丙烯酸酯系聚合物的亲水化改性及其性质与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子内同时含有亲水单元和疏水单元的聚合物称为两亲性聚合物。由于聚合物中两亲性链段彼此互不相容,容易发生微相分离,使其在选择性溶剂、表面和本体结构中呈现出独特的性质。因此,两亲性聚合物成为化学、医学及生命科学等领域广泛研究的对象。
     合成两亲性聚合物的方法主要有活性聚合和化学改性两种。活性聚合可以合成各种确定结构的两亲性聚合物,但是反应条件较苛刻。因此,本文工作主要是采用化学改性的方法使丙烯酸酯类聚合物亲水化得到两亲性的丙烯酸酯类聚合物,并对它们的性质和应用进行了讨论。第一种为带有大量羧酸根离子的两亲无规共聚物,其作为高分子表面活性剂应用于苯乙烯的乳液聚合中具有较好的乳液稳定性。第二种为聚乙二醇单甲醚(mPEG)接枝的两亲聚合物,它具有pH敏感、温度敏感及无机盐敏感等性质。第三种为聚乙二醇(PEG)交联并经过mPEG接枝的两亲性聚合物网络(凝胶),这种凝胶在环境pH值、温度和离子强度等条件的刺激下发生明显的体积相转变,即其溶胀度发生突变。
In recent years, there has been increasing interest in the synthesis and properties of the amphiphilic polymer due to this phase transition lied in the balance of hydrophilic and hydrophobic interactions in the system. So some unique properties are present. The primary focus includes nanometer materials (L-B films), side-chain polymer liquid crystal, biomaterials, drug carriers, polymer alloy, flocculant, adhensive, polymeric emulsifer and so on. The amphiphilic polymer has become the research object of chemistry, medicine, physics and life science.
     According its chemical structure, the amphiphilic polymer includes four kinds of block, graft, random and polymer network. Its synthetic method mainly included the living polymerization and the chemical modified. The advantage of the former was regular structure of products, but reaction condition relatively harsh. Compared with the former, the latter was simple and was applied to the synthesis of the polymeric surfactants.
     The polymeric surfactant is similar to small-molecule surfactants, both are composed of hydrophilic and hydrophobic. However, the surface activity of them has larger difference such as the surface tension reduction and so on. Even so, polymeric surfactant can stabilize the colloid particles owing to steric stabilization and is used as stabilizer. In this paper, an amphiphilic random polymer was synthesized by the chemical modified. The emulsion polymerization kinetics of styrene stabilized by this copolymer was investigated. The influence factors, including polymeric surfactant concentration, initiator concentration and polymerization temperature, were systematically studied. The results showed that the polymeric surfactant has good stability to emulsion. The rate of polymerization increased with the surfactant concentration, initiator concentration and reaction temperature. The nucleation model is related to the polymeric surfactant concentration. At the higher [S], droplets nucleation and micelle nucleation coexisted in the polymerization system; at the lower [S], only the droplets nucleation process existed. It would be speculated that a kind of large heterogeneous particles with multiple-active-sites was formed in the polymerization system. The influence of initiator concentration was complex. It was attributed to the barrier effect of the polymeric surfactant around the monomer droplets.
     The methoxy polyethylene glycol (mPEG) is a kind of polyethylene glycol terminated by methyl and composes of quantitative ethoxyl. Owing to the hydrogen bond interaction between oxygen atom and H_2O, mPEG has a good hydrophilic. So, it was used as the hydrophilic of the amphiphilic polymer, and because of its biocompatibility, it was applied as polymeric drug carrier. P (MMA-co-MAh)-g-mPEG was synthesized by grafting onto method. The grafting ratio of polymers was confirmed by ~1HNMR. The environment sensitivity of polymers was discussed such as pH、temperature and inorganic salt etc. The results showed that the degree of dissociation of carboxyl influenced the phase transition. When the degree of dissociation was higher, the polymer-water interaction increased and the hydrophilic of polymer increased. The other way round, PEG ether units form intra/intermolecular hydrogen bonds with the acid groups, the polymer-polymer interaction increased and the phase transition happened. When the degree of dissociation was lower, the increasing of temperature can destruct hydrogen bond between polymer and water, phase separation emerged, it made the grafted polymer sensitivity. Except pH and temperature, salt, alcohol and urea can affect the phase separation of polymer. For example, salting-out effect can decrease polymer's LCST. Alcohol can disrupt the hydrophobic interactions in the aqueous polymer solution. Urea is known as a hydrogen-bond breaker. Both made polymer's LCST increasing.
     The amphiphilic polymer network is a typical intelligent polymer materials. Because its structure include hydrophilic and hydrophobic, the interaction between two segments can happen reversible change. So the polymer network has obvious the volume phase transformation. In this paper, the amphiphilic polymer network was prepared by thermal cross-linking and its sensitivity was discussed. The results showed that the swelling rate increased with the increasing of the content of crosslinking agent and pH. The swelling rate of polymer network is relative to the dissolve degree of carboxyl. The dissolve degree of carboxyl increased with pH and the interaction increase between carboxyl and water, the curl molecular chain changed extension, water more easily to enter internal. Through the discussion of swelling kinetics, the deswelling emerges at lower pH, this attributed to the effect of physical crossing.
     In summary, Radical polymerization and chemical modified were used to sysnthenics liner and network amphiphilic polymer. One of products is polymeric emusifer and applied to emulsion polymerization as stabilizer. The other two possessed environment sensitivity such as pH, temperature and ionic strength and so on. These properties were discussed in this paper.
引文
[1]B. Wesslen, K. B. Wesslen. Preparation and properties of some water soluble, comb-shaped, amphiphilic polymers [J]. J. Polymer. Sci.: Part A: Polymer Chem., 1989,27:3915-3926.
    
    [2]R. T. Liggins, H. M. Burt. Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations [J], Adv. Drug Deliv. Rev., 2002, 54: 191-202.
    [3]G. F. Paciotti, D. G. I. Kingston, L. Tamarkin. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors [J], Drug Dev. Res., 2006, 67: 47-54.
    [4]L. Deng et al. An amphiphilic triblock copolymer useful for the preparation of drug-loaded polymer micelle or nanoparticle comprises polyethylene glycol block, aliphatic polyester block and cation polymer blocd: Univ Tianjin, CN101265312-A.
    [5]William C. Miles, Jonathan D. Goff, Philip P. etc., Synthesis and colloidal properties of polyether-magnetite complexes in water and phosphate-buffered saline [J], 2009,25: 803-813.
    [6]C. Klumpp, K. Kostarelos, M. Prato, A. Bianco. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics [J]. Biochem. Biophys. Acta. ,2006, 1758:404-412.
    [7]A. Lavasanifar, J. Samuel, G.S. Kwon. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery [J], Adv. Drug Deliv. Rev., 2002, 54: 169-190.
    [8]Shen, YF, Zhang, YJ, Kuehner, D. et al. Ion-responsive behavior of ionic-liquid surfactant aggregates with applications in controlled release and emulsification [J], Chem. Phys. Chem., 2008, 9: 2198-2202.
    [9]S. Elhasi, R. Astaneh, A. Lavasanifar. Solubilization of an amphiphilic drug by poly(ethyleneoxide)-block-poly(ester) micelles [J], European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65: 406-413.
    [10]Marina Talelli, Cristianne J. F. Rijcken, Twan Lammers, Peter R. Seevinck et al. Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery [J], Langmuir, 2009,25 (4): 2060-2067.
    [11]C. Peetla, K. Graf and J. Kressler. Langmuir monolayer and Langmuir-Blodgett films of amphiphilic triblock copolyrners with water-soluble middle block [J], Colloid and polymer science, 2006,285(1): 27-37.
    [12]H. Hussain, K.Y. Mya, C.B. He. Self-assembly of brush-Like poly[poly(ethylene glycol) methyl ether methacrylate] synthesized via aqueous atom transfer radical polymerization [J], 2008, 24(23):13279-13286.
    [13]C.L. Peng, M.J. Shieh, M.H. Tsai et al. Self-assembled star-shaped chlorin-core poly(c-caprolactone)-poly(ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies [J].2008, 29(26): 3599-3608.
    [14]M. Jacquin, P. Muller, H. Cottet et al. Controlling the melting of kinetically frozen poly(butyl acrylate-b-acrylic acid) micelles via addition of surfactant [J]. 2007, 23: 9939-9948.
    [15]A, Blanazs, S.P. Armes, A.J. Ryan. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications [J], 2009. 30: 267-277.
    [16] M.R. Xie, J.Y. Dang, H.J. Han, W. Wang, J.W. Liu, X.H. He, and Y.Q. Zhang. Well-defined brush copolymers with high grafting density of amphiphilic side chains by combination of ROP, ROMP, and ATRP [J], Macromolecules, 2008, 41: 9004-9010.
    [17] J.G. Jiang, X.S. Wang, X.Y. Lu, et al. Stereoregular polyacrylamide and its copolymer brushes: Preparation and surface characters [J], Applied surface science, 2008,255(5): 1888-1893.
    [18] V.I. Luzino, S. Minko, V.V. Tsukruk. Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles [J], Soft matter, 2008, 4(4): 714-725.
    [19]A. Alli, B. Hazer, Y,. Menceloglu, et al. Synthesis, characterization and surface properties of amphiphilic polystyrene-b-polypropylene glycol block copolymers [J], European polymer journal, 2006, 42(4): 740-750.
    [20]Y. Tian, C. Dai, H.Y. Ding, et al. Formation of honeycomb films from poly(L-lactiae)-block-poly(ethylene glycol) via water-droplet templating [J], Poymer international, 2007, 56(7): 834-839.
    [21]I J T; IYODA T; KAMATA K. Anisotropic ionic conductive polymer film used as electrolyte film, consists of proton or metal anion and amphiphilic polymer which is block copolymer of hydrophilic and hydrophobic polymer components bonded by covalent bond. JP2006273890-A.
    [22]C.J.F. Rijcken, O. Soga, W.E. Hennink, et al. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery [J], Journal of controlled release, 2007,120(3): 131-148.
    [23]H. Wei, X.Z.Zhang, H. Cheng, et al. Self-assembled thermo- and pH-responsive micelles of poly(10-undecenoic acid-b-N-isopropylacrylamide) for drug delivery [J], Journal of controlled release, 2006,116(3): 266-274.
    [24]Bates F S ; Fredrickson G H. Block copolymers-designer soft materials [J], Physics Today, 1999, 52: 32-38.
    [25]I.W. Hamley. The physics of block copolymers [C], Oxford university press, 1998.
    [26]J.A. Trejo-O'Reilly, J.Y. Cavaille et al. The surface chemical modification of cellulosic fibers in view of their use in composites materials [J], Cellulose, 1997, 4:1-16.
    [27]S.E. Stiriba, H. Kautz, and H. Frey, Hyperbranched Molecular Nanocapsules: Comparison of the Hyperbranched Architecture with the Perfect Linear Analogue [J], J Am Chem. Soc. 2002, 124: 9698-9699.
    [28]V.S. Trubetskoy. Polymeric micelles as carriers of diagnostic agents [J], Adv Drug Deliv Rev, 1999, 37: 81-88.
    [29]Ramin Djalali, Shu-You Li, and Manfred Schmidt. Amphipolar core-shell cylindrical brushes as templates for the formation of gold clusters and nanowires [J], Macromolecules, 2002, 35:4282-4288.
    [30]D.N.T. Hay, P.G. Rickert, S.Seifert, M.A. Firestone. Thermoresponsive nanostructures by self-Assembly of a poly (N-isopropylacrylamide)-lipid conjugate [J], J Am Chem Soc, 2004, 126: 2290-2291.
    [31]M.D.C.Topp,P.J.Dijkstra,H.Talsma,J.Feijen,Thermosensitive micelle-forming block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide)[J],Macromolecules,1997,30:8518-8520.
    [32]Lihong He,Jin Huang et al.Inclusion Interaction of Highly Densely PEO Grafted Polymer Brush and α-Cyclodextrin[J],2005,38:3845-3851.
    [33]P.Banerjee,D.J.Irvine,A.M.Mayes,et al.Polymer latexes for cell-resistant and cell-interactive surfaces[J],Journal of biomedical materials research,2005,50(3):331-339.
    [34]H.Hussain,K.Y.Mya,C.B.He.Self-Assembly of Brush-Like Poly[poly(ethylene glycol) methyl ether methacrylate]Synthesized via Aqueous Atom Transfer Radical Polymerization[J],Langrnuir,2008,24(23):13279-13286.
    [35]H.Kong,C.Gao,D.Y.Yan.Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J],Journal of the american chemical society,2004,126(2):412-413
    [36]H.Han,C.K.Hong,J.Hong et al.Synthesis of Poly(styrene-co-4-vinylpyridine)Microspheres via Dispersion Polymerization:Effect of the Concentration of 4-Vinylpyridine[J],J Appl.Polm.Sci.,2009,111(6):2900-2907.
    [37]D.D.Evanoff,J.B.Carroll,R.D.Roeder et al.Poly(methyl methacrylate)Copolymers Containing Pendant Carbazole and Oxadiazole Moieties for Applications in Single-Layer Organic Light Emitting Devices[J],J.Polymer.Sci.:Part A:Polymer Chem.,2008,46(23):7882-7897
    [38]C.Lefay,B.Charleux,M.Save et al.Amphiphilic gradient poly (styrene-co-acrylic acid) copolymer prepared via nitroxide-mediated solution polymerization.Synthesis,characterization in aqueous solution and evaluation as emulsion polymerization stabilizer[J],Polymer,2006,47(6):1935-1945
    [39]汪地强等.聚(丙烯酸丁酯/丙烯酸)的合成及其作为高分子乳化剂的应用[J],塑料工业,2001,29:
    [40]C.Erdodi,Joseph P.Kennedy.Amphiphilic conetworks:Definition,synthesis,applications[J],Progress in polymer science.
    [41]M.Szwarc,Living polymers[J],Nature,1956,178:1168-1169.
    [42]Yuruk H,Dzdemir A B.Preparation of block copolymers with polymeric zaocarbamate as an initiator[J].J Appl Polym Sci,1986,31:2171-2184.
    [43]M.Niw,N.Higashi,Reversible interpolymer complexation between poly(oxyethylene)-based amphiphilic block polymer and poly(acrylic acid) at the air-water interface[J].Macromolecules,1989,22:1000-1002.
    [44]J.L.Huang,X.Y.Huang,S.Zhang.Block copolyerization of ethylene oxide and styrene by sequential initiation of an anion and photoinduced charge transfer complex[J].Macromolecules,1995,28(13):4421-4425.
    [45]谢洪泉.含聚氧乙烯链段的两亲嵌段共聚物和接枝共聚物的分子设计、合成及性能[J],高分子通报,1999,4:17-24
    [46]X.Y.Huang,S.Chen,J.L.Huang,Synthesis and characterization of linear ABC triblock copolymer of ethylene oxide,methyl methacrylate,and styrene[J],1999,37(6):825-833.
    [47]N.Saito,C.Liu,T.P.Lodge et al.Multicompartment micelles from polyester-containing ABC miktoarrn star terpolymers[J],Macromolecules,2008,41(22):8815-8822.
    [48]J.Loiseau,N.Doelrr,J.M.Suau,J.B.Egraz,M.F.Llauro,C.Ladaviere.Synthesis and characterization of poly(acrylic acid) produced by RAFT polymerization,application as a very eficient dispersant of CaCO3,Kaolin,and TiO2[J],Macromolecules,2003,36(9):3066-3077.
    [49]Y.Mitsukami,M.S.Donovan,A.B.Lowe,C.L.McCormick.Water-soluble polymers.81.direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT[J],Macromolecule,2001,34:2248-2256.
    [50]Q.Zheng,C.Y.Pan.Preparation and characterization of dendrimer-star PNIPAAM using dithiobenzoate-terminated PPI dendrimer via RAFT polymerization[J],European Polymer Journal,2006,42(4):807-814.
    [51]D.B.Thomas,A.J.Convertine,R.D.Hester,A.B.Lowe,C.L.McCormick.Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations[J],Macromolecules,2004,37(5):1735-1741.
    [52]S. Hou, E.L. Chaikof, D. Taton, and Y. Gnanou. Synthesis of Water-Soluble Star-Block and Dendrimer-like Copolymers Based on Poly(ethylene oxide) and Poly(acrylic acid) [J], Macromolecules, 2003, 36(11):3874-3881.
    [53]A. Warren, Thaler. Hydrocarbon-soluble sulfonating reagents. Sulfonation of aromatic polymers in hydrocarbon solution using soluble acyl sulfates [J], Macromolecules, 1983, 16(4): 623-628.
    [54]Y. Tsukahara, K. Mizuno, A. Segawa, Y. Yamashita. Study on the radical polymerization behavior of macromonomers [J], Macromolecules, 1989, 22(4): 1546-1552.
    [55]R. Pempp, E. Franta. Synthesis and applications of macromonomers [J]. Polym Preprint, 1986, 27(1): 181-185.
    [56]R. Pempp, E. Franta. Macromonomers: synthesis, characterization and application [J], Adv Polym Sci, 1984, 58: 1-53
    [57]P. Masson, G. Beinert, E. Franta, R. Pempp. Synthesis of poly(ethylene oxide)macromers [J], Polym Bull, 1982, 7:17-22.
    [58]R. Pempp, P. Lutz, P. Masson, E. Franta. Macromonomers a new class of polymeric intermediates in macromolecular synthesis I synthesis and characterization [J], Makro Chem (Suppl), 1984, 8: 3-15.
    [59] R. Pempp, P. Lutz, P. Masson, E. Franta. Macromonomers a new class of polymeric intermediates in macromolecular synthesis II homo and copolymerization [J], Macromol Chem, 1985, 13: 47-66.
    [60] Y. Gnanou and R. Pempp. Macromonomers synthesis: new functionalization methods [J], Makro Chem, 1987, 188(9): 2111-2119.
    [61]F. Candau, F. Afchar, F. Tarom, P. Rempp. Synthesis and characterization of polystyrene-Poly(ethyleneoxide) graft copolymer [J], Polymer, 1977 , 18: 1253-1257.
    [62]G. Cheng, A. Boker, M.Zhang, G. Krauseh, A.H.E. Muller. Amphiphilic cylindrical core-shell brush as via a "grafting from"process using ATRP [J], Macromolecules, 2001, 34: 6883-6888.
    [63] M.F. Zhang, T. Breiner, H. Mori, A.H.E. Mulle. Amphiphilic cylindrical brushes with poly(acrylic acid) core and poly(n-butylacrylate) shell and narrowlength distribution [J], Polymer, 2003, 44:1449-1458.
    [64] S.H. Qin, H.S. Bomer, K. Matyjaszewski, S. Sheiko. 5. Densoly grafted molecular brushe swith high molecular weight backbone by ATRP and graft techniques [J], polym PrePr, 2002, 43:237-23.
    [65] E.J. Goethals, M. Dubreuil, L. Tanghe. Star and comb polytetrahydrofuran macromonomers: synthesis and network formation [J], Macromol Symp , 2000, 161: 135-40.
    [66] J.C. Tiller, L. Hartmann, J. Scherble. Reloadable antimicrobial coatings based on amphiphilic silicone networks [J], Surf Coat Int PTBC, 2005, 88(B1): 49-53.
    [67] J.C. Tiller, C. Sprich, L. Hartmann. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings [J], J Control Release, 2005, 103(2): 355-67.
    [68] T.K. Georgiou, M. Vamvakaki, C.S. Patrickios. Microphase separation under constraints: a molecular thermodynamic theory for polyelectrolytic amphiphilic model networks in water [J], Polymer, 2004,45(21): 7341-55.
    [69] E. Themistou, C.S. Patrickios. Synthesis and characterization of star polymers and cross-linked star polymer model networks containing a novel, silicon-based, hydrolyzable cross-linker [J], Macromolecules, 2004,37(18): 6734-6743.
    [70] E. Loizou, A.I. Triftaridou, T.K. Georgiou, M. Vamvakaki, C.S. Patrickios. Cationic double-hydrophilic model networks: synthesis, characterization, modeling and protein adsorption studies [J], Biomacromolecules, 2003,4(5): 1150-60.
    [71] C.S. Patrickios, T.K. Georgiou. Covalent amphiphilic polymer networks [J], Curr Opin Colloid Interface, 2003, 8(1): 76-85.
    [72] M. Vamvakaki, C.S. Patrickios. Polyelectrolytic amphiphilic model networks in water: a molecular thermodynamic theory for their microphase separation [J], J Phys Chem B, 2001, 105(21): 4979-86.
    [73] M. Weber, R. Stadler. Hydrophilic-hydrophobic two-component polymer networks: 1. Synthesis of reactive poly(ethylene oxide) telechelics [J], Polymer, 1988, 29(6): 1064-70.
    [74] G. Erdoedi, B. Ivan. Novel amphiphilic conetworks composed of telechelic poly(ethylene oxide) and three-ann star polyisobutylene [J], Chem Mater 2004, 16(6): 959-62.
    [75] G Erdodi, A. Janecska, B. Ivan. Novel intelligent amphiphillic conetworks. In: polymer networks group review series [M], New York: Wiley; 1999, 2: 73-87.
    [76] W.D. Harkins, A general theory of the mechanism emulsion polymerization [J], J. Am. Chem. Soc., 1947, 69(6): 1428-1444.
    [77] W. D. Harkins. A general theory of the reaction loci in emulsion polymerization [J], J Chem Phys, 1945, 13: 381-382.
    [78]Harkins W D. J Chem Phys. 1946,14: 47
    [79]W. V. Smith, R. H. Ewart. Kinetics of emulsion polymerization [J], J Chem Phys. 1948,16(6): 592
    [80] W.V. Smith. The Kinetics of Styrene Emulsion Polymerization [J], J Am Chem Soc, 1948, 70(11): 3695-3702.
    [81]C.P. Roe. Surface chemistry aspects of emulsion polymerization [J], Ind. Eng. Chem., 1968,60(11): 20-33.
    [82]R. M. Fitch, C. H. Tsai et al. polymer colloids [C]. New York, plenum press , 1971,73-103.
    [83]R. M. Fitch and Y. K. Kamath. Coagulation—control of particle number during nonaqueous emulsion polymerization of methyl methacrylate [J], J. Colloid Interface Sci., 1976, 54(1): 6-12.
    [84]F.K. Hansen et al, Theory and practice of emulsion technology [C], Academic presss, Iondon, 1976, 13-21.
    [85]J. Ugelstad, F.K. Hansen and S. Lange. Emulsion polymerizationof styrene with sodium hexadecyl sulphate/hexadecanol mixture as emulsifiers. Intiation in monomer droplets [J], Die makromolekulare chemie, 1974, 175(2): 507-521.
    [86]K. Landfester. Polyreactions in miniemulsion [J], Macromol. rapid commun. 2001, 22(12): 896-936.
    [87]W. I. Higuchi and J. Misra. Pysical degration of emulsions via the molecular diffusion route and the possible prevention thereof[J].J.Pharm.Sci.1962,51:459-466.
    [88]沈一丁.高分子表面活性剂,北京:化学工业出版社,2002
    [89]北原文雄等编,孙绍曾等译,表面活性剂,北京:化学工业出版社,1984
    [90]杨亚江,聚皂的性质和研究进展,化学通报,1999,7,1-7.
    [91]严瑞瑄等,水溶性高分子,北京:化学工业出版社,1988.
    [92]H.Q.Xie,G.C.Xu et al,Synthesis and properties of poly(acrylic Acid) with uniform poly(methyl methacrylate) side chains[J],J.Macromol.Sci.Part A:Pure and Applied Chemistry,1992,29(3):263-276.
    [93]孙芳等,增稠性丙烯酸类多元共聚物的研究,化学与粘合,2000,2:66-68.
    [94]A.Hill,F.Candau,and J.Selb.Properties of hydrophobically associating polyacrylamides:influence of the method of synthesis[J],Macromolecules,1993,26(17):4521-4532.
    [95]杨向荣,影响聚丙烯酸盐增稠性的因素,印染助剂,2000,17(4):11-13.
    [96]T.F.Trdros,B.J.Vincent.The application of polymer materials in oilfields[J],Phys.Chem.,1980,84:1575.
    [97]G.L.Jialanella,E.M.Firer and I.Piirma.Synthesis of polystyrene-blockpolyoxyethylene for use as a stabilizer in the emulsion polymerization of styrene[J],J Polym.Sci.Part A:Polym.Chem.,1992,30:1925-1933.
    [98]C.S.Chem,C.Lee.Effect of the structure of amphiphilic poly(ethylene glycol)containing graft copolymers on styrene emulsion polymerization[J],J.Polym.Sci.,Polym.Chem,2002,40:1608-1624.
    [99]D.Y.Lee,J.H.Kim.Emulsion polymerization of styrene using an alkali-soluble random copolymer as polymeric emulsifier[J],J.Polym.Sci.,Polym.Chem,1998,36,2865-2872.
    [100]S.J.Wang,Y.Qiang and Z.C.Zhang.Emulsion polymerization stabilized by polymeric surfactant prepared byγ-ray radiation[J],Colloids Surf.A,2006,281:156-162.
    [101]S.J.Wang,Y.Qiang and Z.C.Zhang.Preparation of polystyrene particles with narrow particle size distribution by γ-ray initiated miniemulsion polymerization stabilized by polymeric surfactant[J],European polym.J.2007,43:178-184.
    [102]E.Maria,E.Rotureau and E.Dellacherie.From polymeric surfactants to colloidal systems 4.Neutral and anionic amphiphilic polysaccharides for miniemulsion stabilization and polymerization[J],Colloids Surf.A,2007,308:25-32.
    [103]姚康德,成国祥.智能材料,北京:化学工业出版社,2002.1
    [104]M.K.Yoo,W.K.Seok,Y.K.Sung.Characterization of stimuli-sensitive polymers for biomedical applications 2001[C],Symposium on Fundamentals and Applications of Polymer Gels,Oaxaca,Mexico,Macromolecular stymposia,2004,207:173-186.
    [105]G.Gerlach,M.Guenther,J.Sorber,et al.Chemical and pH sensors based on the swelling behavior of hydrogels 2004[C],18th Eurosensors Conference,Sensors and acruators b-chemical,Rome Italy,2005,111:555-561.
    [106]S.Kadlubowski,A.Henke,P.Ulanski,et al.Hydrogels of polyvinylpyrrolidone(PVP) and poly(acrylic acid)(PAA) synthesized bv photoinduced crosslinking of homopolymers[J],Polymer,2007,48(17):4974-4981.
    [107]N.Stavrouli,I.Katsampas,S.Aggelopoulos,et al.pH/Thermosensitive hydrogels formed at low pH by a PMMA-PAA-P2VP-PAA-PMMA pentablock terpolymer[J],Macromolecular Rapid Communications,2008,29(2):130-135.
    [108]C.L.He,S.W.Kim,D.S.Lee,In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery[J],Journal of Controlled Release,2008,127(3),189-207.
    [109]S.Kim,J.Y.Kim,K.M.Huh,et al.Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel[J],2008,132(3):222-229.
    [110]X.J.Loh,Y.L.Wu,W.T.J.Seow,et al.Micellization and phase transition behavior of thermosensitive poly(N-isopropylacrylamide)-pol y (epsilon-caprolactone)-poly(N-isopropylacrylamide) triblock copolymers[J],Polymer,2008,49(23):5084-5094.
    [111]V.A.Sethuraman,M.C.Lee,Y.H.Bae.A biodegradable pH-sensitive micelle system for targeting acidic solid tumors[J],Pharmaceutical Research,2008,25(3): 657-666.
    
    [112]B.S. Kim, S.W. Park, P.T. Hammond. Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces [J], Acs Nano, 2008, 2(2): 386-392.
    [113]J.B. Qu, L.Y. Chu, M. Yang, R. Xie, L. Hu, W.M. Chen. A pH-responsive gating membrane system with pumping effects for improved controlled-release [J], Advanced Functional Materials, 2006,16(14): 1865-1872.
    [114]A.M. Balachandra, G.L. Baker, M.L. Bruening. Preparation of composite membranes by atom transfer radical polymerization initiated from a porous support [J], Journal of membrane science, 2003,227(1-2):1-14.
    [115]K. Soyeon, E. Kevin. Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-Links [J], Biomacromolecules, 2003,4 (5): 1214-1223.
    [116]B. Vernon, A. Gutowska, S.W. Kim, Y.H. Bae. Macromol.Symp.1996, 109: 155.
    [117]L.D.Taylor, L.D.Cerankowski. Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions-a study of lower consolute behavior [J], J.Polym.Sci., Polym.Chem.Ed.,1975, 13(11):2551-2570.
    [118]R.A. Stile, W.R. Burghardt, K.E. Healy, Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro [J], Macromolecules, 1999, 32:7370-7379.
    [119]Y.H.Bae, T.Okano, S.W. Kim. Pharm.Res.1991, 8: 531.
    [120]R.Yoshida, K.Sakai, Okano,T. Y. Sakurai. J.Biomater. Sci., Polym. Ed. 1994, 6: 585
    [121]L.D. Taylor, L.D.Cerankowski. Preparation of films exhibiting a balanced temperature-dependence to permeation by aqueous-solutions-study of lower consolute behavior [J], J Polym Sci Polym Chem Ed, 1975,13:2551-2570.
    [122]F. Meeussen, E. Nies, H. Berghmans, S. Verbrugghe, E. Goethals. Phase behavior of poly(N-vinylcaprolactam) in water [J], Polymer, 2000,41:8597-602.
    [123]H. Uyama, S. Kobayashi. A novel thermosensitive polymer-poly (2-iso-propyl -2-oxazoline) [J], Chem Lett, 1992: 1643-1646.
    [124]Saito S, Otsuka T. Dissolution of some polymers inaqueous solution of urea, of its related compounds, and of tetraalkylammonium salts [J], J Colloid Interface Sci, 1967,25:531.
    [125]J. Lee, Y.H. Bae, Y.S. Sohn, et al. Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol) [J], Biomacromolecules, 2006, 7(6): 1729-1734.
    [126]H.R. Allcock, S.R. Pucher, al et. Poly(organophosphazenes) with poly(alkyl ether) sidegroups-a study of their water solubility and the swelling characteristics of their hydrogels [J], Macromolecules, 1992, 25:5573-5577.
    [127]H.R. Allcock, G.K. Dudley. Lower critical solubility temperature study of alkyl ether based polyphosphazenes [J], Macromolecules, 1996, 29:1313-1319.
    [128]C.M. Schilli, M. Zhang, E. Rizzardo, S.H. Thang, Y.K. Chong, K. Edwards, et al. A new double-responsive blockcopolymer synthesized via RAFT polymerization: poly(Nisopropylacrylamide)-block-poly(acrylic acid) [J]. Macromolecules, 2004, 37: 7861-7866.
    [129]T.J.Martin, K.Prochazka, P.Munk, S.E.Webber. pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide) [J], Macromolecules, 1996, 29: 6071-6073.
    [130]V. Burun, N.C. Billingham, S.P. Armes. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: formation of micelles and reverse micelles in aqueous solution [J], J.Am.Chem.Soc., 1998,120(45): 11818-11819.
    [131]M. Irie, D. Kungwatchankun. Photoresponsive polymers. 8. reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives [J], Macromolecules, 1986, 19:2476-2480.
    [132] R. Kroeger, H. Menzel, M.L. Hallensleben. Light controlled solubility change of polymers: copolymers of N,N-dimethylacrylamide and 4-phenylazophenyl acrylate [J]. Macromol Chem Phys., 1994, 195: 2291-2298.
    [133] P. Ravia, S.L. Sinb, L.H. Ganb, Y.Y. Ganb, K.C. Tama, X.L. Xia, et al. New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior [J], Polymer, 2005,46:137-146.
    [134]T. Yoshida, S. Kanaoka, S. Aoshima. Photo-responsive copolymers with azobenzene side groups synthesized by living cationic polymerization: efficient amplification of photosensitivity in aqueous photo-switching system [J], J Polym Sci Part A: Polym Chem., 2005,43: 5337-5342.
    [135] T.Tanaka. Scientific American, 1981, 244: 110-123.
    [136] F. Ilmain, T. Tanaka. Kokufuta E. Nature, 1991, 349: 400-401.
    [137]K. Kato, H.J.Schneider. Dispersive effects in chemomechanical reactions with polyallylamine-derived hydrogels [J], European Journal of Organic Chemistry, 2008, 8: 1378-1382.
    [138]E. Sato-Matsuo, T.Tanaka. Kinetics of discontinuous volume-phase transition of gels [J], Journal of Chemical Physics, 1988, 89: 1695-1703.
    [139]Y. Li, T. Tanaka. Kinetics of swelling and shrinking of gels [J]. Journal of Chemical Physics, 1990, 92: 1365-1371.
    [140]C.J. Wang, Y. Li. Swelling kineties of polymer gels [J], Macromolecules, 1997, 30(16): 4727-4732.
    [141]J. Crank. The mathmaties of diffusion [M]. London, 1975.
    [142]T. Alfey, E.F. Gurnee. Diffusioning lassy polymers [J], Journal of polymer science: Part C polymer letters, 1966, 12: 249-261.
    [143]H.J. Schott. Swelling kinetics of polymers [J], Journal of Macromolecular Science-physical, 1992, B31:1-9.
    [144]C. Wu, C.Y. Yan. Studies of the swelling and drying kinetics of thin gelatin gel films by in situ interferometry [J], Macromolecules. 1994, 27: 4516-4520.
    [145]E. Dicz-Pena, et al. Analysis of the swelling dynamics of cross-linked P(N-iNAAm-co-MAA) copolymers and their homopolymers under acidic medium. Akinetics interpretation of the overshooting effect [J], Macromolecules, 2003, 36: 2475-2483.
    [146]C.S. Chern, C. Lee. Effect of the structure of amphiphilic poly(ethylene glycol)-containing graft copolymers on styrene emulsion polymerization [J], J Polym Sci Part A Polym Chem,2002,40:1608-1624.
    [147]I.Capek,J.Barton,L.Q.Tuan,V.Svoboda,V.Novotny.Emulsion copolymerization of methyl-methacrylate and ethyl acrylate.2.effect of emulsifier concentration and emulsifier blend composition on the polymerization behavior[J],Chem.Macromol.Chem.Phys.1987,188:1723.
    [148]I.Piirma,M.Chang.J Polym Sci Polym Chem Ed;1982,20:489.
    [149]C.D.Lack,M.S.El-Aasser,C.A.Silebi,J.W.Vanderhoff,F.M.Fowes.Liquid crystals in dilute mixed emulsifier sodium lauryl sulfate/fatty alcohol solutions[J],Langrnuir,1987,3:1155-1160.
    [150]C.S.Chern,T.J.Chen.Effect of Ostwald ripening on styrene miniemulsion stabilized by reactive cosurfactants[J],Colloids Surf.A:Physicochem.Eng,Asp.1998,138:65-74.
    [151]G.Baskar,K.Landfester and Markus Antonietti.Comblike Polymers with Octadecyl Side Chain and Carboxyl Functional Sites:Scope.for Efficient Use in Miniemulsion Polymerization[J],Macromolecules 2000,33:9228-9232.
    [152]G.H.Hu,J.T.Lindt.Monoesterification of styrene-maleic anhydride copolymers with alcohols in ethyl benzene:Catalysis and kinetics[J].Journal of Polymer Science Part A:Polymer Chemist ry,31(3):691-700.
    [153]刘郁杨,范晓东,张双存.温度及p H敏感N2异丙基丙烯酰胺/β2环糊精水凝胶的合成与性能研究[J].高分子学报,2002,(5):618-622.
    [154]X.X.Liu,Z.Tong,O.Hu,et al.Swelling equilibria of hydrogels with sulfonate group s in water and in aqueous salt solutions[J].Macromolecules,1995,28:3813-3817.
    [155]E.Dicz-Pena,et al.Analysis of the swelling dynamics of cross-linked P(N-iNAAm-co-MAA) copolymers and their homopolymers under acidic medium.Akinetics interpretation of the overshooting effect[J],Macromolecules,2003,36:2475-2483.
    [156]Y.H.Yin,X.M.Ji,H.Dong,Y.Ying,H.Zheng.Study of the swelling dynamics with overshooting effect of hydrogels based of sodium alginate-g-acrylic acid[J],Carbohydrate Polymers,2008,71:682-689.
    [157]M.J.Smith,N.A.Peppas,Effect of the degree of crosslinking on penetrant transport in polystyrene[J],Polymer,26:569-574.
    [158]W.F.Lee,C.H.Shieh,pH-therrnoreversible hydrogels.2.Synthesis and swelling behaviors of N-isopropylacrylamide-co-acrylic acid-co-sodium acrylate hydrogels[J],Journal of applied polymer science,1999,73:1955-1967.
    [159]J.Valencia,I.E Pierola,Swelling kinetics of poly(N-vinylimidazole-co-sodium styrenesulfonate) hydrogels.Journal of applied polymer science,2002,83:191-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700