微晶白云母的表面修饰及其与核—壳型ACR共同改性PVC材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PVC是世界五大通用塑料之一,占合成树脂总量的30 %左右,具有不易燃烧、耐腐蚀、绝缘、隔离效果良好等特点,其产量仅次于聚乙烯而居于世界树脂产量的第二位,是应用领域最广的塑料品种之一。随着科学技术的不断进步,其硬制品主要用于管、棒、异型材、建材、室内地板装饰材料、各种板材家具、玩具、运动器材、医用管件、包装涂层等。但其硬制品普遍存在性脆、韧性差、以及耐热性、热稳定性差的缺陷,因此限制了其应用领域。如何有效提高PVC材料的综合性能,拓宽其应用领域,是当今PVC材料研究中急需解决的重要问题之一。
     已有研究表明,采用无机刚性粒子可有效提高高分子材料的性能,不但能保持高分子材料自身的一些优异性能,还可以增加高分子材料的韧性,赋予高聚物基复合材料更高的力学性能和电学性能等。但不同类型无机刚性粒子填料对提高高分子性能的程度有一定差异,同时无机刚性粒子在高分子材料基体中容易产生团聚现象,分散性不好。因此,如何选择合适的填料,并选用合适的改性剂和改性工艺对其表面进行修饰,使之在PVC材料基体中均匀分散,在满足制品性能及加工性能要求的同时又提高填充量。
     川西地区微晶白云母是一种新型白云母类矿物资源,性能优良,储量丰富,与其他常见的硅酸盐矿物相比,微晶白云母具有高强度、耐热、耐酸碱、绝缘、化学稳定、耐候性、防紫外线、抗老化等优异的性能;与传统的白云母矿物相比,它具有天然粒度细、易磨碎、化学活性高的特性,是一种高品质的无机刚性粒子,在高聚物中具有广阔的应用前景。
     论文选用川西地区微晶白云母矿物为填料,硅烷偶联剂KH-550为表面修饰剂,核-壳型ACR树脂为抗冲改性剂,PVC树脂为材料基体,采用熔融共混法制备了微晶白云母/ACR/PVC复合材料。优化了硅烷偶联剂KH-550表面修饰微晶白云母的工艺条件,研究了复合材料的力学性能、热稳定性能、复合加工性能、微观形貌等,探讨了微晶白云母、ACR及其协同改性PVC的机理。论文取得的主要成果如下:
     1.采用干法改性技术表面修饰微晶白云母粉体时,搅拌速度、表面修饰时间及表面修饰剂用量等工艺条件对表面修饰效果有明显的影响。在试验研究范围内,当微晶白云母的粒径在1μm~5μm之间,平均粒度为4.825μm时,表面修饰微晶白云母矿物粉体的较佳工艺条件为:搅拌速度25000 r/min、表面修饰时间300 s、硅烷偶联剂KH-550用量1.2 %。
     2.微晶白云母是改性PVC材料的高品质无机刚性填料,但直接添加未经表面修饰的微晶白云母,不能有效提高微晶白云母/PVC复合材料的综合性能,这是由于未经表面处理的微晶白云母表面亲水,与PVC的界面相容性很差,处于两相分离状态,随着填料含量的增加,体系中由微晶白云母造成的空洞与缺陷越多,材料能承受的外力越小。
     3.在力学性能方面,以硅烷偶联剂KH-550表面修饰后的微晶白云母为填料,能显著提高微晶白云母/PVC复合材料的综合力学性能。随着微晶白云母的添加量的增加,复合材料的拉伸强度和缺口冲击强度均出现先提高后降低的趋势,当微晶白云母的添加量为35~40份时,复合材料的拉伸强度和缺口冲击强度均趋于最高值,分别比纯的PVC提高了24.2 %~26.8 %和28 %~30 %,其杨氏模量、弯曲强度、弯曲模量和硬度随微晶白云母添加量的增加逐渐增大,在试验研究范围内(微晶白云母添加量5~45份),复合材料的杨氏模量、弯曲强度、弯曲模量和硬度最大值分别比纯PVC提高了65.5 %、15.2 %、71.6 %、32.8 %。综合分析认为,当经表面修饰微晶白云母添加量为35~40份时,微晶白云母/PVC复合材料综合力学性能最佳,同时可大幅度降低PVC材料的成本。
     4.具有核-壳结构ACR的加入能显著提高微晶白云母/ACR/PVC复合材料的韧性。在试验研究范围内,相同的微晶白云母添加量(35份)下,当ACR的添加量在12份时,微晶白云母/ACR/PVC复合材料的冲击强度达到11.5 KJ/m2,为微晶白云母/PVC复合材料冲击强度的167 %,为纯PVC冲击强度的213 %,但会使复合材料的拉伸强度、杨氏模量等有所降低。综合分析认为,当ACR树脂的添加量在3~9份时,微晶白云母/ACR/PVC复合材料的综合力学性能优良。
     5.添加经硅烷偶联剂KH-550表面修饰的微晶白云母,可显著提高PVC材料的热稳定性,随着微晶白云母粉体添加量的增加,微晶白云母/PVC复合材料的玻璃化转变温度和维卡软化温度越高,热稳定性越好。当微晶白云母的添加量为35~40份时,PVC复合材料的玻璃化转变温度和维卡软化温度分别提高了5.1℃~7.9℃和16.4℃~20.2℃。ACR的加入能进一步提高微晶白云母/PVC复合材料的玻璃化转变温度Tg,在相同的微晶白云母添加量(35份)下,ACR添加量在3~9份时, ACR的加入对微晶白云母/PVC复合材料的维卡软化温度影响不大,仍比纯PVC提高了愈14.3℃~17.6℃,改善了复合材料的耐热性,延缓了材料老化。
     6.微晶白云母矿物粉体的加入会影响PVC材料的复合加工性能,随着微晶白云母添加量的增多,微晶白云母/PVC复合材料的塑化时间变长,转矩变大,不利于加工。但引入ACR后,复合材料的塑化时间缩短,有利于复合加工。
     7.复合材料冲击断面的SEM分析结果表明,以未经表面修饰微晶白云母为填料,其在PVC基体中分布不均,且与PVC基体之间存在明显空隙,界面结合力较弱;以经硅烷偶联剂KH-550表面修饰微晶白云母为填料,其在PVC基体中分布均匀,且颗粒被PVC基体包裹,增强了微晶白云母颗粒与PVC的界面的结合力。随着微晶白云母粒子的增加,PVC材料基体中的微晶白云母粒子之间的距离逐渐靠近,能有效的形成应力传递点,提高了微晶白云母/PVC复合材料的拉伸强度。进一步引入ACR,微晶白云母/ACR/PVC复合材料中出现“微孔”结构,“微孔”尺寸为200 nm,显著提高了复合材料的冲击强度。
     8.微晶白云母与ACR协同改性PVC树脂机理研究表明,ACR、微晶白云母与PVC熔融共混后,ACR树脂的壳层PMMA与PVC基体的相容性很好,其分子链互相缠绕;而核层PBA由于是交联结构,不溶不融,不能与PVC分子链相互缠绕,作为弹性体粒子均匀的分散在PVC基体中,在微晶白云母/ACR/PVC复合材料中形成均匀的“微孔”结构,当材料受到冲击时,这种“微孔”结构能吸收大量的冲击能量,因而显著提高该复合材料的韧性。而微晶白云母粒子经硅烷偶联剂KH-550表面修饰后,与PVC基体的相容性很好,也均匀的分散在PVC基体中,且一部分微晶白云母粒子会接触PVC分子链的链段,阻碍PVC分子的链段运动,提高了PVC复合材料的玻璃化转变温度。
Polyvinyl chloride (PVC) is one of the five major general plastics used worldwide, which accounts for about 30% of the total amount of synthetic resin. With its nonflammable and anti-erosive properties as well as good insulation and isolation effects, PVC has the second largest volume of resin production in the world only next to polyethylene, and has been regarded as one of the most widely applied plastic varieties. Along with the advances in science and technology, unplasticized PVC are mainly used in the production of pipes, sticks, building materials, interior flooring materials, furniture boards, toys, sports equipments, medical tube elements, packaging coatings and etc. The application of unplasticized PVC, however, has always been restricted due to its poor properties in terms of fragility, tenacity, heat resistance and thermal stability. Thus, how to improve its comprehensive performance and expand its application is the most urgent task we face right now.
     The performance of polymer material can be improved by inorganic rigid particle, because it can not only maintain the polymer material’s excellent performance but also increase its toughness, so the composite material based on polymer will have high mechanical properties and electrical properties. However, different inorganic rigid particles have different impacts on the polymer’s performance, and inorganic rigid particles will lead to the occurrence of agglomeration, so the appropriate filler, modifier and modification process will make the PVC material evenly dispersed in matrix, satisfy the production’s performance and processing performance requirement, and also increase the filling volume.
     Micro-crystal muscovite is a new member to the family of micaceous minerals which was discovered in Western Sichuan of China in recent years. Compared with other common silicate minerals (e.g. kaolinite, montmorillonite, illite and bentonite), micro-crystal muscovite is more resistant to heat, acid or alkaline, weather, and ultraviolet with higher intensity and chemostability as well as better insulation and anti-aging effects. In addition, it is also more grindable and chemically active with a smaller grain size when compared with traditional muscovite minerals. This material is a high-quality inorganic rigid particle and it is expected to be widely applied in polymer.
     In this paper, micro-crystal muscovite/ACR/PVC composite material was prepared by melt blending, with micro-crystal muscovite as packing material, silane coupling agent KH-550 as surface modifier, core-shell type ACR resin as impact modifier and PVC resin as matrix. This paper also optimized the condition of silane coupling agent KH-550 as surface modifier, the chemical properties of composite material ,the thermal stability, the processing of complex, the microscopic appearance and so on .Furthermore ,this paper also studied the mechanism of combined modification of PVC with micro-crystal muscovite and ACR. Results mainly showed that:
     1. The effect of dry surface modification of micro-crystal muscovite is significantly influenced by the stirring speed, dose of surface modifier and duration of surface modification. Within the experimental range, a stirring speed at 25000 r/min, a duration of modification of 300 s, and a dose of silane coupling agent KH-550 at 1.2 % of the weight of micro-crystal muscovite are deemed to be the most appropriate.
     2. Surface modification of micro-crystal muscovite using silane coupling agent KH-550 can significantly improve the mechanical properties of the micro-crystal muscovite/PVC composite material. This is because the unmodified micro-crystal muscovite has very poor interfacial compatibility with PVC, which means that adding such micro-crystal muscovite may increase micro-cavities and defects inside the composite material and reduce its physical strength.
     3. After surface modification with silane coupling agent KH-550, micro-crystal muscovite can significantly improve the mechanical properties of the micro-crystal muscovite/PVC composite material. The tensile strength and impact strength of the composite material initially increase with the addition of micro-crystal muscovite, and then begin to decrease when the amount of micro-crystal muscovite becomes excessive. The peak values of its tensile strength and impact strength are identified when 35 ~ 40 portions of micro-crystal muscovite have been added, 24.2 %~26.8 % and 28 %~30 % higher than those of normal PVC, respectively. Besides, the Young’s modulus, bending strength, bending modulus and hardness of the micro-crystal muscovite/PVC composite material gradually increase with the addition of micro- crystal muscovite. Within the experimental range, i.e. 5 ~ 45 portions of micro-crystal muscovite, the max of Young’s modulus, bending strength, bending modulus and hardness of the micro-crystal muscovite/PVC composite material are enhanced by 65.5 %, 15.2 %, 71.6 % and 32.8 %, respectively. Based on comprehensive analysis, the most appropriate amount for micro-crystal muscovite addition in the micro-crystal muscovite/PVC composite material is determined to be 35 ~ 40 portions.
     4. Adding ACR with core-shell structure can significantly improve the toughness of the micro-crystal/ACR/PVC composite material. In the experiment, with the same addition of the micro-crystal muscovite (35 phr), the micro-crystal/ACR/PVC composite material has a impact strength of 11.5 KJ/m2, which is 167 % of the micro- crystal/ACR/PVC and 213 % of the pure PVC. However, this will make the tensile strength and Young’s modulus decrease. Based on comprehensive analysis, the micro-crystal /ACR/PVC performance will be considered as the best when the ACR is 3 phr~9 phr.
     5. Adding micro-crystal muscovite using silane coupling agent KH-550 can also improve the thermal stability of PVC. The glass-transition temperature, Vicat softening temperature and thermal stability increase accordingly with more micro-crystal muscovite added into the micro-crystal/PVC composite material. When the micro-crystal muscovite is 35 phr ~ 40 phr, the PVC composite material’s glass transition temperature increase 5.1℃~7.9℃, and the Vicat softening temperature increase 16.4℃~20.2℃, which significantly improve the thermal stability. Moreover, ACR can further increase the glass-transition temperature of the PVC, with same micro-crystal muscovite addition (35 phr) and ACR addition(3 phr~9 phr), the ACR addition does not significantly affect the Vicat softening temperature with an increase of 14.3℃~17.6℃compared with that of the pure PVC. As a result, micro-crystal muscovite and ACR can modify PVC, improve its thermal stability, slow down its aging and widen its application.
     6. Micro-crystal muscovite can affect the composite processing performance of PVC, increase the plant time and torque of the micro-crystal/PVC composite material, which is not conducive to processing. But adding ACR can reduce the plant time and facilitate the processing.
     7. By analyzing the composite material’s impact on the fracture sections’SEM, the micro-crystal muscovite without surface modification disperses unevenly and has clear interstices with PVC matrix, so the bending in interface is wake. When the micro-crystal muscovite surface is modified by silane coupling agent KH-550, it will disperse evenly in PVC matrix and enfold by PVC matrix, which will improve the bending. With the addition of micro-crystal muscovite, the distance of micro-crystal muscovite in PVC matrix decreases, which will form the tension delivery point and improve the tensile strength. By adding ACR, the“porous structure”forms in the micro-crystal/ACR/PVC composite material with a size of 200 nm, which will significantly improve the composite material’s impact strength.
     8. Adding ACR with core-shell structure can significantly improve the toughness of the micro-crystal/ ACR/PVC composite material. When ACR is melt blended with PVC, the PMMA in the surface has good compatibility with PVC and its molecular chains twine together; while the PBA of core does not melt, so the“porous structure”forms in the micro-crystal/ACR/PVC composite material. These microcellular structure can absorb the power of the impact and greatly increase the toughness of the composite material. The micro-crystal muscovite has good compatibility with PVC matrix when its surface is modified by silane coupling agent KH-550 and is dispersed in PVC matrix. Further more, some of the micro-crystal muscovite particles will contact with PVC molecular chain and obstruct the molecular chain movement, which will increase the glass-transition temperature.
引文
[1]戴芳,闫恒梅,孙安垣.2000年我国热塑性工程塑料进展[J].工程塑料应用,2001,29(4): 37-43.
    [2]苑会林,娄庆.聚氯乙烯共混改性的研究[J].工程塑料应用,2002,30(2):8-10.
    [3]朱丹.聚氯乙烯共混改性研究进展[J].上海塑料,2002,(4):3-4.
    [4] Braun D.Developments in Polymer Degradation-3[M].London:Applied Science Publisher,1981:135.
    [5] Sachmitt J. A.,Henno K.. Short-time stress relaxation and toughness of rubber- modified polys tyrene[J].Journal of Applied Polymer Science,1960,3(8):132-142.
    [6]毛玉元,范良明.中国沉积徽晶白云母矿的发现及开发前景[J].成都理工学院学报.2000, S1 (增刊):98-102.
    [7]毛玉元,候立玮.新的微晶白云母资源的开发及其粉体材料的应用[J].中国粉体技术, 2002,8(4):42-45.
    [8]林金辉,汪灵,邓苗,等.川西地区微晶白云母的矿床学特征研究[J].矿物岩石,2005, 25(3):14-17.
    [9]王澜,王佩璋,陆晓中.高分子材料[M].北京:中国轻工业出版社.2009:73-75.
    [10]黄丽.高分子材料[M].北京:化学工业出版社.2005:50.
    [11] Liu Z. H.,Zhang X. D.,Zhu X. G., et al.Effect of morphology on the brittle ductile transition of polymer blends:2.Analysis on poly(vinyl chloride)/nitrile rubber blends[J].Polymer,1998,39(21):5019-5025.
    [12] Liu Z. H.,Zhang X. D.,Zhu X. G., et al. Effect of morphology on the brittle ductile transition of polymer blends:3.The influence of rubber particle spatial distribution on the fracture behaviour of poly(vinyl chloride)/nitrile rubber blends[J].Polymer,1998,39(21):5027-5033.
    [13] Manoj N.R.,De P.P.,De S.K..Self-crosslinkable plastic-rubber blends system based on poly- (vinyl chloride) and acrylonirile-co-butadiene rubber[J].Journal of Appiled Polymer Science,1993,(49):133-142.
    [14] Manoj N.R.,De P.P.,De S.K.et al.Thermally induced crosslinking in the immiscible blend of zinc sulfonated ethylene-propylene-diene monomer rubber and epoxidized natural rubber[J].Polymer,1993,34(10):2128-2134.
    [15] Lizymol P. P.,Thomas S.. Poly(vinyl chloride) as a common solvent for enhancing the miscibility of poly(ethylene-co-vinyl acetate) poly(styrene-co-acrylonitrile) blends[J].Journal of Materials Science Letters,1998,17(6):507-510.
    [16] Vincent P. I..The tough-brittle transition in thermoplastics[J].Polymer,1960,(1):425-444.
    [17] Wang U. P..Radiation grafting of acrylic acid, methacrylic acid and poly- functional methacrylates onto poly(vinyl chloride)[J].Radiation Physics and Chem- istry,1985,(25):491-499.
    [18] Bledzki A. K.,Barth C..Fast and significant determination of environmental stress cracking resistance of polycarbonate[J].Material Prufung,1998,40(10):404- 410.
    [19] Ratnam C.T., Kamaruddin S., Sivachalam Y., et al. Radiation crosslinking of rubber phase in poly(vinyl chloride)/epoxidized natural rubber blend: Effect on mechanical properties[J].Polymer Testing,2006,25(4):475-480.
    [20]吴培熙,张留城.聚合物共混改性[M].北京:轻工出版社,1996:4-8.
    [21] Kurauchi T.,Ohtat T..Energy absorption in blends of polycarbonate with ABS and SAN[J].Journal of Materials Science,1984,19(3):1699-1709.
    [22]王庆国.超细全硫化粉末橡胶及其纳米无机填料复合体系对硬质聚氯乙烯的改性研究[D].北京化工大学.2006:13.
    [23]黄志明,黄颖,张立峰,等.氯乙烯-无机纳米材料的原位聚合[J].聚氯乙烯,2000, (6):21-24.
    [24]张立峰,黄志明,包永忠,等.原位聚合法制备PVC/纳米CaCO3复合建材专用树脂[J].聚氯乙烯,2001,(2):10-13.
    [25]潘鹤林,徐志珍.碳酸钙表面处理工艺研究及机理探讨[J].无机盐工业,1997, (4):13-14.
    [26]於莉莉,于经元,康仕芳.碳酸钙粉末的表面改性[J].天津化工,2000,(3):11-13.
    [27] Seymouy R. B..Fillers for plastics[J].Modern Plastics Encycle,1974,217-226.
    [28]章文贡,陈田安,陈文定.铝酸酯偶联剂改性碳酸钙的性能及应用[J].中国塑料,1988, 2(l): 23-34.
    [29] Fu Q.,Wang G.H.,Shen J.S..Polyethylene toughened by CaCO3 particle:Brittle- ductile transition of CaCO3-toughened HDPE[J].Journal of Appllied Polymer Science, 1993,49(4):673-677.
    [30] Fu Q., Guiheng Wang, Chunxiao Liu.Polyethylene toughened by CaCO3 particles: The interface behaviour and fracture mechanism in high density polyethylene/CaCO3 blends[J].Polymer,1995,36(12):2397-2401.
    [31]汪忠清,镇红云,陆金贵.改性碳酸钙在聚氯乙烯中的应用研究[J].塑料科技,2003, (l),40-42.
    [32]田满红,郭少云.纳米CaCO3填充PVC复合材料的力化学增强增韧研究[J].聚氯乙烯, 2003,(6):22-25.
    [33]熊英,陈光顺,郭少云.聚氯乙烯增韧改性研究进展[J].聚氯乙烯,2004,(2):1-5.
    [34]黄锐,张忠义,邓毅.半硬质聚氯乙烯---超细碳酸钙体系性能的初步研究[J].中国塑料, 1987,l(l):15-23.
    [35]吴唯,马玉军.不同CaCO3填充硬质PVC/CPE合金材料研究[J].塑料,1994,23(2):15- 18.
    [36] Kemal I.,Whittle A.,Burford R.,at el. Toughening of polyvinyl chloride through the addition of nanoparticulate calcium carbonate[J].Polymer,2009,50:4066-4079.
    [37] Yoshinobu N.,Yuki F.,Takeo I..Tensile test of poly(vinyl chloride) filled with ground calcium carbonate particles[J].Journal of Applied Polymer Science,1998,70:311-316.
    [38]叶林忠,李玮,潘炯玺.CaCO3增韧R-PVC材料的性能研究[J].合成树脂及塑料,1995, 12(4):43-46.
    [39]刘晓明,刘吉贵,张军,等.纳米CaCO3粒子填充UPVC的性能与影响因素研究[J].塑料科技,2002,(2):8-10.
    [40]舒中俊,漆宗能,王佛松.聚合物阻燃新途径---聚合物/粘土纳米复合材料的特殊阻燃性[J].高分子通报,2000,(4):65-69.
    [41]刘喜善,周兴平,解孝林,等.原位插层聚合制备PVC/蒙脱土纳米复合材料[J].聚氯乙烯,2002,(2):11-13.
    [42]张启卫,章永化,周文富,等.改性凹凸棒土填充硬质PVC的制备与性能研究[J].中国塑料,2002,16(9):49-52.
    [43] Fabio B., Maurizio C., Guido A., et al.Characterization and thermal degradation of polypropylene–montmorillonite nanocomposites[J].Polymer Degradation and Stability,2006,91(3):600-605.
    [44] Zhao L.J., Li J., Guo S.Y.,et al.Ultrasonic oscillations induced morphology and property development of polypropylene/montmorillonite nanocomposites[J]. Polymer,2006,47(7):2460-2469.
    [45]李光照,石亮,郭少云.PVC-U/蒙脱土复合材料的制备与力学性能研究[J].塑料,2006, 35(4):46-49.
    [46]唐涛,陈学成,孟晓宇,等.碳纳米管材料的制备方法.国家发明专利:ZL200410011179. 7.2004.
    [47]钱运华,金叶铃,陈振国.凹凸棒土填充硬质聚氯乙烯塑料[J].塑料,1998,27(2): 37-39,43.
    [48]戈明亮,姚日生,徐卫兵.聚氯乙烯/蒙脱土纳米复合材料的制备与性能[J].现代塑料加工应用,2001,13(1):11-14.
    [49] Du J. X.,Wang D.Y.,Wilkie C. A.,et al.An XPS investigation of thermal degrada-tion and charring on poly(vinyl chloride)-clay nanocomposites[J].Polymer Degrada- tion and Stability,2003,79(2):319-324.
    [50]吴学明,王兰,黄建忠,等.硅灰石填充改性硬质聚氯乙烯的研究[J].中国塑料,2002, 16(1):28-32.
    [51]田满红,郭少云.纳米SiO2增强增韧聚氯乙烯复合材料的研究[J].聚氯乙烯,2003,(1): 26-29,32.
    [52]王辉,包永忠,黄志明等.聚氯乙烯/纳米水滑石复合材料的形态与力学性能[J].高分子学报,2005,(5):693-697.
    [53] Tjong S. C..Structural and mechanical properties of polymer nanocomposites[J]. Materials Science and Engineering R: Reports,2006,53,(3):73-197.
    [54] Yuan Q.,Misra R. D..Polymer nanocomposites: Current understanding and issues [J].Materials Science and Technology,2006,22(7):742-755.
    [55] Koo K. K.,Inoue T.,Miyasaka K..Toughened plastics consisting of brittle particles and ductile matrix[J].Polymer Engineering and Science,1985,25(12):741- 756.
    [56]何洋,梁国正,於秋霞,等.PVC的共混增韧改性[J].高分子材料科学与工程,2004,20 (6):6-10.
    [57]李玉林,何培新.高分子合金增韧机理的研究进展[J].高分子材料科学与工程,2002, 18(5):26-30.
    [58]张金柱.纳米无机粒子在塑料高性能化改性中的应用研究[D],南京工业大学博士论文,2001.
    [59]黄兴.硬PVC共混增韧改性研究现状[J].塑料加工,1999,27(1):6-10.
    [60]王淑英.刚性粒子对PVC/ABS体系增韧改性的研究[J].聚氯乙烯,1997,(1):28-33.
    [61]吴立波,华幼卿,黄玉强.纳米级CaCO3对聚氯乙烯/丙烯酸酯橡胶的增韧改性[J].北京化工大学学报(自然科学版),2001,25(2):88-91.
    [62]吴其晔,李明,李琳,等.刚性无机粒子和弹性粒子增韧改性硬聚氯乙烯制品的研究[J].塑料,1992,21(4):19-23.
    [63]裘怿明,吴其晔,汤海波.超细CaCO3对PVC/ABS二元体系增韧改性的探讨[J].聚氯乙烯, 1993,(6):5-8.
    [64]曾晓飞,陈建峰,王国全.纳米CaCO3/PVC复合材料的结构形态与性能[J].高分子材料科学与工程,2003,19(6):146-148.
    [65]万超瑛,乔秀颖,张勇.增韧聚氯乙烯/蒙脱土复合材料的结构与性能[J].中国塑料, 2003,17(4):39-42.
    [66]陈兴明,朱世富,蔡竞春.纳米级SiO2填充PVC/CPE复合材料研究[J].化学研究与应用, 2001,13(6):679-680.
    [67]李谷,梁庭安,李赫,等.云母与成核剂复配改性PP[J].合成树脂及塑料.2010,27(1): 27-29.
    [68]胡圣飞,彭少贤,郭文迅,等.PP/云母复合材料力学性能研究[J].塑料科技,2000(2): 13-15.
    [69]吴唯,钱琦,周高仁.PP/云母复合材料的增容效果及其界面结构[J].塑料工业,2000, 28(6):13-18.
    [70]吴唯,邓发金.聚丙烯/马来酸酐接枝聚丙烯/超细云母的界面增容及其断面形态研究[J].化学世界,2001(1):19-23.
    [71]江国栋,王庭慰,张军,等.云母对PP抗紫外光老化性能的影响[J].合成树脂及塑料, 2008,25(1):35-39.
    [72]孟明锐,窦强.PP/庚二酸表面处理云母复合材料的力学性能和结晶行为[J].中国塑料, 2007,21(8):24-28.
    [73] Zhang L. Y. , Wei T. T. , Chen H. J., et al. Mechanical and thermal properties of muscovite and density polyethylene reinforced and toughened polypropylene composites[J].Journal of WuHan University of Technology Materials Science Edition. 2009,24(4):581-587.
    [74] Cai C. J., Shen Z. G., Zheng Y. H.,et al. A novel technology for powder dispersion and surface modification[J].Journal of Materials Science,2007,42(11): 98-102.
    [75] Bose S.,Raghu H.,Mahanwar P. A..Mica reinforced nylon-6: Effect of coupling agents on mechanical, thermal,and dielectric properties[J].Journal of Applied Polymer Science,2006,100(5):4074-4081.
    [76] Gong W., Gao J. C., Jiang M., et al. Modeling and characterization of the relationship between cell size and mechanical behavior of microcellular PP/mica composites[J].International Polymer Processing,2010, 25(4):270-274.
    [77] Kim J. M., Jeoung S. K., Shim J. H., et al. Empirical study for the effects of various filler-shapes on the modulus of PP composites[J].Polymer Korea,2010,34 (4):346-351.
    [78] Hwang H. Y., Jeoung S. K., Shim J. H., et al.Empirical study for the effects of filler shape on the thermal expansion coefficient of PP composites[J].Polymer Korea.2010,34(4):352-356.
    [79] Garcia M. J., Areso S., Collar E. P..The role of a novel p-phenylen- bis-maleamic acid grafted atactic polypropylene interfacial modifier in poly- propylene/mica composites as evidenced by tensile properties[J].Journal of Applied Polymer Science,2009, 113(6):3929-3943.
    [80] Yazdani H.,Morshedian J., Khonakdar H. A..Effect of maleated polypropylene andimpact modifiers on the morphology and mechanical properties of PP/Mica composites[J].Polymer Composites,2006,27(6):614-620.
    [81]邓苗,汪灵,林金辉.川西微晶白云母的X射线粉晶衍射分析[J].矿物学报,2006,26(2): 131-136.
    [82]邓苗.川西微晶白云母加热变换过程研究[D].成都理工大学硕士论文,2006:26.
    [83]喻茹.纳米SiO2改性PP/微晶白云母复合材料的研究[D].成都理工大学硕士论文,2010:4.
    [84]夏开胜,沈上越,宋旭波.一种新型沉积微晶白云母的超细粉碎研究[J].化工矿物与加工,2003,(9):10-13.
    [85]邱克辉,王彦梅,张佩聪,等.微晶白云母负载纳米TiO2及其光催化性能研究[J].矿物岩石.2008,28(4):13-16.
    [86]沈上越,范力仁,夏开胜,等.微晶白云母/聚丙烯酸钠超强吸水性复合材料制备研究[J].矿物岩石,2005,25(3):63-66.
    [87]汪灵,罗柯,李自强,等.矿物粉体电阻率测试方法初步研究---以微晶白云母为例[J].矿物学报(增刊),2010:113-115.
    [88]汪灵,罗柯,李自强,等.矿物及固体绝缘材料小块样品电阻率测试方法初步研究[J].矿物学报(增刊),2010:116-117.
    [89]罗柯,汪灵,雷燕,等.微晶白云母对绝缘灌注胶电阻率和强度的影响初步研究[J].矿物学报(增刊),2010:118-119.
    [90]关淞云.基于微晶白云母制备新型绝缘灌注胶的基础研究[D].成都理工大学,2009:23.
    [91]韩璐,陈善华,闽世俊.有机插层微晶白云母作环境矿物材料的探索综述[J].化工新型材料,2009,37(2):9-11.
    [92]喻茹,林金辉,王晓艳.纳米SiO2改性PP/微晶白云母复合材料的研究[J].中国非金属矿工业导刊,2009,(6):34-36.
    [93]温绍国,翁学志,黄志明.抗充改性剂ACR的组成与粒径对R-PVC应用性能的影响[J].中国塑料,1997,11(5):53-58.
    [94]张会轩,冯之榴.核/壳结构聚丙烯酸增韧改性PVC的研究[J].应用化学,1997,14(3): 16-18.
    [95]沈家瑞,王小川.ACR的合成及PVC/ACR共混体系的研究[J].塑料工业,1988,2:36-40.
    [96] Dompas D., Groeninckx G., Isogawa M.,et al.Miscibility behaviour of blends of poly (vinyl chloride) with poly(methyl methacrylate-co-styrene) copolymers [J]. Polymer,1997,38(2):421-429.
    [97] Dompas D., Groeninckx G., Isogawa M.,et al.Cavitation versus debonding during deform ation of rubber-modified poly(vinyl chloride)[J].Polymer,1995,36(2): 437- 441.
    [98] John W.,Sons I..Effect of poly(methyl mehtacylate-co-m-butul acrylated) on the proper- ties and processing behavior of poly(vinyl chloride)[J].Journal of Applied polymer Science,1985,30:3065-3616.
    [99] John W.,Sons ..Mechanism of enhanced impact strength of poly(vinyl chloride) modified by acrylic graft copolymer[J].Journal of Applied polymer Science,1996,60: 87-93.
    [100]潘明旺,张留成,袁金凤,等.ACR-g-PVC复合粒子结构与对PVC的增韧效率[J].高分子学报,2005,1:47-52.
    [101]张邦华,张启华,宋谋道,等.聚氯乙烯与丙烯酸酯弹性体共混体系的研究(Ⅲ)[J].高分子材料科学与工程,1990,6(3):82-88.
    [102]李远,唐颂超,张德震,等.硬质PVC/ACR共混体系的增韧机理研究[J].功能高分子学报,2001,14(2):199-203.
    [103]袁金凤,潘明旺,丁凤祥,等.ACR中壳层PMMA相对分子质量对PVC/ACR共混物性能的影响[J].中国塑料.2006,20(5):77-81.
    [104]余新文,朱明,许戌令.塑料门窗型材PVC/ACR配方体系[J].化学建材,1999(4): 40-41.
    [105]胡圣飞.纳米级CaCO3粒子对PVC增韧增强研究[J].中国塑料,1999,13(6):25-28.
    [106]胡圣飞,彭少贤,应继儒,等.高强度聚氯乙烯共混材料研制[J].工程塑料应用,2000,28(2):l-2.
    [107]权英,杨明山,严庆,等.纳米刚性粒子对硬质PVC的增韧增强效果[J].北京化工大学学报(自然科学版),2002,29(6):23-26.
    [108]冯鹏程,余剑英.纳米CaCO3对CPE/ACR共混增韧PVC力学性能的影响[J].高分子材料科学与工程.2010,26(1):81-84.
    [109] Guo Y. K.,Wang M. Y.,Zhang H. Q.,et al.The surface modification of nano silica, preparation of nanosilica/acrylic core-shell composite latex,and its application in toughening PVC matrix[J].Journal of Appiled Polymer Science,2008,107(4): 2671-2680.
    [110] Xiong Y.,Chen G. S.,Guo S.Y..The preparation of core-shell CaCO3 particles and its effect on mechanical property of PVC composites[J].Journal of Appiled Polymer Science,2006,102(2):1084-1091.
    [111]皮红,陈深情,郭少云.强紫外光作用下PVC/增韧剂体系结构与性能演变[J].高等学校化学学报.2009,30(5):1029-1034.
    [112] Yu J. Y., Feng P.C.,Zhang H. L.Effects of core-shell acrylate particles on impact properties of chlorinated polyethylene/polyvinyl chloride blends[J].Polymer Engineering and Science,2010,50(2):295-301.
    [113]郑水林,钱柏太,卢寿慈.重质碳酸钙/硅灰石复合填料表面改性研究[J].中国粉体技术,1999,5(5):24-27.
    [114]薛茹君,吴玉程.硅烷偶联剂修饰改性的机理及改性绢云母的性能[J].硅酸盐学报.2007,35(3):373-376.
    [115]赵若飞,刘兵,戴干策,等.一种大分子偶联剂对云母的表面处理[J].高分子材料科学与工程,2002,18(6):115-118.
    [116]廖俊,陈圣云,康宇峰,等.硅烷偶联剂及其在复合材料中的应用[J].化工新型材料, 2001,29(9):26-29.
    [117]叶巧明,汪灵,刘菁,等.微晶白云母活性填料的铝酸酯表面改性研究[J].矿物岩石,2005,25(3):83-87.
    [118]刘菁,汪灵,叶巧明,等.微晶白云母的钛酸酯表面改性研究[J].矿物岩石,2006, 26(1):13-16.
    [119]汪灵,刘菁,叶巧明,等.铝酸酯表面改性微晶白云母活性填料及其制备方法.国家发明专利:ZL200410040808.9.2004.
    [120]汪灵,刘菁,叶巧明,等.一种钛酸酯KR-38S表面改性微晶白云母活性填料的制备方法.国家发明专利:ZL200410021764.5.2004.
    [121] Prestidge,C.A.,Ralston,J..Contact angle studies of partieulate sulphide minerals[J].Minerals Engineering,1996,9(l),89-102.
    [122] Raiehur,A.M.,Wang,X.H.,Parekh,B.K., Estimation of surface free energy of pyrites by contact angle measurements[J].Minerals Engineering,2001,14(l),65-75.
    [123]解原.微晶白云母氨基硅烷[C3H6(NH2)Si(OC2H5)3]表面改性研究[D].成都理工大学硕士论文.2005:37-39.
    [124]李睿馨.CaCO3填充UPVC的力学性能研究[J].中国氯碱, 2002,(6):10-11.
    [125]白艳.微晶白云母/PVC复合材料制备及其力学性能研究[D].成都理工大学硕士论文.2009:26.
    [126]董辰光.丙烯酸酯类共聚物(ACR)的合成及在PVC中的应用[D].济南大学,2010:25.
    [127]秦庆戊,崔永岩.PVC/ACR共混合金的研究[J].塑料科技,2000(5):9-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700