遗传性并多指家系的致病基因分析及产前诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并多指(synpolydactyly, SPD, MIM18600, syndactyly type Ⅱ)是一种以肢端发育异常为主要特征的遗传性疾病,多呈常染色体显性遗传。其典型临床表现为3/4手指和4/5脚趾受累,两指(趾)间由蹼相连,不能分离,并指的蹼中可合并有骨性多指,且常伴有第5趾外端的多趾,第5指的侧弯、屈曲和短指,第2-5趾可有不同程度的并趾,中节趾骨发育不全等。受累肢体可为1-4个,受累程度可由单纯的皮肤相连到完全性骨性融合,甚至累及掌骨或跖骨。
     目前已经发现有SPD1、SPD2和SPD3三种SPD,致病基因分别定位于2q31,22q13.31和14q11.2-q12,其中,SPD1的致病基因为位于染色体2q31的HOXD13。HOXD13是HOX家族的成员之一,编码转录因子,在肢体发育中具有重要作用。典型的SPD由位于HOXD13基因N末端的15个聚丙氨酸残基的延伸所致。基因型和表型的相关性分析表明,聚丙氨酸区域短的延伸(如7个)与较低的外显率和表现度有关,而较长的聚丙氨酸延伸(如10个或更多)则导致较高的外显率和更严重的表型。而且,HOXD13同源结构域内的缺失和错义突变也可导致非典型的SPD,如特定的足部表型、短指合并并指畸形或者D型和E型短指。
     为SPD的高危妊娠进行产前诊断可以避免SPD患儿出生。迄今为止,仅有几例SPD的产前诊断报道。本研究中,我们利用在山东省济南市采集到的SPD家系,对其临床特点及系谱特征进行了分析,对其致病原因进行了分子遗传学研究,确定了致病基因及致病突变,并且在此基础上为家系高危妊娠提供了影像学和分子遗传学产前诊断。
     第一部分一个常染色体显性遗传并多指家系的家系调查及临床分析
     在遗传咨询过程中,我们发现了一SPD患者,因面临生育前来咨询并申请产前诊断。为了明确该SPD家系患者的致病基因,我们首先对该SPD家系进行了家系调查及临床分析。
     家系调查发现,家系中共有成员41名,其中患者16例,受累患者均表现有典型的并多指(趾)畸形。家系中男女均有发病,5代中共有男性患者9名,女性患者7名。家系中连续5代均有患者,在连续世代中呈垂直分布,无隔代遗传现象。家系中患者均存在不同程度的并(多)指(趾),但患者间存在较大的表现度差异。通过系谱分析,该SPD家系的遗传方式为常染色体显性遗传。
     该SPD家系中受累患者均表现有典型的并多指(趾)畸形。先证者出生时即发现严重手足畸形,表现为3/4指完全并指,4/5趾并趾并伴有多趾。经过详细的临床调查,该SPD家系临床特点总结如下:①先天性发病;②严重程度不同,家系中患者有表现度差异;③手部畸形严重,影响手部功能的发挥;④主要表现为3/4指完全并指,4/5趾并趾并伴有多趾;⑤X线检查有并多指(趾)表现;⑥呈常染色体显性遗传。根据典型的临床特征及放射线检查和系谱分析结果,可以确诊此家系患者为Ⅱ型并指,SPD1型,A4亚型。
     第二部分并多指家系的致病基因分析
     获得家系成员的系谱特征及标本后,为确定该家系致病基因,我们首先将HOXD13基因作为候选基因,在候选基因的两侧选取紧密连锁的STR位点D2S1238和D2S1245进行连锁分析。PCR扩增产物经聚丙烯酰胺凝胶电泳分析后确定家系中各个体基因型,经基因型分析和单体型分析发现,该家系致病基因与HOXD13紧密连锁,提示HOXD13也是该家系的致病基因。
     随后,我们应用PCR扩增结合测序分析检测HOXD13基因突变。首先我们分析了最常见的Poly-A突变。对包含该位点的第1外显子进行PCR扩增后,回收纯化目的片段进行TA克隆,挑选单克隆扩增后进行测序分析。测序结果采用BLAST程序进行序列对比分析。发现先证者的HOXD13基因在cDNA的189-190bp之间插入27bp,该插入突变使聚丙氨酸重复序列的第14和第15个丙氨酸之间插入9个丙氨酸残基,导致poly-A链的延伸。
     为证实该突变在家系中与疾病表型共分离,我们采用PCR扩增结合变性聚丙烯酰胺凝胶电泳方法确定家系中各成员的基因型,发现所有患者都带有27bp插入突变,正常人无此突变,证实该突变为家系患者的致病突变。
     第三部分并多指家系的产前诊断
     SPD属于一类严重致残致畸的单基因遗传性疾病,开展基因和超声学产前诊断,防止患儿出生是预防该病发生的最佳应对策略和最有效方法。为此,根据咨询者要求,我们在家系分析和基因型分析基础上,联合应用超声产前诊断检查方法和分子诊断方法对该家系中的1例高危妊娠进行产前影像学和分子遗传学诊断。
     孕16周起,通过超声进行四肢动态监测,动态观察胎儿手足形态;并于孕18周经腹抽取SPD孕妇的羊水,提取羊水中胎儿细胞基因组DNA,通过D2S1238和D2S1245两个STR位点连锁分析及HOXD13基因突变检测完成了对该家系的产前基因诊断,为家系成员提供了准确的产前诊断结果。新生儿出生时行体格检查进行验证。
     本部分结果显示,超声产前诊断未发现胎儿肢体异常。胎儿DNA连锁分析结果表明胎儿从母亲得到的是与正常等位基因连锁的等位基因,表明胎儿未从其母亲获得致病基因,进一步的突变分析证实胎儿HOXD13也未携带在该家系患者中检测到的插入突变。胎儿发育至足月分娩,对新生儿常规体格检查,发现新生儿手足正常,无并多指(趾)现象,同时未发现新生儿其他异常。验证了超声和基因产前诊断结果。
     以上研究表明,联合使用超声和基因诊断方法可为患者提供准确的产前诊断。
Synpolydactyly (SPD, MIM186000, or syndactyly type2) is an autosomal dominant inherited malformation of the distal limbs. It is characterized by soft-tissue syndactyly between fingers3and4and between toes4and5with partial or complete digit duplication within the syndactylous web. The fifth-finger clinodactyly, camptodactyly, or brachydactyly, variable syndactyly of the second to fifth toes, and middle phalanx hypoplasia are also found to be associatated with SPD. Incomplete penetrance and variable expressivity both between and within affected families are common and involvement is often asymmetrical. From one to four limbs can be involved, and the severity of involvements ranges from partial skin syndactyly to complete reduplication of a digit, extending as far proximally as the metacarpals/tarsals.
     Three loci have been identified at chromosomes2q31,22q13.31, and14q11.2-q12, and have been designated as SPD1, SPD2,and SPD3, respectively. Of these, SPD1is caused by the mutations in the HOXD13gene on chromosome2q31. HOXD13is a member of the HOX family that encodes for a transcription factor with a crucial role in limb development. Typical SPD is caused by expansions of a15-residue poly-Alanine tract in the N-terminal region of HOXD13. Genotype-phenotype correlation suggests that short poly-Alanine repeats (i.e.,+7repeats) are associated with lower penetrance and expressivity, whereas long repeats (+10and more) are associated with higher penetrance and more severe disease. Furthermore, deletion and missense mutations within the HOXD13homeodomain have been also found to cause atypical forms of SPD, characterized by a distinctive foot phenotype, brachydactyly-polydactyly or brachydactyly types D and E. Detection of SPD by prenatal diagnosis may be especially relevant in pregnancies at risk for severe affected individuals. To date, only few cases of prenatal diagnosis of SPD have been reported. Here, we present the clinical findings, genetic counseling, and prenatal diagnosis in a Chinese family. The family contains9affected. Linkage analysis mapped the disease locus to chromosome2q31where HOXD13located. Mutation analysis identified a9-residue poly-Alanine tract expansion in the N-terminal of HOXD13. Mid-trimester ultrasound and aminocentesis excluded that the fetus affected with SPD. Part1Phenotype and pedigree analysis of a large Chinese family with synpolydactyly
     A28-year-old woman with SPD from a large SPD kindred was referred for genetic counseling and prenatal diagnosis. She was born with severe bilateral hand-and foot abnormalities. She had complete syndactyly between the third and fourth fingers, and syndactyly between toes4th and5th with an extra toe at her feet. After we got the approval of the Ethics Committee of Shandong University School of Medicine, and informed consents from all participants, we performed clinical examination of the family members and obtained blood samples for linkage analysis and mutation detection. Further investigation of this family revealed8other family members with hand-and/or foot abnormalities: bilateral3/4syndactyly was noted in individuals Ⅳ-12, Ⅳ-14, Ⅲ-11, Ⅲ-15, V-4, IV7, and IV-6, unilateral syndactyly in indivudual Ⅲ-10. In the feet, the most obvious malformation was variable degrees synpolydactyly between toes4and5with an extra toe. Moreover, most of affected feet had additional metatarsal between fourth and fifth metatarsals. This is not commonly observed in other families. Compared with the previously reported patients, the patients in this family had more severe phenotypes at their feet. The disease phenotype in this kindred clearly followed a pattern of autosomal dominant inheritance, though with variable expressivity.
     Part2Linkage analysis and mutation detection
     Because mutations were identified in the HOXD13gene in several unrelated Chinese families with SPD, we conducted a linkage analysis with previously used markers flanking the HOXD13gene. Blood samples were obtained from16family members (9affected,7unaffected), and leukocyte genomic DNA was extracted via standard techniques. Using two markers (D2S1238, and D2S1245) spanning the HOXD13gene, we showed that SPD was linked to chromosome2q31. These results suggested that the HOXD13gene was a candidate for the SPD phenotype in this family. Therefore, we carried out the mutation detection by directly sequencing HOXD13gene. We identified a heterozygous27-bp expansion in the imperfect GCN triplet-repeat of exon1, c.184_210dup. This mutation resulted in an addition of9alanine residues between the14th and15th alanine of the normally15-amino-acid-long poly-Alanine tract. This expansion represents a perfect duplication of the sixth to fourteenth triplet of the wild-type sequence. PCR amplification of the corresponding products comprising part of exon1revealed that this mutation cosegregated with the disease phenotype in the family, confirming full penetrance.
     Part3Prenatal ultrasonographic and molecular diagnosis
     Prenatal diagnosis was requested by the proband. Previous studies have shown that reliable observation of all fingers is possibly made by ultrasound examination between13and19weeks of gestation. To verify the fetal hand development, ultrasound examinations were conducted at16-21weeks, and demonstrated fetal biometry consistent with dates and normal amniotic fluid volume. All fingers and toes appeared normal. No other anomalies were observed. As mentioned above, enoumous phenotypic variation exists in SPD patients, and such clinical variability makes a prenatal diagnosis based on sonography alone difficult. At the proband's request, her aminotic fluid sample was obtained by ultrasound-guided amniocentesis at18weeks of gestation. Linkage analysis and mutation detection confirmed that the fetus did not inherite the mutant allele from his affected mother. Pregnancy progressed uneventfully. At term a female infant was born. Normal limb development was confirmed.
     To conclude, accurate prenatal diagnosis of SPD can be performed by combing the ultrasound diagnosis and molecular analysis.
引文
1. Fitzgerald RH Jr,K.,Mallkani A.1 Orthopaedics.Beijing:ElsevierScience, 2002:p.1895-1899.
    2. Temtamy,S.A.and V.A.McKusick,The genetics of hand malformations. Birth Defects Orig Artic Ser,1978.14(3):p.ⅰ-ⅹⅷ,1-619.
    3. Sato,D.,et al.,A syndactyly type Ⅳ locus maps to 7q36.J Hum Genet,2007. 52(6):p.561-4.
    4. Merlob,P.and M.Grunebaum,Type Ⅱ syndactyly or synpolydactyly.J Med Genet,1986.23(3):p.237-41.
    5. AndersonW,A case of "angeio-keratoma." Br J Dermatol,1898.10:p. 113-117.
    6.ThomsenO,Einige Eigentu mlichkeiten der erblichen Polyund Syndaktylie bei Menschen.Acta Med Scand 1927.65:p.609-644.
    7. 代礼,周光萱,朱军等,中国围产儿并指与并趾畸形的流行病学特征.中 华妇产科杂志,2004.39(7):p.436-438.
    8. Zhao,X.,et al.,Mutations in HOXD,3 underlie syndactyly type Ⅴ and novel brachydactyly-syndactyly syndrome.Am J Hum Genet,2007.80(2):p. 361.71.
    9. 赵秀丽,孟金萍,孙森等,中国人并多指(趾)畸形家系中HOXD13基因突变及产前诊断中华医学遗传学杂志,2005.22(1):p.5-9.
    10. Malik,S.and K.H.Grzeschik,Synpolydactyly:clinical and moecular advances.Clin Genet,2008.73(2):p.113-20.
    11. Goodman,F.R.,et al.,Synpolydactyly phenotypes correlate with size of expansions in HOXD,3 polyalanine tract.Proc Natl Acad Sci U S A,1997. 94(14):p.7458-63.
    12. Muragaki,Y.,et al.,Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13.Science,1996.272(5261):p.548-51.
    13. Goodman, F.R., Limb malformations and the human HOX genes. Am J Med Genet,2002.112(3):p.256-65.
    14. Sarfarazi, M., A.N. Akarsu, and B.S. Sayli, Localization of the syndactyly type Ⅱ (synpolydactyly) locus to 2q31 region and identification of tight linkage to HOXD8 intragenic marker. Hum Mol Genet,1995.4(8):p.1453-8.
    15. Kjaer, K.W., et al., A 72-year-old Danish puzzle resolved--comparative analysis of phenotypes in families with different-sized HOXD13 polyalanine expansions. Am J Med Genet A,2005.138(4):p.328-39.
    16. Malik, S., et al., Synpolydactyly and HOXD13 polyalanine repeat:addition of 2 alanine residues is without clinical consequences. BMC Med Genet,2007.8: p.78.
    17. Debeer, P., et al., The fibulin-1 gene (FBLN1) is disrupted in a t(12;22) associated with a complex type of synpolydactyly. J Med Genet,2002.39(2):p. 98-104.
    18. Malik, S., et al., Genetic heterogeneity of synpolydactyly:a novel locus SPD3 maps to chromosome 14q11.2-q12. Clin Genet,2006.69(6):p.518-24.
    19. Sayli, B.S., et al., A large Turkish kindred with syndactyly type Ⅱ (synpolydactyly).1. Field investigation, clinical and pedigree data. J Med Genet,1995.32(6):p.421-34.
    20. Akarsu, A.N., et al., A large Turkish kindred with syndactyly type Ⅱ (synpolydactyly).2. Homozygous phenotype? J Med Genet,1995.32(6):p. 435-41.
    21. Akarsu AN, O.F., Kostakoglu N, Mapping of the second locus of postaxial polydactyly type A(PAP-A2) to chromosome 13q21-q32. Am J Hum Genet, 1997.61(Suppl.):p. A265(Abstract).
    22. Goodman, F., et al., Deletions in HOXD13 segregate with an identical, novel foot malformation in two unrelated families. Am J Hum Genet,1998.63(4):p. 992-1000.
    23. Malik, S., et al., A simple method for characterising syndactyly in clinical practice. Genet Couns,2005.16(3):p.229-38.
    24. Akarsu, A.N., et al., Genomic structure of HOXD13 gene:a nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum Mol Genet, 1996.5(7):p.945-52.
    25. D'Esposito, M., et al., EVX2, a human homeobox gene homologous to the even-skipped segmentation gene, is localized at the 5'end of HOX4 locus on chromosome 2. Genomics,1991.10(1):p.43-50.
    26. Johnson, R.L. and C.J. Tabin, Molecular models for vertebrate limb development. Cell,1997.90(6):p.979-90.
    27. Deschamps, J., Developmental biology. Hox genes in the limb:a play in two acts. Science,2004.304(5677):p.1610-1.
    28. LevinB, Homeodomains bind related targets in DNA In Genes VII. Oxford: Oxford University Press,2000:p.660-62.
    29. Lappin, T.R., et al., HOX genes:seductive science, mysterious mechanisms. Ulster Med J,2006.75(1):p.23-31.
    30. Snajdr, P., M. Grim, and F. Liska, [HOX genes and the limb development in the clinical praxis and in the experiment]. Cas Lek Cesk.149(1):p.4-9.
    31. Mark, M., F.M. Rijli, and P. Chambon, Homeobox genes in embryogenesis and pathogenesis. Pediatr Res,1997.42(4):p.421-9.
    32. Lewis, E.B., A gene complex controlling segmentation in Drosophila. Nature, 1978.276(5688):p.565-70.
    33. McGinnis, W. and R. Krumlauf, Homeobox genes and axial patterning. Cell, 1992.68(2):p.283-302.
    34. Krumlauf, R., Hox genes in vertebrate development. Cell,1994.78(2):p. 191-201.
    35. Scott, M.P., Vertebrate homeobox gene nomenclature. Cell,1992.71(4):p. 551-3.
    36. Kosaki, K., et al., Complete mutation analysis panel of the 39 human HOX genes. Teratology,2002.65(2):p.50-62.
    37. Nelson, C.E., et al., Analysis of Hox gene expression in the chick limb bud. Development,1996.122(5):p.1449-66.
    38. Favier, B. and P. Dolle, Developmental functions of mammalian Hox genes. Mol Hum Reprod,1997.3(2):p.115-31.
    39. Mortlock, D.P. and J.W. Innis, Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet,1997.15(2):p.179-80.
    40. Goodman, F.R., et al., Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet,2000.67(1):p.197-202.
    41. Johnson, D., et al., Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E. Am J Hum Genet,2003.72(4): p.984-97.
    42. Caronia, G., et al., An I47L substitution in the HOXD13 homeodomain causes a novel human limb malformation by producing a selective loss of function. Development,2003.130(8):p.1701-12.
    43. Kan, S.H., et al., An acceptor splice site mutation in HOXD13 results in variable hand, but consistent foot malformations. Am J Med Genet A,2003. 121 A(1):p.69-74.
    44. Kemp, T., Ravn, J., Hand-und Fussdeformitaeten in einem 140-koepfigen Geschlecht, nebst einigen Bemerkungen ueber Poly-und Syndaktylie beim Menschen. Acta Psychiat. Neurol. Scand.,1932.7:p.275-296.
    45. Fantini, S., et al., A G220V substitution within the N-terminal transcription regulating domain of HOXD13 causes a variant synpolydactyly phenotype. Hum Mol Genet,2009.18(5):p.847-60.
    46. Garcia-Barcelo, M.M., et al., Identification of a HOXD13 mutation in a VACTERL patient. Am J Med Genet A,2008.146A(24):p.3181-5.
    47. Graba, Y., D. Aragnol, and J. Pradel, Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays,1997.19(5):p.379-88.
    48. Gehring, W.J., et al., Homeodomain-DNA recognition. Cell,1994.78(2):p. 211-23.
    49. Fraenkel, E. and C.O. Pabo, Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex. Nat Struct Biol,1998.5(8):p. 692-7.
    50. Mann, R.S. and M. Affolter, Hox proteins meet more partners. Curr Opin Genet Dev,1998.8(4):p.423-9.
    51. Ashley, C.T., Jr. and S.T. Warren, Trinucleotide repeat expansion and human disease. Annu Rev Genet,1995.29:p.703-28.
    52. Wajid, M., et al., Polyalanine repeat expansion mutations in the HOXD13 gene in Pakistani families with synpolydactyly. Clin Genet,2009.76(3):p. 300-2.
    53. Capellini, T.D., et al., Pbxl/Pbx2 requirement for distal limb patterning is mediated by the hierarchical control of Hox gene spatial distribution and Shh expression. Development,2006.133(11):p.2263-73.
    54. Warren, S.T., Polyalanine expansion in synpolydactyly might result from unequal crossing-over of HOXD13. Science,1997.275(5298):p.408-9.
    55. Albrecht, A.N., et al., A molecular pathogenesis for transcription factor associated poly-alanine tract expansions. Hum Mol Genet,2004.13(20):p. 2351-9.
    56. Amiel, J., et al., Polyalanine expansions in human. Hum Mol Genet,2004.13 Spec No 2:p. R235-43.
    57. Haga, H., et al., Gene-based SNP discovery as part of the Japanese Millennium Genome Project:identification of 190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet,2002. 47(11):p.605-10.
    58. Dai, L., et al., Mutation analysis of HOXD13 gene in a Chinese pedigree with synpolydactyly. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2005.22(3):p. 277-80.
    59. 国务院办公厅, 《人口发展“十一五”和2020年规划》.2006.
    60. 王琳,马旭.,遗传病的登记和咨询中国计划生育学杂志,2006.14(08):p.507-508.
    61. 李胜利,胎儿畸形产前超声诊断学.北京:人民军医出版社,2004:p.324-326.
    62. 李胜利,欧阳淑媛,陈琮瑛,等,连续顺序追踪超声法检测胎儿肢体畸形中华妇产科杂志,2003.38(5):p.267-269.
    63. 李胜利,陈琮瑛,超声诊断胎儿畸形的规范化和难点问题.中国超声医学杂志,2005.21(4):p.6.
    64. 李艳博,郭彩霞,黄沛力,王晖等,北京市出生缺陷防治现状及对策中国妇幼保健,2011(26):p.2570-2572.
    65. 虞惠婷,蔡任之,杨青等,2009年上海市出生缺陷监测分析中国妇幼保健,201 1(26):p.44-47.
    66. Li M, W.Q.Q.W.W., Progree on the prenatal ultrasound screening fou fetal malformation in the stage of early- and mid-pregnancy. Chin H Med Imaging Technol,2007.23(11):p.1745-1747.
    67. Wang H F, S.Z.H., Luo Y L,et al, Value of transvaginal ultrasound in diagnosis of fetal structural abnormalities at 11-14 week of gestation. Chin J Med Imaging Technol,2004.20(10):p.1585-1587.
    68. 黄勤,刘志伟,胎儿肢体畸形的产前超声检查最适时间探讨中国超声医学杂志,2009.25(2):p.167-170.
    69. Viora, E., et al., Ultrasonographic detection of fetal cranio-facial hemangioma: case report and review of the literature. Ultrasound Obstet Gynecol,2000. 15(5):p.431-4.
    70. L, L.S., The prenatal diagnosi with ultrasonography for fetal congenital anomaly. Chin J Med Ultrasound (Electromic version).2005.2(1):p.5-7.
    71. 刘菊玲,李胜利,陈琮瑛,等,胎儿肢体缺失的产前超声诊断中华医学超声杂志(电子版),2005.2(4):p.205-207.
    72. 漆玖玲,崔爱平,孙红,等,产前超声检查胎儿手足畸形最佳孕周的探讨.上海医学影像,2010.19(3):p.186-187.
    1. Sayli, B.S., et al., A large Turkish kindred with syndactyly type Ⅱ (synpolydactyly).1. Field investigation, clinical and pedigree data. J Med Genet,1995.32(6):p.421-34.
    2. Goodman, F.R., et al., Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract. Proc Natl Acad Sci U S A,1997. 94(14):p.7458-63.
    3. Temtamy, S.A. and V.A. McKusick, The genetics of hand malformations. Birth Defects Orig Artic Ser,1978.14(3):p. i-xviii,1-619.
    4. Kjaer, K.W., et al., A 72-year-old Danish puzzle resolved--comparative analysis of phenotypes in families with different-sized HOXD13 polyalanine expansions. Am J Med Genet A,2005.138(4):p.328-39.
    5. Malik, S., et al., Synpolydactyly and HOXD13 polyalanine repeat:addition of 2 alanine residues is without clinical consequences. BMC Med Genet,2007.8: p.78.
    6. Sarfarazi, M., A.N. Akarsu, and B.S. Sayli, Localization of the syndactyly type II (synpolydactyly) locus to 2q31 region and identification of tight linkage to HOXD8 intragenic marker. Hum Mol Genet,1995.4(8):p.1453-8.
    7. Debeer, P., et al., The fibulin-1 gene (FBLN1) is disrupted in a t(12;22) associated with a complex type of synpolydactyly. J Med Genet,2002.39(2):p. 98-104.
    8. Malik, S., et al., Genetic heterogeneity of synpolydactyly:a novel locus SPD3 maps to chromosome 14q11.2-q12. Clin Genet,2006.69(6):p.518-24.
    9. Akarsu, A.N., et al., A large Turkish kindred with syndactyly type Ⅱ (synpolydactyly).2. Homozygous phenotype? J Med Genet,1995.32(6):p. 435-41.
    10. Akarsu AN, O.F., Kostakoglu N, Mapping of the second locus of postaxial polydactyly type A(PAP-A2) to chromosome 13q21-q32. Am J Hum Genet, 1997.61(Suppl.):p. A265(Abstract).
    11. Goodman, F., et al., Deletions in HOXD13 segregate with an identical, novel foot malformation in two unrelated families. Am J Hum Genet,1998.63(4):p. 992-1000.
    12. Malik, S., et al., A simple method for characterising syndactyly in clinical practice. Genet Couns,2005.16(3):p.229-38.
    13. De Smet, L., P. De Beer, and J.P. Fryns, Cenani-Lenz syndrome in father and daughter. Genet Couns,1996.7(2):p.153-7.
    14. Horsnell, K., et al., Clinical phenotype associated with homozygosity for a HOXD13 7-residue polyalanine tract expansion. Eur J Med Genet,2006. 49(5):p.396-401.
    15. Malik, S., et al., Evidence for clinical and genetic heterogeneity of syndactyly type Ⅰ:the phenotype of second and third toe syndactyly maps to chromosome 3p21.31. Eur J Hum Genet,2005.13(12):p.1268-74.
    16. Castilla, E.E., J.E. Paz, and I.M. Orioli-Parreiras, Syndactyly:frequency of specific types. Am J Med Genet,1980.5(4):p.357-64.
    17. Kjaer, K.W., et al., HOXD13 polyalanine tract expansion in classical synpolydactyly type Vordingborg. Am J Med Genet,2002.110(2):p.116-21.
    18. Muragaki, Y., et al., Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science,1996.272(5261):p.548-51.
    19. Debeer, P., et al., Co-segregation of an apparently balanced reciprocal t(12;22)(p11.2;q13.3) with a complex type of 3/3'/4 synpolydactyly associated with metacarpal, metatarsal and tarsal synostoses in three family members. Clin Dysmorphol,1998.7(3):p.225-8.
    20. Debeer, P., et al., Physical mapping of the t(12;22) translocation breakpoints in a family with a complex type of 3/3'/4 synpolydactyly. Cytogenet Cell Genet, 1998.81(3-4):p.229-34.
    21. Malik, S. and K.H. Grzeschik, Synpolydactyly:clinical and molecular advances. Clin Genet,2008.73(2):p.113-20.
    22. Kan, S.H., et al., An acceptor splice site mutation in HOXD13 results in variable hand, but consistent foot malformations. Am J Med Genet A,2003. 121 A(1):p.69-74.
    23. Zakany, J. and D. Duboule, Hox genes in digit development and evolution. Cell Tissue Res,1999.296(1):p.19-25.
    24. Feinberg, A.P., Phenotypic plasticity and the epigenetics of human disease. Nature,2007.447(7143):p.433-40.
    25. Haga, H., et al., Gene-based SNP discovery as part of the Japanese Millennium Genome Project:identification of 190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet,2002. 47(11):p.605-10.
    26. Goodman, F.R. and P.J. Scambler, Human HOX gene mutations. Clin Genet, 2001.59(1):p.1-11.
    27. Johnson, D., et al., Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E. Am J Hum Genet,2003.72(4): p.984-97.
    28. Zhao, X., et al., Mutations in HOXD13 underlie syndactyly type Ⅴ and a novel brachydactyly-syndactyly syndrome. Am J Hum Genet,2007.80(2):p. 361-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700