脂肪酶的化学修饰及其界面催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶作为一种水解酶,不仅催化水解反应而且催化有机相中酯合成和酯交换反应。有机相酶催化自上世纪八十年代开创以来,已获得了巨大的发展,得到广泛应用,但还存在酶在有机相中溶解性、稳定性差、催化效率低等缺点。化学修饰是克服上述缺点,提高酶催化功能的有效方法之一。本章研究的目的是:用具有长链烷基的硬脂酸对Lipolase脂肪酶进行化学修饰得到具有两亲分子结构的修饰脂肪酶,提高修饰酶的表/界面活性及其在有机相或两相界面的催化性能。本文研究的主要内容如下:
     1.选择合适的修饰剂并对其进行活化:为了提高酶在有机相中的溶解性,应在酶表面引入疏水性物质,我们选择长链硬脂酸作为修饰剂。通过查阅文献,比较多种活化方法,本实验采用N-羟基琥珀酰亚胺活化法活化硬脂酸,此方法成本低、毒性小且反应温和。通过红外光谱和质谱对硬脂酸琥珀酰亚胺酯进行了结构分析。
     2.脂肪酶的修饰:由于蛋白质分子表面游离氨基较多并且具有较高的反应活性,因此氨基常被选为修饰基团。此反应即为硬脂酸琥珀酰亚胺酯与脂肪酶表面氨基的反应。反应条件:pH值7.4、常温磁力搅拌。分离方法:透析。通过改变脂肪酶与硬脂酸琥珀酰亚胺酯的质量比和反应时间得到不同修饰度的修饰酶。
     3.酶活测定:对修饰酶的水解活性和有机溶剂中的酯化活性和界面催化活性进行了测定,并与未修饰酶进行了比较。实验结果表明修饰酶的水解活性略有下降,但在有机溶剂中的酯化活性和在油/水界面催化活性明显提高。
     4.有机溶剂溶解性、稳定性及热稳定性测定:脂肪酶修饰后在表面存在长链烷基,分子具有两亲性,亲油性增加。实验结果表明修饰酶在正己烷中的溶解度增加,稳定性及热稳定较之未修饰酶均有所提高。
     5.界面化学性能表征:酶修饰后结构发生了变化:一端是亲水基,一端是疏水基,类似于表面活性剂,应有一定的表面活性。本论文考察了修饰酶与未修饰酶水溶液的表面张力与界面张力。结果表明:与未修饰酶相比,修饰酶降低溶液表面张力与界面张力的能力提高。
     6. LB膜的制备及其结构表征:酶经修饰后表面活性提高,更容易在界面吸附。LB单分子膜由LB成膜装置制备,并在原子力显微镜(AFM)下观察其形貌特征。LB膜制备的同时得到∏-A曲线。实验结果表明:修饰酶的∏-A曲线上移;由AFM图象分析发现在修饰酶的分子表面有暴露的长链烷基。
Lipases catalyze not only the hydrolysis of lipids in water but synthetic reactions in organic solvent, such as esterification and interesterification. The application of lipase for synthetic purpose has been under intensive study in recent years in the food, pharmaceutic cosmetics and so on. However, the stability and dispersibility of native lipase in organic solvent is much poorer than in water. It seems reasonable to attempt to prepare more stable enzymes in organic solvents to overcome its problems. Chemical modification as a rapid and inexpensive method can overcome problems above and improve its dissolution and catalysis property in organic solvent. The introduction of hydrophobic or amphoteric compounds onto the enzyme surface can promote dissolution into organic solvent through favorable interaction between these compounds and the solvent.
     In the paper, we introduce fatty acids onto the enzyme surface. The stearic acid was activated by N-hydroxysuccinimide. The lipolase was modified with activated stearic acid-hydroxysuccinimide ester through the reaction between the amino groups and activated fatty acids. The reaction was carried out at room temperature and in the case of the pH 7.4. The modification ratio can be controlled by changing the molar ratio and reaction time in the reaction system.
     The enzymatic activity, surface activity and interface behavior were studied. The hydrolysis activity, interfacial hydrolysis activity and esterification activity of the modified enzyme were assayed. The results showed that the interfacial hydrolysis activity at the interface of oil-water phase and esterification activity in hexane of the modified enzyme increased apparently, although the hydrolysis activity decreased little compared with the unmodified enzyme. After modification the surface activity of modified enzyme was improved. The surface tension and the interfacial tension of the modified and unmodified enzymes were also investigated. The surface tension and interfacial tension of the solution of modified enzyme was much lower than that of unmodified enzyme. The reduction in surface tension and interfacial tension is due to the adsorption of enzyme at two-phase interface. As enzyme adsorb to an interface, the reduction of surface/interfacial tension gives an indication of the characteristic adsorption.The Langmuir-Blodgtt monolayer film of modified enzyme was gained by use of LB technique and the surface pressure was higher than that of unmodified one, shown which was much more easer to congregate on interface. The AFM figure of modified enzyme showed a difference from that of unmodified enzyme. We can find the alkyl on the surface of the modified enzyme.
     From the above experimental results, it could be concluded that the lipolase modified with fatty acid had good behaviors in organic solvent and at interface of two-phase comparing to unmodified lipolase.
引文
[1] Tinoco R, Pickard MA, Vazaquez-Duhalt R. Kinetic differences of purified laecases from six pleurotus ostreatus strains [J]. Lett Appl Microbiol, 2001, 32(5): 331-335.
    [2]万柱礼,张公义,常文瑞,等.1.9 A分辨率Al-(L-丙氨酸)胰岛素晶体结构研究[J].生物化学杂志,1995, 1: 40-43.
    [3]万柱礼,刁家升,常文瑞,等.B链氨端去二肽(B1-2)羧端去五肽(B26-30)胰岛素的初步晶体学研究[J].科学通报,1994, 12: 1130-1132.
    [4] DeSantis G, Berglund P, Stabile M R, el a1. Site-directd mutagenesis combined with chemical modification as a strategy for altering the specificity of the SI and Sl’s pockets of subtilisin bacillus lentus [J]. Biochemistry, 1998, 37: 5968-5973.
    [5] Berglund P, DeSanntis G, Stabile MR, el a1. Chemical modification of cysteine mutants of subtilisin bacillus lentus can creat better catalysts than the Wild-type enzyme [J]. J Am Chem Soc, 1997, 119 (5): 265-266.
    [6] Plettner E, DeSantis G, Stabile MR, el a1. Modulation of esterase and amidase activity of subtilisin bacillus lentus by chemical modification of cysteine mutants [J]. J Am Chem Soc, 1999, 121: 4 977-4 981.
    [7] St Clair NL. Navia MA. Cross-1inked enzyme crystals as robust biocatalysts [J]. J Am Chem Soc, 1992, 114: 7 314-7316.
    [8] Haring D, Schreier P. Cross-linked enzyme crystals [J]. Current Opin Chem Biol, 1999, 3: 35-38.
    [9]严锐,黄金营.蛋白质化学修饰的研究进展.化学工业与工程[J].2005, 22(1): 53-55.
    [10] Lundbald RL, Noyes CM. Chemical reagents for protein modification [M]. Florida: CRC Press, Boca Raton, 1984.1-2.
    [11] Veronese FM. Peptide and protein PEGylation: a review of problems and solutions [J]. Biomaterials, 2001, 22(5): 405-417.
    [12] Lundland RL, Bradshaw RA. Applications of site-specific chemical modification in the manufacture of biopharmaceuticals [J]. Biotechnol Appl Biochemistry, 1997: 143-151
    [13] Jene Q, Pearson JC, Lowe CR. Surfactant modified enzymes: solubility and activity of surfactant-modifled catalase in organic solvents [J]. Enzyme Microb Technol, 1997, 20: 69- 74.
    [14] He Z, Zhang Z, He M. Kinetic study of thermal inactivation for native and m ethoxypolyethylene glycol modified trypsin [J]. Process Biochem, 2000, 35: 1235-1 240.
    [15] Zhang Z, He Z, He M. Stabilization mechanism of mPEG modified trypsin based on thermal inactivation kinetic analysis and molecular modeling cornputation [J]. J Mol Catal B: Enzyme, 2001, 14: 85-94.
    [16] Kodera Y, Takahashi k, Nishimura H, et al. Ester synthesis catalyzed by polyethylene-glycol modified lipase in benzene [J].Biotechnol.Lett, 1986, 8:881-888.
    [17] Iwashita Y, Ajissaka K, Iwasaka K. Oxygen carrier [P]. US Patent, 1983: 4412989
    [18] Migata Kouichi, Nakagawa, Yasushi, Nakamura Masahira. Modified enzymes production and use thereof [P]. EP, 1987, 0210761.Al.
    [19] Phillips C P, Snow R A. Lyphilize formulation of polyethylene oxide modified proteins with increased shelf-life. [P] US Patent: 1994, 5298410.
    [20] Harris MJ. Poly (Ethylene Glycol) chemistry,Botechnical and Biomedical Application[M]. NewYork: Plenum Press, 1922: 350.
    [21]郭诤,张根旺.脂肪酶的结构特征和化学修饰[J].中国油脂, 2003,28(7): 5-10.
    [22]熊剑,董伟.葡激酶及化学修饰研究进展[J] .生物技术通讯.2003 ,14(3): 207-209.
    [23]毛益斌,张蓓蕾.单甲氧基聚乙二醇化学修饰酶的研究进展.中国医药工业杂志[J].2003,34(5): 250-254.
    [24] Alcalde M, Plou FJ, Martin MT. Succinylation of cyclodextrin glycosyltransferase from thermoanaerobacter sp. 501 enhances its transferase activity using starch as donor [J]. J Biotechnol, 2001, 86: 71-80.
    [25] Hamachi I. Shinkai S. Chemical modification of structures and functions of proteins by the cofactor reconstitution method [J]. Eur J Organ Chem, 1999, 3: 539-549.
    [26] Hayashi T, H itomi Y, Ando T, el a1. Peroxidase activity of myoglobin is enhanced by chemical mutation of hemepropionates [J]. J Am Chem Soc, 1999, 121: 7747-7750.
    [27] Tsuzuki W, Suzuki T. Reactive Properties of the organic solvent-soluble lipase [J]. Biochim.Biophys.Acta, 1991,1083: 201-207.
    [28] Berglund P, Desanntis G, Stabile M R et al. Chemical Modification of Cysteine Mutants of Subtilisin Bacillus lentus Can Create Better Catalysts then the wide-type Enzyme [J]. J. Am. chem. Soc, 1997,119: 5265-5266
    [29] Jene Q, Pearson J C, Lowe C R. Surfactant Modified Enzyme: Solubility and Activity of Surfactant-modified catalase in Organtic Solvents [J]. Enzyme Microb Technol, 1997,20: 69-74
    [30] Murakami M, Kawasaki Y, Kawanari M, Okai H, et al. Transesterification of Oil by Fatty Acid-Modified Lipase [J]. J. Am. Oil.Chem. Soc, 1993, 70 (6): 571-574.
    [31] DeSantis G, Jones JB. Chemical modification of enzymes for enhanced functionality [J]. Cur Opin Bio, 1999,10: 324-330.
    [32] Koops B C, Verheij H M, Slotboom A J, et al. Effect of chemical modification on the activity of lipases in organic solvents[J]. Enzyme and Microbial Technology, 1999,25: 622-631.
    [33] Basri M, Ampon K, Wan Yunus W M Z,et al. Amidination of lipase with hydrophobic Imidoesters[J]. J Am Oil Chem Soc, 1992, 69: 579-583.
    [34] Malcata FX, Hector R Reyes, Hugo S Garcia, et a1. Kinetics and mechanism of reactions catalysed by immobilized lipases [J]. Enzyme Mierob Techno1, 1992, 14: 426-446.
    [35] Means GE, Feeney RE. Reductive alkylation of amino groups in proteins [J]. Biochemistry, 1968, 7: 2192.
    [36] Kaimal TNB,Saroja M. Enhancement of cata1ytic activity of porcine pancreatic lipase by reductive alkylation [J]. Biotechno1 kett, 1989, 11: 31.
    [37] Basil M, Ampon K, Yunus WMZ, et a1. Amidination of lipase with hydrophobic Imidoesters [J]. J Am Oil Chem Soc, 1992, 69: 579-583.
    [38] Tsuzuki W, Suzuki T. Reactive properties of the organic solvent-soluble lipase [J]. Biochim. Biophys. Acta, 1991, 1083: 20 1-207.
    [39] Murakami M, Kawasaki Y, Kawanari M, et a1. Transesterification of oil by fatty acid-modified lipase[J]. J Am Oil Chem Soc, 1993, 70: 571-574
    [40] Maruyama T, Nakajima M, Ichikawa S, Furusaki S et al. Structural study of lipase modified with fatty acid [J]. Biochem.Engin.Jour, 2001, 9 (3): 185-191.
    [41] Dordick JS, Marietta MA, Klibanov AM. Peroxidases depolymerize lignin in organic media but not in water [J]. Proc Natl Acad Sci, 1986, 83: 6255-6257.
    [42] Bart C. Koops, Hubertus M. Verheij, Arend J. Slotboom, Maarten R. Egmond. Effect of chemical modification on the activity of lipasesin organic solvents. [J].Enzyme and Microbial Technology, 1999, 25: 622–631.
    [43] Basri M, Ampon K, Yunus WMZ, Razak CAN. Enzymatic synthesis of fatty esters by alkylated lipase[J].Jour.of.Mole.Cata.B:Enz, 1997, 3:171-176.
    [44] Inada Y, Nishimura H, Takahashi K, et a1. Ester synthesis catalyzed by polyethylene glycol-modified lipase in benzene [J]. Biechim Biophys Res Commun, l984, 122: 845-850.
    [45] Baillargeon MW, Sonnet PE. Polyethylene glycol modification of Candida rugosa lipasel [J]. J Am Oil Chem Soc, 1988, 65: 1812-1815.
    [46] Migata Kouichi, NakagawaYasushi, Nakamura Masahira. Modified enzymes production and use thereof [P]. EP, 1987, 0210761 AI.
    [47] Arnon R, Bustin M, Calef E, et a1. Immunoligical cross-reactivity of antibody to a synthesis undecapepticle analogous to the amino terminal segment of carcinoembryonic antigen, with the intact protein and with human sera [J].Proc Natl Aead Sci, 1976, 73: 2123-2127.
    [48] Yoshimoto T, Ritani A, Ohwada K, et a1. Polyethylene glycol derivatve-modified cholesterol oxidase soluble and active in benzene[J]. Biochim Biophys Res Commun, 1987, 148: 876-882.
    [49] Yoshio O, Toshiaki M. Lipid-coated enzyme as efficient in organic solvent [J]. Triend Biotechnol, 1997, 15: 75-78.
    [50]潘冰峰,李祖义.糖脂修饰的脂肪酶在有机溶剂中催化酯化反应[J].生物化学与生物物理学报,1999, 31(1):71-73.
    [51] Elah HK,吴梧桐,周景晶,等.右旋糖苷对大肠杆茵L一天门冬酰胺酶Ⅱ的化学修饰[J].药物生物技术,1997,4(4):208-211.
    [52] Bremen U, Gais H J. Asymmetric Acylation with Polyethylene Glycol-Modified Candidacylindracea Lipase in Homogeneous Organic Media [J]. Trtrahedron: Asymmetry, 1996, 7 (11): 3063-3066.
    [53]李伟军,张颖,王云山,等.聚乙二醇修饰牛胰核糖核酸酶[J].药物生物技术, 2001, 8 (3): 147-151
    [54]华章熙,徐清.洗涤剂酶应用手册[M].北京:中国轻工业出版社.1997.7
    [55] Andrade JD, Hlady V, Wei AP. Adsorption of complex proteins at interfaces, Pure Appl. Chem. 64 (11), 1992: 1777-1781.
    [56]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.1.
    [57]冯翠萍,杜俊民,张惠君.粗脂肪酶活力的测定方法的研究[J].山西农业大学学报,2005, 25(1): 67-69
    [58]高贵,韩四平,王智.脂肪酶活力检测方法的比较[J].药物生物技术,2002,9 (5): 281-284
    [59]黄锡荣,张文娟,宋少芳,等.分光光度法测定微乳液中脂肪酶的酶活[J].化学通报,2001,10:659.
    [60] Dordick,J.S. Enzymatic catalysis in monophasic organic solvents. Enzyme Microb. Technol, 1989, 11: 194-211.
    [61] Basheer S, Mogi K and Nakajima M. Surfactant-modified lipase for the catalysis of the interesterification of triglycerides and fatty acids. Biotechnol Bioeng, 1995, 45: 187-195.
    [62] Robert Lortie. Enzyme catalyzed esterication. Biotechnology Advances, 1997 15 (1): 1-15.
    [63] W. Van der Vegt, H.C. Van der Mei, H.J. Busscher, Interfacial free energies in protein solution droplets onFEP-Teflon by axisymmetric drop shape analysis by pro-file-IgG versus. BSA, J. Colloid Interface Sci.156, 1993: 129-136.
    [64] W. Van der Vegt et al., pH dependence of the kinetics of interfacial tension changes during protein adsorption from sessile droplets on FEP-Teflon, Colloid Polym Sci, 1996, 274: 27-33.
    [65] C.J. Beverung, C.J. Radke, H.W. BlanchU. Protein adsorption at the oilrwater interface: characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophysical Chemistr, 1999, 81: 59-80.
    [66] Güzey D, Gülseren I, Bruce B, Weiss J. Interfacial properties and structural conformation of thermosonicated bovine serum albumin. Food Hydrocolloids, 2006, 20: 669-677
    [67] E′va Kiss, Re′ka Borba′s. Protein adsorption at liquid/liquid interface with low interfacial tension. Colloids and Surfaces B: Biointerfaces, 2003, 32: 169-176
    [68] Hickel A, Radke CJ, Blanch HW. Hydroxynitrile lyase adsorption at liquid/liquid interfaces. Journal of Molecular Catalysis B: Enzymatic, 1998, 5: 349-354
    [69] Eleousa A. Makri , Georgios I. Doxastakis. Surface tension of Phaseolus vulgaris and coccineus proteins and effect of polysaccharides on their foaming properties Food Chemistry, 2006, 1-12.
    [70] K. Wan, J.M. Chovelon, N. Jaffrezic-Renault. Enzyme–octadecylamine Langmuir–Blodgett membranes for ENFET biosensors. Talanta, 2000, 52: 663–670.
    [71]袁婕,张兴堂,蒋晓红,等.酞箐铜化合物LB膜的制备及结构形态研究.物理化学学报.2005,21(9):983-987.
    [72]阳建斌等.蛋白质分子膜.皮革科学与工程. 2005,14(5):16-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700