高分子乳化剂的合成及其在(细)乳液聚合中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性聚合物作为乳化剂,具有低分子的表面活性同时,也具有很多独特的物理化学性质,使用时具备很多小分子乳化剂或复配体系所不具备的优点。对分散体系的稳定作用及其在(细)乳液聚合和分散聚合中的应用则是该类聚合物最引人注目的应用研究之一。两亲性聚合物的种类之一是无规型两亲性聚合物,其合成方法简便易行,单体种类选择和组成的范围变化多样,通过化学合成手段可得到表面活性高低不同、不同结构的、一定分子量的两亲性聚合物,作为乳化剂应用于相关的乳液聚合中,其聚合产物结构或性能有不少独特的优点。
     本论文合成了两种新型两亲性无规共聚物:(1)利用BPO引发甲基丙烯酸(MAA)、甲基丙烯酸十八烷基酯(SMA)和聚乙二醇甲基丙烯酸酯(PEGMA),合成了两亲性共聚物Poly(MAA-co-SMA-co-PEGMA),其具有离子型表面活性剂和非离子表面活性剂的特点。(2)利用AIBN引发SMA、DMA(甲基丙烯酸(N, N-二甲氨基)乙酯)单体,合成了分子量分布窄的两亲性无规共聚物Poly(SMA-co-DMAEMA),其具有阳离子表面活性剂的特点。这两种两亲性共聚物作为后续(细)乳液聚合的乳化剂。与此同时,将已合成的聚甲基丙烯酸(N, N-二甲氨基)乙酯[poly(DMAEMA)]Y-型大分子单体作为细乳液聚合反应的乳化剂和共聚大分子单体。对它们相应的(细)乳液聚合的体系和聚合产物做了相关研究。得到了如下重要的结论:
     1.Poly(MAA-co-SMA-co-PEGMA)共聚物(MAA:SMA:PEGMA = 45:25:30)的CMC(临界胶束浓度)为0.003g/ml左右,其浊点温度69.1°C,水溶液的表面张力最低值为48 mN/m左右,而低分子表面活性剂SDS(十二烷基硫酸钠)则为40 mN/m。Poly(MAA-co-SMA-co-PEGMA)共聚物(以下简称HS)与低分子表面活性剂SDS(以下简称LS)复配增强其表面活性、提高其浊点,当HS:LS=5:5后,体系的表面张力和临界胶束浓度都有所降低,接近于低分子表面活性剂,且有明显的CMC值,浊点温度大于100℃。作为丙烯酸酯乳液聚合的复配乳化剂,其聚丙烯酸酯乳液的稳定性好,成膜后吸水性低,很容易达到平衡,且最终的吸水率也比较低,比低分子表面活性剂体系聚丙烯酸酯膜吸水率降低100%以上,耐水性好。
     2.Poly(SMA-co-DMAEMA)是以DMA:SMA=8:2,9:1(摩尔比)两种比例,制备出两种结构精致,分子量分布较窄的大分子乳化剂。在乳液中亲水链伸向水相,形成聚苯乙烯为“核”乳化剂为“壳”的聚合物粒子。细乳液聚合动力学研究表明,随着固含率增大,聚合反应速率、转化率增加;随着大分子乳化剂用量的增加,聚合反应速率、转化率增加;随着体系pH值变化,在pH=3-5范围内,细乳液聚合具有较高的稳定性、反应速率和转化率;而在pH=7时,细乳液聚合稳定性、反应速率和转化率都较低。FTIR和1HNMR分析,结果表明:大分子乳化剂吸附在苯乙烯的微球上,而把它们的亲水链伸向水中,形成“毛发型”聚合物微球。对反应中的细乳液的粒径进行跟踪测试,结果显示,粒径基本不变,表明大分子乳化剂具有良好的乳化效果。对聚合物粒子的形态进行透镜分析,结果表明:在酸性介质中,粒子大小均匀,说明大分子乳化剂所形成的阳离子型聚电解质或部分质子化对苯乙烯细乳液聚合有明显影响。
     3.以聚甲基丙烯酸(N, N-二甲氨基)乙酯[poly(DMAEMA)]Y-型大分子单体作为细乳液聚合反应的乳化剂和共聚大分子单体。细乳液聚合动力学研究结果表明:随着大分子单体用量的增加,聚合反应速率增加。随着体系pH值增大,在pH=3-5范围内,细乳液聚合速率较快,转化率较高;而在pH=7时,最终单体的转化率仍很低。FTIR和1H NMR分析,结果表明:大分子单体以共价键形式与苯乙烯微球相结合,而把它们的两条亲水链伸向水中。形成“毛发型”聚合物微球。DSC分析结果表明:每一样品只有一个玻璃化转变温度和单一吸热分解峰,证明体系中poly(DMAEMA)与聚苯乙烯合为一体。对聚合物粒子的形态进行透射电镜分析,结果表明:随着体系中大分子用量的增大,聚合物微球粒径变得均匀。在酸性介质中,粒子大小均匀;而在中性pH介质中,粒子大小不均匀。说明poly(DMAEMA)所形成的阳离子型聚电解质或部分质子化对苯乙烯细乳液聚合有明显影响。
Amphiphilic polymers are promising surfactants due to their unique physicochemical properties such as excellent emulsion ability, high stability, etc. The application in (mini)emulsion polymerization and dispersed polymerization is one of the most notable applications of amphiphilic polymers. Among these amphiphilic polymers, random ones are very intriguing because of their easy processing, various monomers and compositions. Furthermore, various amphiphilic random polymers with different compositions, molecular weights, and surface activity can be synthesized and used in emulsion polymerization.
     In this work, two kinds of amphiphilic random copolymers were synthesized: (1) Amphiphilic random copolymer poly(MAA-co-SMA-co-PEGMA) was prepared by the conventional radical polymerization of methacrylic acid (MAA), stearyl methacrylate (SMA), and poly(ethylene glycol) monomethacrylate (PEGMA) using BPO as the initiator; (2) Amphiphilic random copolymer poly(SMA-co-DMAEMA) was synthesized by the radical polymerization of (N, N-dimethylamino)ethyl methacrylate (DMAEMA) using AIBN as the initiator. Subsequently, both these amphiphilic copolymers were used as macromolecular surfactants in (mini)emulsion polymerization. Moreover, Y-shaped macromonomer based on poly[(N, N-dimethylamino)ethyl methacrylate] (PDMAEMA) with a narrow molecular weight distribution was synthesized via oxyanion-initiated polymerization and then utilized in the miniemulsion polymerization of styrene. This macromonomer acted well both as a comonomer carrying a reactive C=C double bond in its central section and as a pH-responsive polycationic surfactant in media with different pH values. The following conclusions can be obtained from this work:
     1.The CMC value of poly(MAA-co-SMA-co-PEGMA) (MAA:SMA:PEGMA=45:25:30) is about 0.003 g/ml, and its clouding point is about 69.1°C, while the lowest surface tension of this copolymer aqueous solution is about 48 mN/m comparing with the 40 mN/m for low molecular weight surfactant SDS. The mixed surfactant system of poly(MAA-co-SMA-co-PEGMA) (denoted HS) and SDS (denoted LS) can be used to strengthen the surface activity and increase the clouding point. The surface tension and CMC value of the mixed surfactant system decreased when the HS:LS is 5:5, and the clouding point was more than 100°C. The polyacrylate emulsion stabilized by the mixed surfactants possesses good stability and water resistibility, comparing with the system stabilized by low molecular weight surfactant.
     2.Two kinds of macromolecular surfactants poly(SMA-co-DMAEMA) copolymers were successfully prepared with the molar ratio of DMAEMA:SMA are 8:2 and 9:1, respectively. The strongly hydrophobic PSMA chains could be anchored in the surface of monomer droplets and the miniemulsion polymerization of styrene was then conducted. The kinetics studies showed that the polymerization rate and monomer conversion increased with the increase of solid content and the amount of macromolecular surfactant. Furthermore, the pH value of aqueous media also influenced the miniemulsion polymerization. The miniemulsion polymerization possessed high stability, reaction rate and monomer conversion at pH 3-5, while the system became unstable and the reaction rate and monomer conversion were also decreased at pH 7. FTIR analysis demonstrated that the macromolecular surfactant was adsorbed on the polystyrene microspheres and the hydrophilic chains extended to the aqueous phase, resulting in the“hairy”microspheres. Particle size analysis and TEM measurements showed that these amphiphilic copolymers are efficient surfactants and the polymer microspheres were relatively uniform under acidic media.
     3.Y-shaped macromonomer based on poly[(N, N-dimethylamino)ethyl methacrylate] (PDMAEMA) was an efficient surfactant for the miniemulsion polymerization of styrene. The kinetics studies showed that the reaction rate increased with the increasing amount of macromonomer. The miniemulsion polymerization possessed higher reaction rate and monomer conversion at pH 3-5, while the monomer conversion was very low at pH 7 medium. FTIR and 1H NMR analyses the macromonomer was linked with the polystyrene microsphere by covalent bond, while the hydrophilic PDMAEMA chains extended to the aqueous phase. DSC analysis showed that only one Tg was obtained for the samples, which indicated that the poly(DMAEMA) was bonded with polystyrene microspheres. TEM measurements demonstrated that the polymer microspheres became uniform with the increase of the amount of macromolecular surfactant. The microspheres were uniform under acidic condition, indicating that the protonated polycation strongly influenced the miniemulsion polymerization of styrene.
引文
[1] D. Urban, K. Takamura. Polymer dispersions and their industrial applications. Weinheim: Wiley-VCH; 2002.
    [2] R. G. Gilbert. Emulsion polymerisation: a mechanistic approach. San Diego: Academic Press; 1995.
    [3]曹同玉,刘庆普,胡金生.《聚合物乳液合成原理、性能及应用》(第二版).北京:化学工业出版社,2007.
    [4]耿耀宗,曹同玉.《合成聚合物乳液制造与应用技术》,北京:中国轻工业出版社,1999.
    [5]潘祖仁.《高分子化学》(第四版),北京:化学工业出版社,2007年.
    [6] Ugelstand J.; El-Aasser M S.; Vanderhoff J W.. J. polym. Sci. polym. Lett., 1973, 11, 503-513.
    [7] Chou Y J.; El-Aasser M S.; Vanderhoff J W.. J. Dispersion. Sci. Technol., 1980, 1, 129-150.
    [8] Miller C M.; Sudol E D.; Silebi C A.; EI-Aasser M S.. Miniemulsion polymerization of styrene:evolution of the particle size distribution. J. Polym. Sci: Part A: Polym. Chem., 1995, 33, 1391-1408.
    [9] Yu Z Q.; Ni P H.; Li J A.; Zhu X L.. Phys. Eng. Asp., 2004, 242, 9.
    [10] Delgado J.; EI-Aasser M S.; Silebi C A.; Vanderhoff J W.. Miniemulsion copolymerization of vinyl acetate and butyl acrylate.Ⅳ.kinetics of the copolymerization. J. Polym. Sci.: Part A: Polym. Chem., 1990, 28, 777-794.
    [11] Tang P L.; Sudol E D.; Silebi C A.; EI-Aasser M S.; Asua J. M.. Seeded emulsion polymerization of n-butyl acrylate utilizing miniemulsion. J. Appl. Polym. Sci., 1991, 42, 2019-2028.
    [12] Landfester K.; Bechthold N.; Tiarks F.; Antonietti M.. Miniemulsion polymerization with cationic and nonionic surfactants: A very efficient use ofsurfactant for heterophase polymerization. Macromolecules, 1999, 32, 2679-2683.
    [13] Min K.; Gao H F.; Matyjaszewski K.. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer. J. Am. Chem. Soc., 2005, 127, 3825-3830.
    [14] Cunningham M F.. Living/controlled radical polymerization in dispersed phase system. Prog. Polym. Sci., 2002, 27, 1039-1067.
    [15] Luo Y W.; Gu H.. A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization. Macromol. Rapid Commun., 2006, 27, 21-25.
    [16] Zhang F.; Ni P H.; Xiong Q F.; Yu Z Q.. Reversible addition-fragmentation chain transfer/miniemulsion polymerization of butyl methacrylate in the presence ofβ-cyclodextrin. J. Polym. Sci: Part A: Polym. Chem., 2005, 43, 2931-2940.
    [17] Xiong Q F.; Ni P H.; Zhang F.; Yu Z Q.. Synthesis and characterization of 2-(dimethylamino)ethyl methacrylate homopolymers via aqueous RAFT polymerization and their application in miniemulsion polymerization. Polym. Bull., 2004, 53, 1-8.
    [18] Pan G F.; Sudol E D.; Dimonie V L.; El-Aasser M S.. Surfactant concentration effects on nitroxide-mediated living free radical miniemulsion polymerization of styrene. Macromolecules, 2002, 35, 6915-6919.
    [19] Farcet C.; Charleux B.; Pirri R.. Poly(n-butyl acrylate) homopolymer and poly [n-butyl acrylate-b-( n-butyl acrylate-co-styrene)] block copolymer prepared via nitroxide-mediated living/controlled radical polymerization in miniemulsion. Macromolecules, 2001, 34, 3823-3826.
    [20] Lu S L.; Forcada J.. Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization. J. Polym. Sci: Part A: Polym. Chem., 2006, 44, 4187-4203.
    [21] Lin C L.; Chiu W Y.; Don T M.. Superparamagnetic thermoresponsive composite atex via W/O miniemulsion polymerization. J. Appl. Polym. Sci., 2006, 100, 3987-3996.
    [22] Tiarks F.; Landfester K.; Antonietti M.. Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir, 2001, 17, 908-918.
    [23] Lim M S.; Chen H.. Miniemulsion polymerization of styrene with a block copolymer surfactant. J. Polym. Sci.: Part A: Polym. Chem. 2000, 38, 1818-1827.
    [24] Ou, J L.; Lim M S.; Chen H.. A polyampholyte triblock copolymer synthesized for using as the surfactant of miniemulsion polymerization and production of highly uniform microspheres. J. Appl. Polym. Sci. 2003, 66, 2230-2237.
    [25] Lorenz M R.; Holzapfel V.; Musyanovych A.; Nothelfer K.; Walther P.; Frank H.; Landfester K.; Schrezenmeier H.; Mail?nder V.. Uptake of functionalized fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials, 2006, 27, 2820-2828.
    [26] Holzapfel V.; Musyanovych A.; Landfester K.; Lorenz M R.; Mail?nder V.. Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol. Chem. Phys., 2005, 206, 2440-2449.
    [27] Kim E J.; Cho S H.; Yuk S H.. Polymeric microspheres composed of pH/temperature-sensitive polymer complex. Biomaterials, 2001, 22, 2495-2499.
    [28] Rungasrdthong U.; Ehtezazi T.; Bailey L.; Armes S P.; Garnett M C.; Stolnik S.. Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems. Biomacromolecules, 2003, 4, 683-690.
    [29] Bremser W.; Raether B.; Bierwagen G P.. Prog. Org. Coat., 2002, 45, 95.
    [30] Amalvy J I.; Armes S P.; Brinks B P.; Rodrigues J A.; Unali G F.. Chem. Commun., 2003, 15, 1826.
    [31] Amalvy J I.; Unali G F.; Li Y.; Granger-Bevan S.; Armes S P.; Brinks B P.; Rodrigues J A.; Whitby C P.. Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions. Langmuir, 2004, 20, 4345-4354.
    [32] Houillot, L.; Nicolas, J.; Save, M.; Charleux, B.; Li, Y.; Armes, S, P. Miniemulsionpolymerization of styrene using a pH-responsive cationic diblock macromonomer and its nonreactive diblock copolymer counterpart as stabilizers. Langmuir, 2005, 21, 6726-6733.
    [33] Ni P H.; Zhang M Z.; Ma, L H.; Fu S K.. Poly(dimethylamino)ethyl methacrylate for use as a surfactant in the miniemulsion polymerization of styrene. Langmuir, 2006, 22, 6016-6023.
    [34] A. Guyot, K. Tauer . Reactive surfactants in emulsion polymerization. Adv. Polym. Sci. 1994, 111: 43.
    [35] A. Guyot. Advances in reactive surfactants. Advances in Colloid and Interface Science 2004, 108-109: 3-22.
    [36]朱明月,乔卫红,毕晨光,李鹏飞,李宗石.乳液聚合中的反应型乳化剂研究进展.化工进展,2006,25(5): 490-501.
    [37]王波,王合情,周新平,何培新.无皂乳液聚合研究及应用进展.粘接, 2008, 29(5): 44-46.
    [38] A. Durand, E. Marie. Macromolecular surfactants for miniemulsion polymerization. Advances in Colloid and Interface Science 2009, 150: 90-105.
    [39] C. S. Chern. Emulsion polymerization mechanisms and kinetics. Progress in Polymer Science, 2006, 31: 443-486.
    [40]陈永春,易昌凤,程时远等.高分子表面活性剂的研究现状.日用化学工业, 1997, 5: 25-28.
    [41]王云峰,张春光,侯万国.《表面活性剂及其在油田中的应用》.北京:石油工业出版社,1995.
    [42]赵国玺.《表面活性剂物理化学》.北京:北京大学出版社,1984.
    [43]郑中,胡纪华.《表面活性剂的物理化学原理》.广州:华南理工大学出版社, 1995.
    [44]肖进新,赵振国.《表面活性剂应用原理》.北京:化学工业出版社,2003.
    [45]杨树良.非离子型高分子表面活性剂及其应用.日用化学工,1990, 5: 25-28.
    [46] T. Yokozawa, A. Yokoyama. Chain-Growth Condensation Polymerization for the Synthesis of Well-Defined Condensation Polymers andπ-Conjugated Polymers.Chem. Rev. 2009, 109: 5595-5619.
    [47] W. A. Braunecker, K. Matyjaszewski. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32: 93-146.
    [48] K. Matyjaszewski, J. H. Xia. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101: 2921-2990.
    [49] N. V. Tsarevsky, K. Matyjaszewski.“Green”Atom Transfer Radical Polymerization: From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials. Chem. Rev. 2007, 107: 2270-2299.
    [50] G. Moad, E. Rizzardo, S. H. Thang. Living Radical Polymerization by the RAFT Process-A First Update. Aust. J. Chem. 2006, 59: 669-692.
    [51] G. Moad, E. Rizzardo, S. H. Thang. Radical additionefragmentation chemistry in polymer synthesis. Polymer 2008, 49: 1079-1131.
    [52]黄军左,葛建芳,巩育军.《高分子化学改性》北京:中国石化出版社,2009.
    [53] U. P. Stranss. J. Polymer Sci., 1951, 6: 473-659.
    [54] U. P. Stranss. J. Polymer Sci., 1952, 7: 295-308.
    [55] U. P. Stranss. J. Polymer Sci., 1952, 7: 509-518.
    [56] I. R. Schmelka In: M. J. Schich Editor. Nonionic Surfactants, New York. Marcel Inc., 1967: 300-371.
    [57] C. Wu. Macromolecules, 1994, 27: 298.
    [58] D. S. Brown, J. V. Daukins, A. Frawell. Eur. Polym. J., 1987, 23: 463.
    [59] M. Zulaut, K. Weckstrom, J. Hayter J. Phys. Chem., 1985, 89: 3411.
    [60] A. Sikora, Z. Tuzar. Macromal. Chem., 1983, 84: 2049.
    [61] P. MunK, A. Qin. J. Appl. Polym. Sci.: Appl. Polym. Symp., 1993, 52: 45.
    [62] B. Wesslen. J. Polym. Sci.: Part A. Polym. Chem., 1989, 27: 3915.
    [63] Z. Tuza. Adv. Colloid Interface Sci., 1976, 6: 201.
    [64] Y. Gollot, P. Franta, P. Rempp. J. Polyrn. Sci., 1964, C4: 473.
    [65] N. Garti, A. Aserin. Adv. Colloid Interface Sci., 1996, 65: 37-69.
    [66] G. L. Jialanella, E. M. Firer, I. Piirma. J. Polym. Sci.: Part A. Polym. Chem, 1992, 30: 1925.
    [67] D. Y. Lee, J. H. Kim J. Polym. Sci: Part A. Poly. Chem, 1998, 36: 2865-2872.
    [68]王强,曹爱丽,黄积涛.以两亲聚合物为乳化剂研制高固含量乳液[J].高分子材料科学与工程,1999,3(15): 35-37.
    [69]古国华,王文钦,张灿英. P(C9-丙烯酸)两亲聚合物的研究[J].化工学院学报, 2002,23(3): 1-4.
    [70]刘锦.高分子学报,1996,(2): 136.
    [71]唐黎明,董汉鹏,刘德山.新型无皂聚丙烯酸酯乳液的合成及性能研究[J].高分子材料科学与工程,1998,1(14): 17-19.
    [72] Dents Tembou Nzudie, Victoria L. Dimonie, E. David Sudol, Mohamed S. El-aasser. J. Appl. Polym. Sci., 1998, 70: 2729-2747.
    [73]王进,陈枫,李瑞霞,吴大诚.塑料工业,2000,28: 28.
    [74]王进,杜宗良,李瑞霞,吴大诚,功能高分子学报,2000,13: 141.
    [75]王进,四川大学学位论文,1999.
    [76]汪地强,杜宗良,李瑞霞.聚(丙烯酸丁酯/丙烯酸)的合成及其作为高分子乳化剂的应用[J].塑料工业,2001,7(29): 3-6.
    [77]汪地强.丙烯酸酯乳液聚合用高分子乳化剂的合成及其在乳液聚合中的应用.成都:四川大学,2001.
    [78]沈一丁.高分子表面活性剂.北京:化学工业出版社,2002.
    [79]王恩林.高分子表面活性剂.表面活性剂工业,1989, 2: 9-13.
    [80]李宗石,徐明新.表面活性剂合成与工艺.北京:轻工业出版社,1990: 276.
    [81] Pei-Hong Ni, Ming-Zu Zhang, Lan-Jian Zhuge, Shou-Kuan Fu. Amphiphilic ABA Triblock Coploymer as Surfactant in Syntheses of Microlatexes Bearing Cationic Groups. Journal of Polymer Science:Part A: Polymer Chemistry, 2002, 40: 3734-3742.
    [82] Mortensen K.Pedersen J S.Structural study on the micelle formation of poly(ethyleneoxide)-poly(propylene oxide)-poly (ethylene oxide) triblock copolymer in aqueous solution. Macromolecules, 1993, 26: 805-812.
    [83]潘祖仁.高分子化学.北京:化学工业出版社,2003: 20-87.
    [84] Peihong Ni, Frank N, Shoukuan Fu. Synthesis of amphiphilic copolymers based on acrylates by free-radical polymerization and their application in alkyd emulsions.J.M.S.-Pure Appl. Chem., 2000, A37: 1391-1406.
    [85]薛奇.高分子结构研究的光谱方法.北京:高等教育出版社,1995,5: 36-53.
    [86]徐寿昌.有机化学.第二版,北京:高等教育出版社,1993, 86-93.
    [87]宋昭峥,张贵才,彭俊文,葛际江.甲基丙烯酸聚十八酯的合成.曲阜师范大学学报,2001,27,49-52.
    [88]刘晓亚,陶友华,陈明清,杨成,杨淑丽,江明.双亲性无规类接枝共聚物PAF的合成及表征.江南大学学报(自然科学版),2002,3: 263-265.
    [89]程已雪,潘才元.双甲基丙烯酸聚乙二醇酸的合成及光聚合反应.高分子材料科学与工程. 1998,14: 22-24.
    [90] X. P. Zou, E. T. Kang, K. G. Neoh. Plasma-induced graft polymerization of poly(ethylene glycol)methyl ether methacrylate on poly(tetrafluomethylene) films for reduction in protein adsorption. Surface and Coatings Technology 2002, 149: 119-128.
    [91]赵国玺.表面活性剂物理化学.北京:北京大学出版社,1991.
    [92] Goddard ED. Journal of the American Oil Chemists' Society, 1994, 71: 1-l6.
    [93]方培基,施燕支,王尔铿.物理化学学报,1994,10: 936-940.
    [94]金日光,华幼卿.高分子物理.北京:化学工业出版社,2000.
    [95] Marlnos Pitisikalis, Ekaterini Siakali-kuoulafa, and Nikos Hadjichristidis. Block Copolymers of Styrene and Stearyl Methaorylate. Synthesis and Micellization Properties in Selective Solvents. Macromolecules 2000, 33: 5460-5469.
    [96]陈永春,陈超,曹红燕,徐祖顺,程时远.两亲接枝共聚物PMMA-g-PEO和PS-g-PEO在甲苯中溶液性质的比较.高分子材料科学与工程,2003,19: 115-119.
    [97]陈永春,程时远,曹红燕,徐祖顺,陈超.两亲接枝共聚物PMMA-g-PEO的溶液性质及在反相乳液聚合中的应用.高分子材料科学与工程,2003,19: 182-186.
    [98]徐冬梅,张可达,孙建平,程振平.丙烯酸与甲基丙烯酸(N,N-二甲基)氨基乙酯共聚物的性能及应用研究.精细石油化工,1999, 5: 37-39.
    [99]古国华,胡正水,张灿英,王文钦,郭玉,宋彩霞.芳烃碳九(C9)油/丙烯酸两亲性共聚物大分子表面活性剂的研究与发展.精细化工,2003,20: 545-553.
    [100] R.赞恩.表面活性剂溶液研究新方法(第一版),北京:石油工业出版社,1992.
    [101]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003.
    [102] Attwood D, et al. Surfactant Systems: Their Chemistry, Pharmacy and Biology. New York: Chapman and Hall Ltd. 1983.
    [103] Shinya Takahashi, Tomoko Saito, Tomoyuki Kasemura. Synthesis of amphiphilic copolymers having capability as emulsifiers and their surface chemical properties.The Journal of Adhesion, 2003, 79: 287-309.
    [104] Pei-Hong Ni, Ming-Zu Zhang, Lan-Jian Zhuge, Shou-Kuan Fu. Amphiphilic ABA Triblock Coploymer as Surfactant in Syntheses of Microlatexes Bearing Cationic Groups. Journal of Polymer Science: Part A: Polymer Chemistry, 2002, 40: 3734-3742.
    [105]言经柳.液体表面张力的成因及其随温度的变化.南宁师范高等专科学校学报,2003,20: 75.
    [106]吴亦光.周莉. PEP嵌段共聚醚非离子表面活性剂研究.功能高分子学报. 1997,10: 564-570.
    [107]孙秀武,陈少平,李爱民,吴宗华.低分子高分子表面活性剂复配体系对松香胶的乳化能力.中国造纸学报,2005,20: 118-120.
    [108]郑忠,胡纪华.表面活性剂的物理化学原理.广东:华南理工大学出版社,1997.
    [109]大森英三.功能性聚丙烯酸树脂(张育川译).北京:化学工业出版社,1993.
    [110]刘国杰.现代涂料工艺新技术.北京:中国轻工业出版社,2000.
    [111]焦剑,张爱波,徐书元.丙烯酸酯乳胶涂料合成与性能.涂料工业,1999: 10.
    [112] Ann-Charlotte H., Peter W., Kriter H. Progress in Organic Coatings,1999.
    [113]陈立军.丙烯酸酯类聚合物乳液的制备及其相关应用的研究.广州:华南理工大学,2006.
    [114]曹同玉,刘庆普.聚合物乳液合成原理性能及应用,化学工业出版社,1999.
    [115]倪玉德.涂料制造技术.北京:化学工业出版社,2003.
    [116]金日光,华幼卿.高分子物理.北京:化学工业出版社,2000.
    [117]耿耀祖.现代水性涂料工艺配方应用.北京:中国石化出版社,2003.
    [118]王建国,刘琳.建筑涂料与涂装.北京:中国轻工业出版社,2002, 41-43.
    [119]何曼君,陈维孝,董西侠编.高分子物理.复旦大学出版社,1998.
    [120]游波.氧化还原引发核/壳乳液的制备及其在水性涂料中的应用.涂料工业, 2000,1: 1-4.
    [121] Kim C U, Lee J M , Ihm S K. Emulsion Polymerization of Tetrauoroethylene: Effects of Reaction Conditions on Particle Formation. Journal of Fluorine Chemistry, 1999, 96: 11-21.
    [122]李克友,张菊华,向福如.高分子合成原理及工艺学.北京:科学出版社, 1999,173.
    [123]焦剑.用于聚烯烃的丙烯酸酯乳液胶粘剂的研究.西安:西北工业大学,2006.
    [124]汪地强.丙烯酸酯乳液聚合用高分子乳化剂的合成及其在乳液聚合中的应用.成都:四川大学,2001.
    [125]张心亚,涂伟萍,杨卓如,陈焕钦.乳液聚合中乳化剂对聚合物乳液稳定性的影响.粘接,2002,23: 16-19.
    [126] Saija L M. Waterproofing of portland cement mortars with a specially desigied polyacrylic latex. Cement and Concrete Research, 1995, 25: 503-509.
    [127]季永新,胡明.丙烯酸乳液稳定的研究.林产化通讯,1997,2: 25-26.
    [128]余樟清,李伯耿,陈焕钦.聚合物乳液的稳定性.涂料工业,1998,28: 414.
    [129] Ohnaga T., Sato T..“Synthesis of poly(vinyl acetate) macromonomers and preparation of poly(vinyl acetate) grafted copolymers and poly(vinyl alcohol) grafted copolymers”, Polymer, 1996, 37: 3729-3735.
    [130] Kawaguchi S., Winnik M.A., Ito K.,“1H-NMR study of dispersion copolymerization of n-butyl methacrylate with poly(ethylene oxide) macromonomer in deuterated methanol-water”, Macromolecules, 1995, 28: 1159-1166.
    [131] Liu J. M., Gan L. M., Chew C. H., Quek C. H., Gong H., Gan L. H..“Particle size of latexes from dispersion polymerization of styrene using poly(ethylene oxide) macromonomer as a polymerizable stabilizer”, J Polym Sci: Part A: Polym Chem,1997, 35: 3575-3583.
    [132] Akashi M., Chao D., Yashima E., Miyauchi N..“Graft copolymers having hydrophobic backbone and hydrophilic branches. V. Microspheres obtained by the copolymerization of poly(ethylene glycol) macromonomer with methyl methacrylate”, J. Appl. Polym. Sci., 1990, 39: 2027-2030.
    [133] Hoshino F., Sakai M., Kawaguchi H., Ohtsuka Y..“Soap-free lattices of polyoxyethylene chain-binding particles”, Polym J., 1987, 19: 383-389.
    [134] Kawaguchi S., Winnik M.A., Ito K..“1H NMR study of dispersion copolymerization of n-butyl methacrylate with poly(ethylene oxide) macromonomer in deuterated methanol-water”, Macromolecules, 1996, 29: 4465-4472.
    [135] Akashi M., Yanagi T., Yashima E., Miyauchi N..“Graft copolymers having hydrophobic backbone and hydrophilic branches. IV. A copolymerization study of water-soluble oligovinylpyrrolidone macromonomers”, J Polym Sci: Part A: Polym Chem, 1989, 27: 3521-3530.
    [136] Ohnaga T., Sato T..“Synthesis of poly(vinyl acetate) macromonomers and preparation of poly(vinyl acetate) grafted copolymers and poly(vinyl alcohol) grafted copolymers”, Polymer, 1996, 37: 3729-3735.
    [137] Chen M.C., Kishida A., Akashi M..“Graft copolymers having hydrophobic backbone and hydrophilic branches. XI. Preparation and thermosensitive properties of polystyrene microspheres having poly(N-isopropylacrylamide) branches on their surfaces”, J Polym Sci: Part A: Polym Chem, 1996, 34: 2213-2220.
    [138] Ishizu, K.; Yamashita, M.; Ichimura, A., "Microsphere synthesis by emulsion copolymerization of methyl methacrylate with poly(acrylic acid) macromonomers", Polymer, 1997, 38: 5471-5474.
    [139] Ishizu K., Yamashita M., Ichimura A.. "Microsphere synthesis by dispersion copolymerization of methyl methacrylate with poly(acrylic acid) macromonomers: pH Effect on microsphere formation", Macromol. Rapid Commun., 1997, 18: 639-642.
    [140] Ishizu, K.; Tahara, N., "Microsphere synthesis by emulsion copolymerization of methyl methacrylate with poly(methacrylic acid) macromonomers" Polymer, 1996, 37: 2853-2856.
    [141] D’Agosto F., Charreyre M.T., Pichot C., Gilber R.G..“Latex particles bearing hydrophilic grafted hairs with controlled chain length and functionality synthesized by reversible addition-fragmentation chain transfer”, J Polym Sci: Part A: Polym Chem, 2003, 41: 1188-1195.
    [142] Hazot P., Pichot C., Maazouz A.. "Synthesis of hairy acrylic core-shell particles as toughening agents for epoxy networks", Macromolecular Chem. Phys., 2000, 201: 632-641.
    [143] Riess G.“Block copolymers as polymeric surfactants in latex and microlatex technology”, Colloids Surf A: Physiochem and Eng Aspect, 1999, 153: 99-110.
    [144]倪沛红,潘祺晟,府寿宽.“氧阴离子引发甲基丙烯酸-2-(N,N-二甲氨基)乙酯聚合制备Y型大分子单体”,高等学校化学学报,2002, 23 (4): 748-750.
    [145]宋尧本,潘仁云,周其云,唐舜英,袁惠根.“丁苯乳液共聚合动力学的研究”,高校化学工程学报, 1990, 4: 122-135.
    [146] Chu L.Y., Park S.H., Yamaguchi T., Nakao S.I..“Preparation of micron-sized monodispersed thermoresponsive core-shell microcapsules”, Langmuir, 2002, 18: 1856-1864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700