). When the temperature was lower than 200℃, oxidation reaction and cyclization reaction were not intense. However, the chains of amorphous phase near crystal area became flexible, which started vibrating, rotating and could form new crystallites. Combing FT-IR analysis, cyclization reaction firstly took place in amorphous phase.
     The images of SEM and TEM revealed that PAN stabilized fibers had the analogical structure as PAN precursor fibers. The cross section was also skin-core morphology, with a concentric circles structure. The white outmost layer presented the thin dense skin, followed by the cortex, the endothecium and the core. The skin consisted of stacked sheets, which were almost perpendicular to the fiber axis. The cortex had the same pillar-like layered structure as that of PAN precursor fibers. In the core, the structure became disorderly with microvoids. This indicated that the compactness and regularity decreased from the skin to the core. Moreover, there was an indistinct interface between the cortex and the endothecium. The structure of the cortex, which was more regular than that of the endothecium, had some oriented crystallites caused by those unstabilized PAN crystallites. The images of HRTEM showed that many global particles existed in the stabilized fibers. The outer of global particles were amorphous phase, which was annular structure. The inner of global particles had some crystallite areas, which was not completely stabilized. Therefore, The size of crystallites in PAN precursor fibers would severely influence the structure of stabilized fibers. Diminishing the size of crystallites in PAN precursor fibers is a key factor for high performance carbon fibers.
     Study on the pre-carbonized fibers and carbon fibers by FT-IR suggested that remnant—C(?)N groups continued cyclization reaction in pre-carbonization process, where the ratio of dehydrogenation reaction was higher than denitrogenation reaction. The N hexahydric rings gradually dehydrogenized, denitrogenized and formed C hexahydric rings in carbonized process. XRD analysis indicated that the smaller d_(002), thicker Lc and higher crystallization of T-700 carbon fibers led to the higher tensile strength. The images of SEM and TEM showed that the microstnicture of the carbon fiber could be also represented as a microcomposite, which was composed of four parts from the skin to the core. The high density of sheets packing in its outer skin and the loose structure in the core should be noted. The compact skin of carbon fiber consisted of stacked carbon layers, forming small coherent units (nano-crystallites) in the stacking direction. The stacking direction of layers is preferentially perpendicular to the fiber axis. There were also some pillar-like layered structures forming the cortex of carbon fiber. With the complicated chemical reactions in the stabilization and carbonization processes, the space between layers decreased gradually from precursor fibers to carbon fibers.
     HRTEM analysis suggested that there were strip microstructure and global microstnicture in PAN-based carbon fibers. The strip microstructure of carbon layers resembled that of PAN molecular chains in precursor fibers. The global microstructure of carbon layers encircled the center, which was similar to that of the stabilized fibers. This indicated that the microstructure of PAN molecular chains had significant structural interrelationship.
     Surface defects of fibers have transmissibility, such as grooves, scratches and holes, which can be greatly reduced through ameliorating manufacture processes, circumstance and equipment precision. Interior defects have close interrelationship, such as skin-core multilayer morphology, loose core and holes, which can be weakened by adjusting coagulation process, the temperature and time of stabilization process.
    From the study on the structural interrelation and heredity of defects, it can be concluded that alleviating the defects, such as skin-core morphology, loose core and deliberately optimizing molecular chain structures and improving the orientation of stacked carbon layers are essential to obtain high strength carbon fibers.
    Acrylonitrile-ammonium itaconate copolymer {P[AN-co-(NH_4)_2IA]} was fabricated by free-radical solution copolymenzation of acrylonitrile (AN) and ammonium itaconate [(NH_4)_2IA]. Due to preferable hydrophilicity and facilitating cyclization reaction in stabilization process, P[AN-co-(NH_4)_2IA ] fibers could increase the draw-ratio in the spinning process and in the stabilization process to attenuate some property-limiting facts in precursor fibers and carbon fibers. The optimized final draw-ratio (12 folds) in the spinning process and stretching ratio (10%) in the stabilization process were introduced. Moreover, (NH_4)_2IA could significantly help in reducing the initiation temperature and heat evolved, broadening exothermic peak and restraining the main molecular chains of PAN from rupture during stabilization process. The tensile strength of P[AN-co-(NH_4)_2IA]-based carbon fibers could reach 3810 MPa. The improvement was due to fewer surface defects, better interior morphology, higher degree of orientation and graphitization.
引文
1. L. P. Kobets, I. S. Deev. Carbon fibers: Structure and mechanical properties. Composites Science and Technology, 1997, 57:1571-1580
    2. O. Paris, D. Loidl, H. Peterlik. Texture of PAN- and pitch-based carbon fibers. Carbon. 2002, 40(4):551-555
    3.杨国华.碳素材料(下册),北京:中国物质出版社,1999
    4.贺福,赵建国,王润娥.碳纤维工业的长足发展.高科技纤维与应用,2000,25(4):9-13
    5.贺福,王茂章.炭纤维及其复合材料.北京:科学出版社,1995
    6.罗益锋.新世纪初世界碳纤维透视.高科技纤维与应用,2000,25(1):1-7
    7.西鹏,高晶,李文刚.高技术纤维,北京:化学工业出版社,2000
    8.赵稼祥.碳纤维的现状与新发展.材料工程,1997,12:3-6
    9.王德诚.PAN基及沥青基碳纤维生产现状与展望.合成纤维工业,1998,21(2):45-48
    10. R. B. Mathur, O. P. Bahl and J. Mittal. Advances in the development of high-performance carbon fibres from pan precursor. Composites Science and Technology, 1994, 51(2), 223-230
    11.赵根祥,邱海鹏.聚酰亚胺基碳纤维的开发.合成纤维工业,2000,23(1):75-77
    12.吴雪平,杨永岗,郑经堂,贺福.高性能PAN基碳纤维的原丝.高科技纤维与应用,2001,26(6):6-10
    13.贺福.碳纤维及其应用技术,北京:化学工业出版社,2004
    14.张家杰.国内外碳纤维生产现状及发展趋势.化工技术经济,2005,23(4):12-16
    15.柯泽豪,杜菁菁.碳纤维研究发展之现况与未来.高科技纤维与应用,2000,25(6):1-9
    16.贺福,王润娥,赵建国.聚丙烯腈基碳纤维.化工新型材料,1999,27(4):6-11
    17.张旺玺,王艳芝.聚丙烯腈原丝及其碳纤维的新进展.精细石油化工进展,2001,2(12):30-33
    18.赵稼祥.碳纤维发展新方向——美国卓尔泰克(Zoltek)公司的碳纤维.纤维复合材料.1997.4:59-64
    19.张旺玺.聚丙烯腈基碳纤维的新进展.高科技纤维与应用,2001,26(5):12-15
    20.马向军,张裕卿.提高聚丙烯腈基碳纤维原丝质量的研究进展.合成纤维,2005,11:28-32
    21.罗益锋.迈入大发展期的世界高科技纤维.化工新型材料,2001,29(9):1-6
    22.赵稼祥.东丽公司碳纤维及其复合材料的进展-国外碳纤维进展之一.高科 技纤维与应用,2000,25(4):19-23
    23.赵稼祥.世界聚丙烯腈基炭纤维的展望.炭素技术,2003,2:33-36
    24.罗益锋.世界PAN基碳纤维发展透析及对我国的研发建议.材料导报,2000,14(11):11-13
    25.袭建人,庄光山,蔡华苏,丁洪太,丛红梅.我国聚丙烯腈碳纤维工业的现状.新型碳材料,1997,12(3):22-25
    26.贺福,杨永岗.攻坚碳纤维原丝瓶颈势在必行.化工新型材料,2001,29(1):3-6
    27. M. Balasubramanian, M. K. Jain, S. K. Bhattacharya, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers: Part 3: Thermooxidative stabilization and continuous, low temperature carbonization. Journal of Materials Science, 1987, 22:3864-3870
    28. M. K. Jain, M. Balasubramanian, P. Desai, A. S. Abhiraman. Conversion of aerylonitrile-based precursor fibers to carbon fibers: Part 2: Precursor morphology and thermooxidative stabilization. Journal of Materials Science, 1987, 22:301-312
    29. M. K. Jain, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers: Part 1: A review of the physical and morphological aspects. Journal of Materials Science, 1987, 22:278-300
    30. E. Fitzer, W. Frohs, M. Heine. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon, 1986, 24(4): 387-395
    31.陈光大.碳纤维用PAN原丝的生产和研究.化工科技.1994.1:17-21
    32. K. V. Datye. Spinning of PAN-fiber: Part Ⅲ: Wet spinning. Synthetic Fibers, 1996, (4):11-19
    33. K. V. Datye. Spinning of PAN-fiber: Part Ⅱ: Dry spinning. Synthetic Fibers, 1995, (2):7-11
    34.高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-38
    35. K. V. Datye. Acrylic fibers by melt spinning process. Synthetic Fibers, 1994, 3:27-31
    36. D. D. Edie, N. K. Fox, B. C. Barnett. Melt-spun non-circular carbon fibers. Carbon, 1986, 24:477-482
    37. V. A. Bhanu, P. Rangarajan, K. Wiles. Synthesis and characterization of acrylonitfile/methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer, 2002, 43:4841-4850
    38.乔福牛.二甲基亚砜一步法碳纤维用聚丙烯腈原丝生产工艺.合成纤维工业,1995,8(4):19-23
    39.宋育梅,王刚.二甲基亚砜法碳纤维用聚丙烯腈原丝的技术进展.化工科技,2001,9(3):60-63
    40. A. T. Kalashnik. The role of different factors in creation of the structure of stabilized acrylic fibers. Fibre Chemistry, 2002, 34(1): 10-17
    41. P. H. Wang, Z. R. Yue, R. Y. Li, J. Liu. Aspects on interaction between multistage stabilization of polyacrylonitrile precursor and mechanical properties of carbon fibers. Journal of Applied Polymer Science, 1995, 56 (2): 289-300
    42. T. Ko, H. Ting, C. Lin, J. Chen. The microstructure of stabilized fibers. Journal of Applied Polymer Science, 1988, 35 (4): 863-874
    43. T. Usami, T. Itoh, H. Ohtani, S. Tsuge. Structural Study of Polyacrylonitrile Fibers during Oxidative Thermal Degradation by Pyrolysis-Gas Chromatography, Solid-State 13C Nuclear Magnetic Resonance, and Fourier Transform Infrared Spectroscopy. Macromolecules. 1990, 23(9): 2460-2465
    44. S. Dalton, F. Heatley, P. M. Budd. Thermal stabilization of polyacrylonitrile fibers. Polymer, 1999, 40(20): 5531-5543
    45. A. Gupta, I. R. Harrison. New aspects in the oxidative stabilization of PAN-based carbon fibers. Carbon. 1996, 34(11):1427-1445
    46.王文胜,孙金峰,王忠,郭世强.预氧化停留时间及低温炉温度废气排放对碳纤维性能的影响.高科技纤维与应用,2002,27(5):33-35
    47.张寿春,温月芳,杨永岗,郑经堂,凌立成.衣康酸铵改性对聚丙烯腈热性能的影响.高分子材料科学与工程,2004,20(3):103-106
    48. D. C. Gupta, J. P. Agrawal. Effect of eomonomers on thermal degradation of polyacrylonitrile. Journal of Applied Polymer Science, 1989, 38:265-270
    49. J. Tsai, C. Lin. The effect of the side chain of acrylate comonomers on the orientation, pore-size, and properties of polyacrylnitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science, 1991, 42:3039-3044
    50. P. Bajaj, M. Surya Kumari. Physicomechanical properties of fibers from blends of acrylonitrile terpolymer and its hydrolyzed products. Textile Research Journal, 1989, 4:191-200
    51. K. K. Gapg. Polyacrylonitrile and copolymers. Synthetic Fibers, 1985, 2:29-35
    52.姜庆利,张旺玺,刘建军,蔡华甦.丙烯腈与衣康酸的溶液共聚合.高分子学报,1999,5:640-643
    53.张旺玺,姜庆利,刘建军,王艳芝,曹怀华,蔡华甦.丙烯腈与衣康酸的共聚合.山东工业大学学报,1995,28(5):401-406
    54.张旺玺.衣康酸对聚丙烯腈原丝结构和性能的影响.高分子学报,2000,3:287-291
    55. P. Bajaj, A. K. Sengupta, P. C. Jain. Studies on acryloniotrile-hydroxyalkyl-methacrylate eopolymer fibers. Textile Research Journal, 1980, 4:218-223
    56. A. K. Gupta, D. K. Paliwal, P. Bajaj. Acrylic precursor for carbon fibers. JMS-REV. Macromolecular Chemistry Physics, 1991, C31 (1): 1-89
    57. M. M. Coleman, G. T. Sivy. Fourier Transform IR studies of the degradation of polyacrilonitrile copolymers-Ⅰ. Carbon. 1981. 19(2): 123-126
    58. T. A. Belousova. IR spectroscopic characteristics of polyacrylonitrile copolymer fibers. Fibre Chemistry, 2002, 34(2): 146-150
    59.古谷禧典,西原良浩,安永利幸.PAN聚合物的连续制造方法,Japan Patent 63-12610,1988
    60. R. Hu, T. C. Chuang. Poly(acrylonitrile-co-vinylcatecholborane): a new precursor for carbon containing B/C, B/N and B/O species. Carbon, 1996, 34(5): 595-600
    61. S. H. Bahrami, P. Bajaj, K. Sen. Thermal behavior of acrylonitrile carboxylic acid copolymers. Journal of Applied Polymer Science, 2003, 88:685-698
    62. P. Bajaj, S. H. Bahrami, K. Sen, T. V. Sreekumar. Thermal and rheological behavior of acrylonitrile-carboxylic acid copolymers and their metal salt complexes. Journal of Applied Polymer Science, 1999, 74:567-582
    63. P. Bajaj, T. V. Sreekumar, K. Sen. Effect of reaction medium on radical copolymerization of acrylonitrile with vinyl acids. Journal of Applied Polymer Science, 2001, 79:1640-1652
    64.陈厚,王成国,崔传生,蔡华甦.丙烯腈与N-乙烯基吡咯烷酮在H_2O/DMSO混合溶剂中共聚反应动力学研究.功能高分子学报,2002,15(4):457-460
    65.陈厚,王成国,崔传生,蔡华甦.H_2O/DMSO混合溶剂对丙烯腈与N-乙烯基吡咯烷酮共聚反应的影响.新型炭材料,2002,17(4):38-42
    66.崔传生.丙烯腈/衣康酸铵共聚物的制备及其溶液性质的研究[博士学位论文].济南:山东大学,2006
    67. A. Rende. A new approach to coagulation phenomena in wet-spinning. Journal of Applied Polymer Science, 1972,16:585-594
    68. D. R. Paul. Diffusion during the coagulation step of wet-spinning. Journal of Applied Polymer Science, 1968, 12:383-402
    69. C. Liu, J. A. Cuculo, B. Smith. Coagulation studies for cellulose in the Ammonia/Ammonium Thiocyanate(NH_3/NH_4SCN) direct solvent system. Journal of Polyester Science: Part B: Polymer Physics, 1989, 27: 2493-2511
    70. S. J. Law, S. K. Mukhopadhyay. Compositional changes during the wet spinning of acrylic fibers from aqueous sodium thiocyanate solvent. Journal of Applied Polymer Science, 1998, 69:1459-1469
    71. H. L. Doppert, G. J. Harmsen. The influence of the stretch ratio on the rate of diffusion in a wet-spinning process. Journal of Applied Polymer Science, 1973, 17:893-903
    72. T. Morita, M. Adachi, J. Kato. Study of the coagulated structure and fiber strength with wet Spinning of aliphatie polyketone with aqueous Composite Metal Salt Solutions. Journal of Applied Polymer Science, 2005, 96: 1250-1258
    73. D. R. Paul, A. A. Armstrong. The elastic stresses generated during fiber formation by wet-spinning. Journal of Applied Polymer Science, 1973, 17:1269-1282
    74. S. H. Chang. Thermal analysis of acrylonitrile copolymers containing methyl acrylate. Journal of Applied Polymer Science, 1994,54:405-407
    75. K. M. Asaduzzaman, H. Raval, S. Devi. Studies on the grafting of methyl methacrylate onto polyacrylonitrile. Journal of Applied Polymer Science, 1993,47:981-989
    76. L. Xiao, W. Xiao, Q. Liu, et al. Studies on fibers spun from poly(vinyl alcohol-b-acrylonitrile) emulsions prepared by ultrasonic technique. Ⅰ. Characterization of Fiber structure. Journal of Applied Polymer Science, 2001, 79:979-988
    77. W. Xiao, L. Xiao, Q. Liu, et al. Studies on fibers spun from poly(vinyl alcohol-b-acrylonitrile) emulsions prepared by ultrasonic technique.Ⅱ. Characterization of Fiber structure. Journal of Applied Polymer Science, 2001, 79:989-994
    78.(美)E.I.托马斯主编.聚合物的结构与性能.北京:科学出版社,1997
    79. X. D. Liu, W. Ruland. X-ray studies on the structure of polyacrylenitrile fibers. Macromolecules, 1993, 26:3030-3036
    80. M. Sokot, J. Grobelny, E. Turska. Investigation of structural changes of polyacrylonitrile on swelling, wide-angle X-ray scattering study. Polymer, 1987,28:843-846
    81. D. C. Gupta. Acrylic fibers-polymerization. Synthetic fibers, 1984, 10(11): 14-20
    82.董纪震.合成纤维生产工艺学.北京:中国纺织出版社,1996
    83. W. N. Turner, F. C. Johnson. The pyrolysis of acrylic fiber in inert atmosphere. I. Reactions up to 400℃. Journal of Applied Polymer Science, 1969, 13(10): 2073-2084
    84. N. Chatterjee, S. Basu, S. K. Palit, M. M. Maiti. An XRD characterization of the thermal degradation of polyacrylonitrile. Journal of Polymer Science Part B: Polymer Physics, 1995, 33(12): 1705-1712
    85. O. P. Bahl, L. M. Manocha. Characterization of oxidized PAN fibers. Carbon, 1974,12:417-423
    86. G. K. Layden. Retrograde core formation during oxidation of polyacrylonitrile filaments. Carbon, 1972,10:59-63
    87. T. H. Ko. The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization. Journal of Applied Polymer Science, 1991, 43:589-600
    88. Y. Lu, D. Wu, Q. Zha, L. Liu, C. Yang. Skin-core structure in mesophase pitch-based carbon fibers: causes and prevention. Carbon, 1998, 36(12): 1719-1724
    89.于晓强,庄光山,丁洪太,蔡华苏.聚丙烯腈基碳纤维预氧化过程中环构化机理.山东工业大学学报,1995,25(4):301-305
    90. O. P. Bahl, L. M. Manocha. Effect of Preoxidation Conditions on Mechanical Properties of Carbon Fibers. Carbon, 1975, 13(2): 297-300
    91.J. B. Dennet, R. C. Bansal著.李仍元,过梅丽(译).碳纤维.北京:科学出版社.1989
    92. R. Perret, W. Ruland. The microstructure of PAN-base carbon fibres. Journal of Applied Crystallography. 1970, 3:525-532
    93. E. W. Tokarsky and R. J. Diefendorf. Relationships between three-dimensional structural models and properties in carbon fibers. Carbon, 1973,11 (6), 676-685
    94. S. C. Bennett, D. J. Johnson. Electron-microscope studies of structural heterogeneity in PAN-based carbon fibres. Carbon, 1979, 17(1): 25-39
    95. F. R. Barnet, M. K. Norr. A Three-dimensional Structural Model for a High Modulus Pan-based Carbon Fibre. Composites, 1976, 7:93-99
    96.齐志军,宋威,林树波.PAN原丝生产过程对碳纤维强度的影响因素.高科技纤维与应用,2001,26(5):17-20
    97.张莹,赵炯心,潘鼎.碳纤维的性能缺陷及改进方法.化工新型材料,2003,3 1(8):25-27
    98. R. J. Hobson, A. H. Windle. Crystalline structure of atactic poly(acrylonitrile). Macromolecules, 1993, 26:6903-6907
    99.徐梁华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究.新型炭材料,1997,12(3):31-33
    100. B. Qian, J. Qin, z. Zhou. Void formation in acrylic fibers. Textile Asia, 1989, 4:40-57
    101. D. J. Thorne. Distribution of internal flaws in acrylic fibers. Journal of Applied Polymer Science, 1970, 14:103-113
    102. Y.H. Bang, S. Lee, H. H. Cho. Effect of methyl acrylate composition on the microstructure changes of high molecular weight polyacrylonitrile for heat treatment. Journal of Applied Polymer Science, 1998, 68:2205-2213
    103. Y. Tsuchiya, K. Sumi. Thermal decomposition products of polyacrylonitrile. Journal of Applied Polymer Science, 1977, 21:975-980
    104. P. Bajaj, D. K. Paliwal, A. K. Gupta. Influence of metal ions structure and properties acrylic fibers. Journal of Applied Polymer Science, 1998, 67:1647-1659
    105 M. R. Padhye, A. V. Karandlkar. The effect of alkali salt on solvent-polyacrylonitrile interaction. Journal of Applied Polymer Science, 1985, 30:667-673
    106.张旺玺.提高聚丙烯腈原丝及其碳纤维质量的研究.上海纺织科技,2004,32(6):11-13
    107. T. Ko, H. Ting, C. Lin. Thermal stabilization of polyacrylonitrile fibers. Journal of Applied Polymer Science, 1988, 35:631-640
    108. A. K. Gupta, A. K. Maiti. Effect of heat treatment on the structure and mechanical properties of polyacrylonitrile fibers. Journal of Applied Polymer Science, 1982, 27:2409-2416
    1.赵华山,姜胶东,吴大诚,谭敏韶.高分子物理学.北京:纺织工业出版社,1995
    2.高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001
    3. T. Jinshy, C. H. Lin. The effect of the side chain of acrylate comonomers on the orientation, pore-size distribution, and properties of PAN precursor and resulting carbon fiber. Journal of Applied Polymer Science, 1991, 42: 3039-3044
    4.贺福.碳纤维及其应用技术,北京:化学工业出版社,2004
    5.于晓强,庄光山,丁洪太,蔡华苏.聚丙烯腈基碳纤维预氧化过程中环构化机理.山东工业大学学报,1995,25(4):301-305
    6.臧瑾光.物理化学实验.北京:北京理工大学出版社,1995
    1.贺福,王茂章.炭纤维及其复合材料.北京:科学出版社,1995
    2. K. V. Datye. Spinning of PAN-fiber: Part Ⅲ: Wet spinning. Synthetic Fibers, 1996, 4:11-19
    3. K. V. Datye. Spinning of PAN-fiber: Part Ⅱ: Dry spinning. Synthetic Fibers, 1995, 2:7-11
    4.高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-38
    5. K. V. Datye. Acrylic fibers by melt spinning process. Synthetic Fibers, 1994, 3:27-31
    6. D. D. Edie, N. K. Fox, B. C. Barnett. Melt-spun non-circular carbon fibers. Carbon, 1986, 24:477-482
    7. V. A. Bhann, P. Rangarajan, K. Wiles. Synthesis and characterization of acrylonitrile/methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer, 2002, 43:4841-4850
    8.李青山,沈新元,孟庆财,冯云生.腈纶生产工学.北京:中国纺织出版社,2000
    9. P. Bajaj, T. V. Sreekumar, K. Sen. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of Applied Polymer Science, 2002, 86(3): 773-787
    10. S. H. Bahrami, P. Bajaj, K. Sen. Effect of Coagulation Conditions on Properties of Poly(acrylonitrile-carboxylic acid) Fibers. Journal of Applied Polymer Science, 2003, 89(7): 1825-1837
    11.沈新元.高分子材料加工原理.北京:中国纺织出版社,2000
    12. S. C. Oh, Y. S. Wang, Y. Yeo. Modeling and simulation of the coagulation process of poly(acrylonitrile) wet-spinning. Industrial & Engineering Chemistry Research, 1996, 35:4796-4800
    13.汪仁钧,吴承训,潘鼎.PAN湿法纺丝凝固成形过程中的凝胶化与传质.合成技术及应用,2005,20(2):5-8
    14. X. D. Liu, W. Ruland. X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules, 1993, 26:3030-3036
    15. R. J. Hobson, A. H. Windle. Crystalline structure of atactic poly(acrylonitrile). Macromolecules, 1993, 26:6903-6907
    16.徐樑华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究.新型炭材料,1997,12(3):31-33
    17. M. Sokot, J. Grobelny, E. Turska. Investigation of structural changes of polyacrylonitrile on swelling, wide-angle X-ray scattering study. Polymer, 1987, 28:843-846
    18.汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈原丝的制备.合成纤维,2000,29(4):23-27
    19.贺福.碳纤维及其应用技术,北京:化学工业出版社,2004
    20. A. I. Stoyanov. Influence of thermosetting and drying on shrinkage, tenacity, and elongation of acrylic fibers. Journal of Applied Polymer Science, 1979. 23:3123-3127
    21.姜立军,沙中瑛,孙金峰,孙立.PAN原丝沸水收缩率影响因素的讨论.合成纤维.2006,29(4):38-39,42
    22. M. K. Jain, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibres to carbon fibres. Journal of Material Science, 1987, 22:278-300
    23. S. B. Warner, D R Uhlmann, L H Peebles. Oxidative stabilization of acrylic fibers: Part 3, morphology of polyacryionitrile. Journal of Material Science, 1979, 14(7): 1893-1900
    24. D. C. Gupta. Acrylic fibers-polymerization. Synthetic fibers, 1984, 10(11): 14-20
    25.赵根祥,王春荣.硝酸法PAN纤维的宽角X射线衍射微结构分析.合成纤维工业,1992,2:43-46
    26. A. J. Reuvers, F. W. Aitena. Demixing and gelation behavior of ternaty cellulose acetate solutions. Journal of Polymer Science, Part B: Polymer Physics, 1986, 24:793-804
    27. T. H. Young, W. Y. Chuang. Thermodynamic analysis on the cononsolvency of poly(vinyl alcohol) in water-DMSO mixtures through the ternary interaction parameter. Journal of Membrane Science, 2002, 210:349-359
    28. S. J. Law, S. K. Mukhopadhyay. The construction of a phase diagram for a ternary system used for the wet spinning of acrylic fibers based on a linearized cloudpoint curve correlation. Journal of Applied Polymer Science, 1997, 65:2131-2139
    1. H. Kakida, K. Tashird. Mechanism and Kinetics of Stabilization Reactions of Polyacrylonitrile and Related CopolymersⅢ. Comparision among the Various Types of Copolymers as Viewed from Isothermal DSC Thermograms and FT-IR Spectral Changes. Polymer Journal, 1997, 29(7):557-562
    2. G. T. Sivy, B. Gordon, M. M. Coleman. Studies of the degradation of copolymers of acrylonitrile and acrylamide in air at 200℃. Speculations on the role of the preoxidation step in carbon fiber formation. Carbon, 1983, 21 (6): 573-578
    3.江绍群,陈九妹.纺丝、预氧化和碳化条件与PAN基炭纤维性能的关系.合成纤维.1992,21(5):14-18
    4. W. N. Turner, F. C. Johnson. The pyrolysis of acrylic fiber in inert atmosphere. I. Reactions up to 400℃. Journal of Applied Polymer Science, 1969, 13(10): 2073-2084
    5.王茂章,贺福.碳纤维的制造、性质及其应用.北京:科学出版社,1984
    6. A. T. Kalashnik. The role of different factors in creation of the structure of stabilized acrylic fibers. Fibre Chemistry, 2002, 34(1): 10-17
    7. T. H. Ko, L. Chin, H. Y. Ting. Structural changes and molecular motion of polyacrylonitrile fibers during pyrolysis. Journal of Applied Polymer Science. 1989, 37(2): 553-566
    8.陈厚,张旺玺,蔡华苏.两种碳纤维前驱体的对比.山东工业大学学报,2000,30(4):359-366
    9. N. Grassie, R. McGuchan. Pyrolysis of polyacrylonitrile and related polymers-Ⅳ. Thermal analysis of polyacrylonitrile in the presence of additives. European Polymer Journal, 1971, 7 (11):1503-1514
    10. N. Grassie, R. McGuchan. Pyrolysis of polyacrylonitrile and related polymers—Ⅵ. Acrylonitrile copolymers containing carboxylic acid and amide structures. European Polymer Journal, 1972, 8 (2): 257-269
    11. N. Grassie, J. N. Hay, I. C. McNeill. Thermal coloration and insolubilization in polyacrylonitrile. Journal of Polymer Science, 1962, 56(163): 189-202
    12. N. Grassie, R. McGuchan. Pyrolysis of polyacrylonitrile and related polymers-Ⅱ: The effect of sample preparation on the thermal behaviour of polyacrylonitrile. European Polymer Journal, 1971, 7(8): 1091-1104
    13. N. Grassie, R. McGuchan. Pyrolysis of polyacrylonitrile and related polymers-Ⅲ. Thermal analysis of preheated polymers. European Polymer Journal, 1971, 7(10): 1357-1371
    14. N. Grassie, R. McGuchan. Pyrolysis of polyacrylonitrile and related polymers-Ⅶ: Copolymers of acrylonitrile with acrylate, methacrylate and styrene type monomers. European Polymer Journal, 1972, 8 (7): 865-878
    15.谢晶曦.红外光谱在有机化学和药物化学中的应用.北京:科学出版社,1987
    16. T. H. Ko, P. Chiranairadul, H. Y. Ting. The effect of modification on structure and dynamic mechanical behavior during the processing of acrylic fiber to stabilized fiber. Journal of Applied Polymer Science, 1989, 37:541-552
    17. S. Dalton, F. Heatley. Thermal stabilization of polyacrylonitrile fibers. Polymer, 1999, 40(20): 5531-5543
    18.于晓强,庄光山,丁洪太,蔡华苏.聚丙烯腈基碳纤维预氧化过程中环构化机理.山东工业大学学报,1995,25(4):301-305
    19.贺福.碳纤维及其应用技术.北京:化学工业出版社,2004
    20. H. Ogawa, K. Saito. Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index. Carbon, 1995, 33(6):783-788
    21.张旺玺.聚丙烯腈基碳纤维.上海:东华大学出版社,2005
    22.何东新.聚丙烯腈纤维的预氧化工艺与物化行为研究[博士学位论文].济南:山东大学,2005
    23.张利珍,吕春祥,吕永根,吴刚平,贺福.聚丙烯腈纤维在预氧化过程中的结构和热性能转变.新型炭材料,2005,20(2):144-150
    24.赵根祥,陈顺英.PAN纤维低温热氧化过程的结构变化.合成纤维工业,1999,22(2):13-16
    25. I. Shimada, T. Takahagi, M. Fukuhara, K. Morita, A. Ishitani. FT-IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers. Journal of Polymer Science Part A: Polymer Chemistry, 1986, 24(8):1989-1995
    26. G. S. Bhat, F. L. Cook, A. S. Abhiraman. New aspects in the stabilization of acrylic fibers for carbon fibers. Carbon, 1990, 28:377-385
    27.井敏,王成国,朱波,王延相,丁海燕.PAN原丝预氧化工艺与氧元素含量相关性研究.航空材料学报,2006,26(5):56-60
    28. L. R. Zhao, B. Z. Jang. The oxidation behaviour of low-temperature heat-treated carbon fibres. Journal of Materials Science, 1997, 32(11): 2811-2819
    29.王成国,白玉俊,于美杰,朱波.聚丙烯腈原丝在预氧化过程中的HRTEM组织演变.世界科技研究与发展,2006,28(3):51-53
    30. X. Hu, Hsieh You-Lo. Structure of Acrylic Fibers prior to Cyclization. Polymer. 1997, 38 (6): 1491-1493
    31. G. S. Bhat, L. H. Peebles Jr., A. S. Abhiraman, F. L. Cook. Rapid stabilization of acrylic fibers using ammonia: Effect on structure and morphology. Journal of Applied Polymer Science, 1993, 49 (12): 2207-2219
    32. D. X. Heng, C. G. Wang, Y. J. Bai, B Zhu. Comparison of structure and properties among various PAN fibers for carbon fibers. Journal of Materials Science Technology, 2005, 21 (3): 376-380
    33. J. Liu, W. X. Zhang. Structural changes during the thermal stabilization of modified and original polyacrylonitrile precursors. Journal of Applied Polymer Science, 2005, 97(5): 2047-2056
    1.王茂章,贺福.碳纤维的制造、性质及其应用.北京:科学出版社,1984
    2. L. P. kobets, I. S. deev. Carbon fibers: structure and mechanical properties. Composites Science and Technology, 1997, 57(12):1571-1580
    3.董纪震,赵耀明,陈雪英等编.合成纤维生产工艺学.北京:中国纺织出版社,1984
    4.贺福,王茂章.炭纤维及其复合材料.北京:科学出版社,1997
    5.柯泽豪,林菁菁.炭纤维研究发展之现状与未来.高科技纤维与应用,2000,25(6):1-4
    6. Y. Huang, R. J. Young. Effect of fiber microstructure upon the modulus of PAN- and pitch-based carbon fibers. Carbon, 1995, 33(2), 97-107
    7. D. D. Edie. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998, 36(4): 345-362
    8.高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001
    9. X.D. Liu, W. Ruland. X-ray studies on the structure ofpolyacrylonitrile fibers. Macromolecules, 1993, 26:3030-3036
    10. P. Bajaj, S. Kumari. Modification of acrylic fibers: an overview. Journal of Macromolecular Science Review, 1987, 27(2): 181-217
    11. M. K. Jain, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibres to carbon fibres. Journal of Materials Science, 1987, 22:278-300
    12.曾汉民,于翘,彭维周,蒲天游.碳纤维及其复合材料显微图像.广州:中山大学出版社,1991
    13. H. S. Fochler, J. R. Mooney, L. E. Ball, R. D. Boyer, J. G. Grasselli. Infrared and NMR spectroscopic studies of the thermal degradation of polyacrylonitrile. Spectrochim Acta 1985, 41:271-278
    14. K. Hideto, T. Kohji. Mechanism and kinetics of stabilization reaction of PAN and related copolymers. Polymer Journal 1997, 29(7): 557-562
    15.肖建文,方静,孙立.PANF氧化反应机理综述.高科技纤维与应用,2004,29(1):37-40
    16.肖建文,方静,孙立.聚丙烯腈原丝碳化反应机理综述.高科技纤维与应用,2005,30(1):24-27
    17. W. Watt, W. Johnson. Pyrolysis and structure development in the conversion of PAN fibres to carbon fibres. Nature, 1975, 257(5323): 210-212
    18. W. Watt, W. Johnson. A research on the carbonization process of PAN-based precursor fiber. Polymer Preparation, 1968, 9(2): 1245-1253
    19.杨于兴,汪嘉荣,刘常林.炭纤维的X射线显微结构分析.理化检验—物理分册,1989,25(1):46-49
    20.王延相,王成国,朱波等.聚丙烯腈基炭纤维制备过程中的表面形态和结构研究.新型炭材料,2005,20(1):51-57
    21. W. Zhang, J. Liu, G. Wu. Evolution of structure and propertyes of PAN precursors during their conversion to carbon fibers. Carbon, 2003, 41: 2805-2812
    22. S. C. Bennett, D. J. Johnson. Electron-microscope studies of structural heterogeneity in PAN-based carbon fibres. Carbon, 1979, 17(1): 25-39
    23.何东新.聚丙烯腈纤维的预氧化工艺与物化行为研究[博士学位论文].济南:山东大学,2005
    1.王茂章,贺福.碳纤维的制造、性质及其应用.北京:科学出版社,1984
    2.张寿春,温月芳,杨永岗等.衣康酸铵改性对聚丙烯腈热性能的影响.高分子材料科学与工程,2004,20(3):103-106
    3. A. Gupta, I. R. Harrison. New aspects in the oxidative stabilization of PAN-based carbon fibers Ⅱ. Carbon, 1997, 35(6):809-818
    4. D. C. Gupta, J. P. Agrawal. Effect of comonomers on thermal degradation of polyacrylonitrile. Journal of Applied Polymer Science, 1989, 38:265-270
    5. J. S. Tsai, C. H. Lin. The effect of the side chain of acrylate comonomers on the orientation, pore-size, and properties of polyacrylnitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science, 1991, 42:3039-3044
    6. P. Bajaj, M. Surya Kumari. Physicomechanical properties of fibers from blends of acrylonitrile terpolymer and its hydrolyzed products. Textile Research Journal, 1989, 4:191-200
    7. P. Bajaj, K. Sen, S. Hajir Bahrami. Solution polymerization of acrylonitrile with vinyl acids in dimthylformamide. Journal of Applied Polymer Science, 1996, 59:1539-1550
    8.陈厚,张旺玺,蔡华娃.丙烯腈和丙烯酸的水相悬浮聚合及表征.金山油化纤,1999,4:7-11
    9. D. C. Gupta. Acrylic fibers-polymerization. Synthetic Fibers, 1984, (4):14-20
    10. K. K. Gapg. Polyacrylonitrile and copolymers. Synthetic Fibers, 1985, 2:29-35
    11.胡盼盼,朱德杰,赵炯心,吴承训,钱宝钧.超高相对分子质量聚丙烯腈浓溶液的制备.合成纤维工业,1998,21(3):10-13
    12.姜庆利,张旺玺,刘建军,蔡华甦.丙烯腈与衣康酸的溶液共聚合.高分子学报,1999,5:640-643
    13.张旺玺,姜庆利,刘建军,王艳芝,曹怀华,蔡华甦.丙烯腈与衣康酸的共聚合.山东工业大学学报,1995,28(5):401-406
    14.张旺玺.衣康酸对聚丙烯腈原丝结构和性能的影响.高分子学报,2000,3:287-291
    15.臧瑾光.物理化学实验.北京:北京理工大学出版社,1995
    16.贺福.碳纤维及其应用技术,北京:化学工业出版社,2004
    17.李青山,沈新元,孟庆财,冯云生.腈纶生产工学.北京:中国纺织出版社,2000
    18.K.E.彼列彼尔金.纤维的结构与性能.北京:中国石化出版社.1991
    19.西鹏,高晶,李文刚.高技术纤维.北京:化学工业出版社,2004
    20.贺福,王茂章.炭纤维及其复合材料.北京:科学出版社,1997
    21. B. Qian, J. Qin, z. Zhou. Void formation in acrylic fibers. Textile Asia, 1989, 4:40-57
    22. D. J. Therne. Distribution of internal flaws in acrylic fibers. Journal of Applied Polymer Science, 1970, 14(1): 103-113
    1. M. Balasubramanian, M. K. Jain, S. K. Bhattacharya, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers: Part 3: Thermooxidative stabilization and continuous, low temperature carbonization. Journal of Materials Science, 1987, 22:3864-3872
    2. M. K. Jain, M. Balasubramanian, P. Desai, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers: Part 2: Precursor morphology and thermooxidative stabilization. Journal of Materials Science, 1987, 22:301-312
    3. M. K. Jain, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers: Part 1: A review of the physical and morphological aspects. Journal of Materials Science, 1987, 22:278-300
    4.齐志军,宋威,林树波.PAN原丝生产过程对碳纤维强度的影响因素.高科技 纤维与应用,2001,26(5):17-20
    5. B. Qian, J. Qin, Z. Zhou. Void formation in acrylic fibers. Textile Asia, 1989, 4:40-45
    6. D. J. Thorne. Distribution of internal flaws in acrylic fibers. Journal of Applied Polymer Science, 1970, 14(1):103-113
    7.张旺玺.提高聚丙烯腈原丝及其碳纤维质量的研究.上海纺织科技,2004,32(6):11~13
    8.罗益锋.世界PAN基碳纤维发展透析及对我国的研发建议.材料导报,2000,14(11):11~13
    9.沈新元.高分子材料加工原理.北京:中国纺织出版社,2000
    10.K.E.彼列彼尔金.纤维的结构与性能.北京:中国石化出版社,1991
    11.王延相.聚丙烯腈基炭纤维制备过程中组织结构演变的研究.山东大学博士学位论文:2003.4.
    12.王延相,何东新.聚丙烯腈纤维结构缺陷的形成和控制.金山油化纤.2004,23(4):11-16
    13. D. R. Paul. Diffusion during the coagulation step of wet-spinning. Journal of Applied Polymer Science, 1968, 12:383-402
    14. T. Morita, M. Adachi, J. Kato. Study of the coagulated structure and fiber strength with wet Spinning of aliphatic polyketone with aqueous Composite Metal Salt Solutions. Journal of Applied Polymer Science, 2005, 96:1250-1258
    15.王茂章,贺福.碳纤维的制造、性质及其应用.北京:科学出版社,1984
    16. A. J. Reuvers, F. W. Altena. Demixing and gelation behavior of ternaty cellulose acetate solutions. Journal of Polymer Science, Part B: Polymer Physics, 1986, 24:793-804
    17. T. H. Young, W. Y. Chuang. Thermodynamic analysis on the cononsolvency of poly(vinyl alcohol) in water-DMSO mixtures through the ternary interaction parameter. Journal of Membrane Science, 2002, 210:349-359
    18. I. Shimada, T. Takahagi, M. Fukuhara, K. Morita, A. Ishitani. FT-IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers. Journal of Polymer Science Part A: Polymer Chemistry, 1986, 24(8):1989-1995
    19. G. S. Bhat, F. L. Cook, A. S. Abhiraman. New aspects in the stabilization of acrylic fibers for carbon fibers. Carbon, 1990, 28:377-385
    20.贺福.碳纤维及其应用技术.北京:化学工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700