基于纳米氧化物和碳纳米管的免疫传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学免疫传感器在临床医学、环境和食品工业等方面都有重要应用,并以其体积小、专一性强、灵敏度高、检测快速方便、成本低和容易实现实时在线活体检测等优点,成为当前研究的热点之一。而传感器的性能主要取决于生物活性物质的固定方法,因此如何将生物活性组分有效地固定在电极表面上并保持其良好的生物活性是传感器研究和开发中最为重要的工作。本文利用二氧化硅-亚甲基蓝纳米复合物、纳米二氧化锰-壳聚糖和纳米金及碳纳米管等新型材料作为构建免疫传感器的基底,运用包埋、吸附、沉积、聚合等固定方法,直接测定抗原与抗体反应前后的电流的变化。
     1.基于壳聚糖包埋二氧化硅-亚甲基蓝纳米复合的电流型癌胚抗原免疫传感器的研究
     提出了一种新型的基于二氧化硅-亚甲基蓝纳米复合物和壳聚糖制备的一种新型的电流型癌胚抗原免疫传感器。利用溶胶-凝胶法形成二氧化硅-亚甲基蓝-壳聚糖复合膜,再利用壳聚糖丰富的氨基吸附纳米金,从而通过比表面积大,生物相容性好的纳米金胶吸附大量抗体,制得稳定性较好的免疫传感器。采用循环伏安法(CV)和透射电子显微镜对电极的层层组装过程进行了考察,并对该免疫传感器的性能进行了详细的研究。该免疫传感器线性范围是1.0-80.0 ng·mL~(-1),线性相关系数为0.9978,检出限为0.333 ng·mL~(-1)。
     2.基于纳米金/纳米二氧化锰-壳聚糖复合物/普鲁士蓝修饰的金电极的免疫传感器研究
     采用电沉积普鲁士蓝在电极表面形成一层均匀的电子媒介体层,增大电极的电流响应信号,再利用静电吸附将制备的纳米二氧化锰-壳聚糖固定在电极上,然后利用壳聚糖上丰富的氨基吸附纳米金,最后通过吸附性能强,生物兼容性好的双层纳米金吸附癌胚抗体,从而制得癌胚免疫传感器。采用循环伏安法(CV)对修饰电极进行了考察,该免疫传感器线性范围是0.25-8.0 ng·mL~(-1)和8.0-100 ng·mL~(-1),线性相关系数分别为0.9982,检出限为0.083 ng·mL~(-1),将其用于病人的血清样品分析,与现行的ELISA法的结果相比较,有很好的相关性。
     3.基于聚苯乙烯磺酸钠接枝的多壁碳纳米管/铁氰化镍/纳米金修饰的电流型前列腺抗原免疫传感器的研究
     将聚乙烯磺酸钠均匀分散在多壁碳纳米管中,并采用物理吸附的方法固定在洁净的金电极表面形成一层有别于经典的十二磺酸钠分散的多壁碳纳米管,其优点在于可以减小背景电流,而且电流的循环伏安电位也向正的方向偏移,有利于我们实验研究的考察,再利用电聚合铁氰化镍将其固定在致密的碳纳米管层表面,最后通过电还原氯金酸制得均匀的纳米金层以吸附前列腺癌抗体,从而制得前列腺癌免疫传感器。采用循环伏安法(CV)对修饰电极进行了考察,研究了电极修饰过程中的测试液pH值、温度、孵育时间等实验条件和参数对传感器性能的影响。该传感器在PSA浓度为1.5-35 ng·mL~(-1)的范围内有良好的线性关系,并且制作简单,响应快,能满足实际测定的要求。
Electrochemical immunosensor are widely used for clinical diagnosis,environmental inspection and food analysis,and have been have gained considerable attention due to their small volume,intrinsic selectivity,fast analytical time,simple measurement,high sensitivity and low cost, It has been reported that the performance of biosensors largely contact with the fabrication of biorecognition molecule.Thus,it's important work how to immobilize effectively on the cleaned electrode with biorecognition molecule in high amounts with retention of their bioactivity.In this article,we have constructed several immunoelectrodes immobilized antibody onto substrate electrode based on SiO_2 and methylene blue(MB) nanocomposite,nano-MnO_2 and chitosan(CS) composite,gold nanoparticles(nano-Au) and multi-walled carbon nanotube(MWNT) as matrixes. The detailed materials are shown as follows:
     1.Amperometrie immunosensor for carcinoembryonic antigen based on ehitosan entrapped SiO_2 and methylene blue nanoeomposite
     An amperometric immunosensor for the detection of carcinoembryonic antigen(CEA) has been developed by means of sol-gel techniques.SiO_2+MB-CS nanocomposite membrane was combined.Subsequently,nano-Au was adsorbed by CS with a large amount of amido matrixes, which owned a high surface area,good bioconsistent.Carcinoembryonic antibody(anti-CEA) was adsorbed by nano-Au firmly.Then a potentiometric immunosensor with good sensitivity and stability was prepared.The characteristics of the modified electrode at different stages of modification were studied by cyclic voltammetry(CV) and transmission electron microscope (TEM).The resulting immunosensor exhibits wide linear range from 1.0 to 80.0 ng·mL~(-1) with a detection limit of 0.333 ng·mL~(-1).The correlation coefficient is 0.9978.
     2.Study on immunosensor based on gold nanoparticles/chitosan and MnO_2 nanoparticles composite membrane/prussian blue modified gold electrode
     A novel amperometric immunosensor for the detection of carcinoembryonic antigen(CEA) has been developed by means of electrodeposition and electrostatic adsorption techniques.In this study,Prussian blue(PB) was used as a mediator to amplify the current signal.And nano-MnO_2/CS composite with positively charged was adsorbed on the negatively charged PB.Subsequently, nano-Au was immobilized by CS.A large amount of carcinoembryonic antibody(anti-CEA) was adsorbed by nano-Au.Then an amPerometric immunosensor with good sensitivity and stability was made.The characteristics of the modified electrode at different stages of modification were studied by using cyclic voltammetry(CV)and scanning electron microscope(SEM).The performances of the immunosensor were studied in detail.The immunosensor showed a specific response to CEA in the range 0.25 to 8.0 ng·mL~(-1) and 8.0 to 100 ng·mL~(-1) with a detection limit of 0.083 ng·mL~(-1).The correlation coefficient is 0.9982.The immunosensor was used to analyze the serum samples with satisfactory results.
     3.An immunosensor based on poly(sodium 4-styresulfonate) grated-carbon nanotube/niekel hexacyanoferrate/gold nanoparticles modified gold electrode.
     A novel immunosensor has been developed by electropolymerizing Nickel Hexacyanoferrate (NiHCF) on to a Poly(sodium 4-styrenesulfonate)(PSS)-grafted Multi-walled Carbon Nanotube (MWNT) and electro-depositing nano-Au for determination of prostate specific antigen(PSA). After the developed immunosensor was incubated with different concentrations of PSA samples at 25℃for 35 min,the current response decreased with an increasing PSA concentration in the sample solution.The decreased percentage of the current was proportional to PSA concentration ranging froml.5 to 35 ng·mL~(-1) PSA with a detection limit of 0.51 ng·mL~(-1) PSA(S/N = 3). Analytical results of 50 specimens using the developed immunosensor showed satisfactory agreement with those using ELISA,indicating the method to be a promising alternative for detecting PSA in clinical diagnosis.
引文
[1]许春向,生物传感器及其应用[M].北京:科学出版社,1993,4-6.
    [2]王立中,库里杰,生物传感器及展望[M].传感技术学报,1993,1(2):12-16.
    [3]吴礼光,刘茉娥,朱长乐,生物传感器研究进展[M].化学进展,1995,7(4):287-301.
    [4]朱将伟,刘国艳,史贤,生物传感器在食品安全检测中的应用[M].中国公共卫生,2006,22(7):883-884.
    [5]胡冠九,邹公伟,生物传感器在环境监测中的应用[M].环境检测管理与技术,1999,11(2):12-16.
    [6]司士辉,生物传感器[M).北京:化学工业出版社,2003.
    [7]马宝骊,肖祥,主编,医学免疫学[M].同济大学出版社,1987.
    [8]Vanderlaan M,Watkins B F,Startker L,Environmental monitoring by immunoassay[J].Environ Sci Technol,1998,22(1-2):247-254.
    [9]温志立,汪世平,沈国励,免疫传感器的发展概述[M].生物医学工程学杂志,2001,18(4):642-646.
    [10]张先恩,生物传感器[M].北京:化学工业出版社,2006,1-8.
    [11]Shons A,Dorman F,Najarian I,Prolongation of real xenografts by the simultaneous sequest -eration of performed antibody,inhibition of complement,coagulation and antibody synthesis [J].Biomed Mater Res,1972,6(12):562-566.
    [12]Roederer J E,Bastiaeans G J,Microgravimetric immunoassay with piezoelectric crystals[J].Anal Chem,1983,55(14):2333-2336.
    [13]Sochaczewski E P,Luong J H T,Guilbault G G,Development of a piezoelectric immunosensor for the detection of Salmonella typhimurium[J].Enzyme Microb Technol,1990,12(3):173-177.
    [14]Koenig B,Graetzel M,A novel immunosensor for herpes viruses[J].Anal Chem,1994,66(3):341-344.
    [15]Pizziconi V B,Page D L,A cell-based irnmunobiosensor with engineered molecular recognition-Part Ⅰ:design feasibility[J].Biosens Bioetectron,1997,12(4):287-289.
    [16]Xie B,Meckklenburg M,Danielesson B,Ohman O,Norlin P,Winquist F,Development of an integrated thermal biosensor for the simultaneous determination of multiple analytes[J].Analyst,1995,120(1):155-160.
    [17]霍群,蔡豪斌,电化学免疫传感器[M]临床检验杂志,2003,21:181-182.
    [18]Medyantseva E P,Khaldeeva E V,Glusshko N I,Budnikov H C,Amperometric enzyme immunosensor for the determination of the antigen of the pathogenic fungi trichophyton rubrum [J].Anal Chim Acta,2000,411(1-2):13-18.
    [19]Dai Z,Yan F,Chen J,Ju H X,Reagentless amperometric immunosensors based on direct electrochenistry of Horseradish Peroxidase for Determination of CA-125[J].Anal Chem,2003,75(20):5429-5434.
    [20]Konchi R,Owczarek A,Dzwolak W,Stanistaw G,lmmunoenzymatic sensitisation of mem-brane ion-selective electrodes[J].Sens Actuators B,1998,47(1-3):246-250.
    [21]Sergeyeva T A,Soldatkin A,Rachkov A E,Tereschenko M I,Piletsky S A,Elskaya A V,β-Lactamase label-based potentiometric biosensor for α-2 interferon detection[J].Anal Chim Acta,1999,390(1-3):73-81.
    [22]陶仪训,章谷生,孙萌,临床免疫学检验[M].上海:上海科学出版社,1986,93-96.
    [23]Yagiuda K,Hemmi A,Ito S,Development of a conductivity-based immunosensor for sensitive detection of methamphetamine(stimulant drug) in human urine[J].Biosens Bioelectron,1996,11(8):703-707.
    [24]Dijksma M,Kamp B,Hoogvliet J C,Development of an Electrochemical Immunosensor for Direct Detection of Interferon-γ at the Attomolar Level[J].Anal Chem,2001,73(5):901-907.
    [25]Limbut W,Kanatharana P,Mattiasson B,Asawatreratanakul P,Thavarungkul P,A reusable capacitive immunosensor for carcinoembryonic antigen detection using thiourea modified gold electrode[J].Anal Chim Acta 2006,561(1-2):55-61
    [26]董绍俊,车广礼,谢远武,化学修饰电极[M].北京:科学出版社,2003,19-40.
    [27]Santandren M,Sole S,Martinez-Fabregas E,Development of electrochemical immunosensing systems with renewable surfaces[J].Biosens Bioelectron,1998,13(1):7-17.
    [28]Tiefenauer L X,Kossek S,Padeste C,Thi(?)baud P,Towards amperometric immunosensor devices[J].Biosens Bioelectron,1997,12(3):213-223.
    [29]Santandren M,Sole S,Martinez-Fabregas E,Development of electrochemical immunosensing systems with renewable surfaces[J].Biosens Bioelectron,1998,13(1):7-17.
    [30]SadikOA,JohnMJ,WallaceGG,BarnettD,ClarkeC,Laing D G,PulsedAmperometric detection of thaumatin using antibody-containing poly(pyrrole) electrodes[J].Analyst,1994,119(9):1997-2000.
    [31]Wang J,Pamidi P V A,Pogers K R,Sol-gel derived thick-film amperometric immunosensors [J].Anal Chem,1998,70(6):1171-1175.
    [32]Simonet J,Rault-Berthelot J,Electrochemistry:A technique to form,to modify and to charac-terize organic conducting polymers[J].Pro Solid St Chem,1991,21(1):1-48.
    [33]Topoglidis E,Cass A E G,Gilardi G.Protein adsorption on nanocrystalline TiO_2 films:animmo-bilization strategy for bioanalytical devices[J].Anal Chem,1998,70(23):5111-5114.
    [34]Wollenberger U,Bogdanovskayn V,Bobrin S,Enzyme electrodes using bioelectrocatalytic reduction of hydrogen peroxide[J].Anal Lett,1990,23(10):1795-1808.
    [35]Wang J,Lin Y H,On-line organic-phase enzyme detector[J].Anal Chim Acta,1993,271(1):3-58.
    [36]Watkins B F,Behling J R,Kariv E,Chiral electrode[J].J Am Chem Soc,1975,97(12):3549-3550.
    [37]Moses P R,Wier L,Murray R W,Chemically modified tin oxide electrode[J].Anal Chem,1975,47(12):1882-1886.
    [38]杨文胜,高明远,白玉白等,纳米材料与生物技术[M].北京:化学工业出版社,2005.
    [39]刘吉平,廖莉玲,主编,无机纳米材料[M].北京:科学出版社,2003.
    [40]Brett C M,Brett A M O,Electrochemistry:principles,methode,and applications,Oxford Unipaste -versity Press,Oxford,UK,1993.
    [41]Zhang Y,He P L,Hu N F,Horseradish peroxidase immobilized in TiO2 naniparticle films on pyrolytic graphite electrodes:direct electrochemistry and bioelectrocatalysis [J].Electrochi--mica Acta,2004,49:1981-1988.
    [42]Liu S Q,Dai Z H,Chen H Y,Ju H X,Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor [J].Biosens Bioelectron,2004,19 (9):963-969.
    [43]Jia N Q,Zhou Q,Liu L,Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived tin oxide gelatin composite films [J].J Electroanal Chem,2005,580 (2):213-221.
    [44]Wang J,Pamidi P V A,Zanette R,Self-assembled silica gel networks [J].J Am Chem Soc,1998,120:5852-5853.
    [45]Zhao G,Xu J J,Chen H Y,Fabrication:Characterization of Fe_3O_4 multilayer film and its appli--cation in promoting direct electron transfer of hemoglobin [J].Electrochem Commun,2006,8:148-154.
    [46]Xu X,Tian B Z,Zhang S,Kong,J L,Zhao DY,Liu B H,Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb_2O_5 matrix [J].Anal Chim Acta,2004,519:31-38.
    [47]Zhao G,Xu J J,Chen H Y,Interfacing myoglobin to graphite electrode with an electrodeposited nanoporous ZnO film [J].Anal Biochem,2006,350:145-150.
    [48]Zhang M,Smith A,Gorski W,Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes [J].Anal Chem,2004,76 (17):5045-5050.
    [49]Wang J,Musameh M,Lin Y,Solubilization of Carbon Nanotubes by Nafion toward the Prepa--ration of Amperometric Biosensors [J],J Am Chem Soc,2003,125 (9):2408-2409.
    [50]Zheng M,Diner B A,Solution Redox Chemistry of Carbon Nanotubes [J].J Am Chem Soc,2004,126 (47):15490-15494.
    [51]White C T,Mintmire J W,Fundamental properties of single-Wall carbon nanotubes [J].J Phys Chem B,2005,109 (1):52-65.
    [52]Ye J,Ying W,Wei D,Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution [J].J Electroanal Chem,2004,562 (2):241-246.
    [53]Chen J H,Yao S Z,Amperometric glucose biosensor based on adsorption of glucose oxidase platinum nanoparticle-modified carbon nanotube electrode [J].Anal Biochem,2004,331:89-97.
    [54]Wohlstadter J N,Wilbur J L,Sigal G B,Carbon nanotube-based biosensor.Adv Mater [J].2003,15(14):1186-1187.
    [55]Chen,S H,Yuan R,ChaiY Q,Zhang L Y,Wang N,Li X L,Amperometric third-generation hydrogen peroxide biosensor based on theimmobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles [J].Biosens Bioelectron,2007,22 (7):1268-1274.
    [56]Li N,Yuan R,Chai Y Q,An H Z,Li W J,New antibody immobilization strategy based on gold nanoparticles and azure I/multi-walled carbon nanotube composite for an amperometric enzy- -me immunosensor [J].Phys Chem C,2007,111 (24):8443-8450.
    [57]Shively J E,Beatty J D,CEA-related antigens:molecular biology and clinical significance [J].Crit Rev Oncol Hematol,1985,1:355-399.
    [58]Lin J H,Ju H X,Electrochemical and chemiluminescent immunosensors for turner markers [J].Biosens Bioelectron,2005,20:1461-1470.
    [59]Tsutsumi H,Takeoka K,Oishi T,Preparation and characterization of new self-assembled poly--amide film containing disulfide bongs on gold electrode [J].J Colloid Interface Sci,1997,185:432-435.
    [60]Arvand M,Sohrabnezhad S,Mousavi M F,Shamsipur M A,Zan J C,Electrochemical study of methylane blue incorporated into mordenite type zeolite and its application for amperometric determination of ascorbic acid in real sample [J].Anal Chim Acta,2003,491 (2):193-201.
    [61]Li X L,Yuan R,Chai Y Q,Zhang L Y,Zhuo Y,Zhang Y,Amperometric immunosensor based on tolucidine blue/nano-Au through electrostatic interaction for determination of Carcino--embryonic antigen [J].J Biotechnol,2006,123:356-366.
    [62]Jia Z Q,Sun G B,Preparation of Prussian blue nanoparticles with single precursor [J].Colloid Surface A,2007,302:326-329.
    [63]Li Q W,Zhang J,Yan H,Thionine-mediated chemistry of carbon nanotubes [J].Carbon,2004,42:287-291.
    [64]Dias S L P,Fajiwara S T,Gashiken Y,Methylene blue immobilized on cellulose surface modi--fied with titanium dioxide and titanium phosphate factorial design optimization of redox pro--perties [J].J Electroanal Chem,2002,531 (2):141-146.
    [65]Liu Y,Jiang H,Electroanalytical Determination of Carcinoembryonic Antigen at a Silica Nan--oparticles/Titania Sol-Gel Composite Membrane-Modified Gold Electrode [J].Electroana--lysis,2006,18:1007-1013.
    [66]Ye X Y,Zhou Y M,Sun Y Q,Preparation and characterization of SiO_2/ZrO_2/Ag multicoated microspheres [J].Appl Surf Sci,2008,254:1942-1946.
    [67]Zhou L L,Yuan W Z,Yuan J Y,Preparation of double-responsive SiO_2-g-PDMAEMA nano--particles via ATRP [J].Mater Lett,2008,62:1372-1375.
    [68]Yang H P,Zhu Y F.Glucose biosensor based on nano-SiO_2 and “unprotected”Pt nanoclusters [J].Biosens Bioelectron,2007,22 (12):2989-2993.
    [69]Guo S J,Wang E K.A novel sensitive solid-state electrochemiluminescence sensor material:Ru(bpy)_3~(2+)doped SiO_2@MWNTs coaxial nanocable [J].Electrochem Commu,2007,9:1252-1257.
    [70]Tiwaria A,Mishrab A P,Dhakatea S R.,Synthesis of electrically active biopolymer SiOnano--composite aerogel [J].Mater Lett,2007,61:4587-4590.
    [71]Tang D P,Yuan R,Chai,Y Q,An H Z,Magnetic-Core/Porous-Shell CoFe_2O_4/SiO_2 Composite Nanoparticles as Immobilized Affinity Supports for Clinical Immunoassays [J].Adv Funct Mater,2007,17:976-982.
    [72]Xian Y Z,Liu F,Xian Y,Preparation of methylene blue-doped silica nanoparticle and its appli-cation to electroanalysis heme proteins [J].Electrochim Acta,2006,51:6527-6532.
    [73]Wang Z J,Yang Y H,Li J S,Organic-inorganic matrix for electrochemical Immunoassay:Det--ection of human IgG based on ZnO/chitosan composite [J].Talanta,2006,69:686-690.
    [74]Chen P C,Hsieh B C,Chen R L C,Characterization of natural chitosan membranes from the carapace of the soldier crab Mictyris brevidactylus and its application to immobilize glucose oxidase in amperometric flow-injection biosensing system [J].Bioelectrochemistry,2006,68:72-80.
    [75]Prati L,Villa A,Porta F,Single-phase gold/palladium catalyst:The nature of synergistic effect [J].Catal Today,2007,122:386-390.
    [76]Yao H,Li N,Xu S,Electrochemical study of a new methylene blue/silicon oxide nanocompo--sition mediator and its application for stable biosensor of hydrogen peroxide [J].Biosens Bioelectron,2005,21 (2):372-377.
    [77]Liu Y J,Li Y L,Liu S C,Monitoring the self-assembly of chitosan/glutaraldehyde/cysteamine/Au-colloid and the binding of human serum albumin with hesperidin [J].Biomaterials,2004,25:5725-5733.
    [78]Grabar K.C,Allison K J,Baker B E,Two-dimensional arrays of colloidal gold particle:a flexi--ble approach to macroscopic metal surfaces [J].Langmuir,1996,12 (10):2353-2361.
    [79]Bai Y,Yang H,Yang W W,Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction [J].Sens Actuators B,Chem.,2007,124 (1):179-186.
    [80]Zheng S X,Wang N,Niu Y M,Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor [J].Sens Actuators B,2005,109 (2):367-374.
    [81]Du D,Yan F,Liu S L,Ju H X,Immunological assay for carbohydrate antigen 19-9 using an electrochemical immunosensor and antigen immobilization in titania sol-gel matrix [J].J Immunol Methods,2003,283 (1-2):67-75.
    [82]Marquette C A,Blum L J,State of the art and recent advances in immunoanalytical systems [J].Biosens Bioelectron,2006,21:1424-1433.
    [83]Luppa P B,Sokoll L J,Chan D W,Immunosensors-principles and applications to clinical chemistry [J].Clin Chim Acta,2001,314 (1-2):1-26.
    [84]Singh S,Sensors-an effective approach for detection of explosives [J].J Hazard Mater,2007,144(1-2):15-28.
    [85]Wu J,Zhang Z J,Fu Z F,Ju H X,A disposable two-tlirough put electrochemical immunosensor chip for simultaneous multianalysis determination of tumor markers [J].Biosens Bioelectron,2007,23(1):114-120.
    [86]Tang H,Chen J H,Nie L H,Yao S Z,Kuang Y F,electrochemical oxidation of glutathione at well-aligned carbon nanotube array electrode [J],Electrochim Acta,2006,51 (15):3046-3051.
    [87]Yuan R,Zhuo Y,Chai YQ,Zhang Y,Sun A L,Determination of carcino-embryonic antigen using a novel amperometric enzyme-electrode based on layer-by-layer assembly of gold nanoparticles and thionine [J].Sci China Ser B Chem,2007,50:97-104.
    [88]Sadik O A,Van Emon J M,Appliations of electrochemical immunosensors to environmental monitoring [J].Biosens Bioelectron,1996,11 (1):Ⅰ-Ⅺ.
    [89]Merkoci A,Electrochemical biosensing with nanoparticles [J].FEBS Journal,2007,274:310-316.
    [90]Choi J W,Oh B K,Kim Y K,Nanotechnology in biodevices [J].J Microbiol Biotechnol,2007,17:5-14.
    [91]Veetil J V,Ye K M,Development of immunosensors using carbon nanotubes [J].Biotechnol Progress,2007,23 (1):511-531.
    [92]Wu L N,Yan F,Ju H X,An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber [J].J Immunol Methods,2007,322 (1-2):12-19.
    [93]Bourgeat-Lami E J,Organic-inorganic nanostructured colloids [J],nanosci nanotechnol,2002,2:1-24.
    [94]Xiao T D,Strutt P R,Benaissa M,Chen H,Kear B H,Synthesis of high activesite density nan--ofibrous MnO_2-base materials with enhanced Permeabilities [J].Nanostruct Mater,1998,10:1051-1061.
    [95]Veerapur R S,Gudasi K B,Aminabhavi T M,Pervaporation dehydration of isopropanol using blend membranes of chitosan and hydroxypropyl cellulose [J].J Memb Sci,2007,304:102-111.
    [96]Luo X L,Xu J J,Zhao W,Chen H Y,Ascorbic acid sensor based on ion-sensitive field-effect transistor modified with MnO_2 nanoparticles [J].Anal Chimica Acta,2004,512:57-61.
    [97]Wang K,Xu J J,Chen H Y,Biocomposite of cobalt phthalocyanine and lactate oxidase for lactate biosensing with MnO_2 nanoparticles as an eliminator of ascorbic acid interference [J].Sens Actuators B Chem,2006,114 (2):1052-1058.
    [98]Xu J J,Luo X L,Du X,Chen H Y,Application of MnO_2 nanoparticles as an eliminator of ascorbate interference to amperometric glucose biosensors[J].Electrochem Commun,2004,6:1169-1173.
    [99]Zhuo Y,Yuan R,Chai Y Q,Zhang Y,Li X L,Wang N,Zhu Q,Amperometric enzyme immu--nosensors based on layer-by-layer assembly of gold nanoparticles and thionine on Nafion mod--ified electrode surface for a-1-fetoprotein determinations[J].Sens Actuators B Chem,2006,114 (2):631-639.
    [100]Cao S R,Yuan R,Chai Y Q,Zhang LY,Li X L,Gao F X,A mediator-free amperometric hydrogen peroxide biosensor based on HRP immobilized on nano-Au /poly2,6-pyridine--diamine-coated electrode [J].Bioprocess Biosyst Eng,2007,30:71-78.
    [101]Zhu Q,Yuan R,Chai Y Q,Wang N,Zhuo Y,Zhang Y,Li X L,A new potentiometric immu--nosensor for determination of a-fetoprotein based on improved gelatin-silver complex film[J].Electrochim Acta,2006,51:3763-3768.
    [102]Shi Y T,Yuan R,Chai Y Q,He X L,Development of an amperometric immunosensor based on TiO_2 nanoparticles and gold nanoparticles [J].Electrochim Acta,2007,52:3518-3524.
    [103]Yuan Y R,Yuan R,Chai Y Q,Zhuo Y,Shi Y T,He X L,Miao X M,A reagentless ampero--metric immunosensor for a-fetoprotein based on gold nanoparticles/TiO2 colloids/prussian blue modified platinum electrode [J].Electroanalysis,2007,13:1402-1410.
    [104]Tang D P,Yuan R,Chai Y Q,Magnetic core-shell Fe_3O_4@Ag nanoparticles coated carbon interface for studies of carcinoembryonic antigen in clinical immunoassay[J].J Phys Chem B,2006,110:11640-11646.
    [105]Prati L,Villa A,Porta F,Wang D,Su DS,Single-phase gold/palladium catalyst:The nature of synergistic effect[J].Catal Today,2007,122(3-4):386-390.
    [106]Du Y,Luo X L,Xu J J,Chen H Y,A simple method to fabricate chitosan gold nanoparticles film and its application in glucose biosensor[J].Bioelectrochemistry,2007,70:342-347.
    [107]Bai Y H,Du Y,Xu J J,Chen H Y,Choline biosensor based on a bielectrocatalytic property of MnO_2 nanoparticles modified electrodes to H_2O_2[J].Electrochem Commun,2007,9:2611-2616.
    [108]Mattos I L,Gorton L,Laurell T,Malinauskas A,Karyakin A A,Development ofbiosensors based on hexacyanoferrates[J].Talanta,2000,52:791-799.
    [109]He X L,Yuan R,Chai YQ,Zhuo Y,Shi Y T,A new antibody immobil- ization strategy based on electrodeposition of gold nanoparticles and prussian blue for label-free amperometric immunosensor[J].Biotechnol Lett,2007,29:149-155.
    [110]Garjonyte R,Malinauskas A,Operational stability of amperometric hydrogen peroxide sensors based on ferrous and copper hexacyanferrates[J].Sens Actuators B Chem,1999,56:93-97.
    [111]Tang D P,Yuan R,Chai Y Q,Novel immunoassay for carcinoembryonic antigen based on protein A-conjugated immunosensor chip by surface plasmon resonance and cyclic voltammetry [J].Bioproc Biosyst Eng,2006,28:315-321.
    [112]Qu B,Chu X,Shen G L,Yu R Q,A novel electrochemical immunosensor based on colabeled silica nanoparticles for determination of total prostate specific antigen in human serum[J].Talanta,2008,76:785-790.
    [113]Nancy V P,Germ'an A M,Eloy S,H'ector F,Julio R,Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples[J].Biosens Bioelectron,2008,23:1145-1151.
    [114]Ce'sar F S,Calum J M,Keith R,Olle N,Hing Y L,Vincent G,One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum[J].J Immun Methods,2005,307:1-12.
    [115]Zhao B,Wang J,Li Z J,Liu P,Chen D,ZhangY F,Mechanical strength improvement of polypropylene threads modified by PVA/CNTcomposite coatings[J].Mater Lett,2008,62:4380-4382.
    [116]Liu L J,Zhang F,Xi F N,Lin X F,Highly sensitive biosensor based on bionanomultilayer with water-soluble multiwall carbon nanotubes for determination of phenolics[J].Biosens Bioelectron,2008,24(2):306-312.
    [117]Li W Z,Xie S S,Qian L X,Large-scale synthesis of aligned carbon nanotubes[J].Science,1996,274(5293):1701-1703.
    [118]Ebbesen T W,Lezec H J,Hiura H,Electrical conductivity of individual carbon nanotubes[J].Nature,1996,382(4):54-56.
    [119]成会明,纳米管的制备,结构,物性及应用,北京:化学工业出版社,2002,27-28.
    [120]ZhuY J,LinT J,Liu Q X,Chen Y L,Zhang G F,Xiong H F,Zhang H Y,The effect of nickel content of composite catalysts synthesized by hydrothermal method on the preparation of carbon nanotubes [J].Mater Sci Eng B,2006,127:198-202.
    [121]Tao Y,Lin Z J,Chen X M,Chen X,Wang X R,Tris(2,2-bipyridyl)ruthenium(Ⅱ)electrochemiluminescence sensor based on carbon nanotube/organically modified silicate films[J].Anal Chim Acta,2007,594:169-174.
    [122]Chen S M,Chan C M,Preparation,characterization,and electrocatalytic properties of copper hexacyanoferrate film and bilayer film modified electrodes [J].J Electroanal Chem,2003,543 (2):161-173.
    [123]Retter U,Widmann A,Siegler K,Kahlert H,On the impedance of potassium nickel (Ⅱ)hexacyanoferrate (Ⅱ)composite electrodes the generalization of the Randies model referring to inhomogeneous electrode materials [J].J Electroanal Chem,2003,546 (2):87-96.
    [124]Prabakar S J R,Narayanan S S,Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach [J].J Electroanal Chem,2008,617 (2):111-120.
    [125]Malik M A,Kulesza P J,Marassi R,Nobili F,Miecznikowski K,Zamponic S,Countercation intercalation and kinetics of charge transport during redox reactions of nickel hexacyanofer--rate [J].Electrochimica Acta,2004,49:4253-4258.
    [126]Yuan Y R,Yuan R,Chai Y Q,Zhuo Y,Miao X M,Electrochemical amperometric immunoa--ssay for carcinoembryonic antigen based on bi-layer nano-Au and nickel hexacyanoferrates nanoparticles modified glassy carbon electrode [J].J Electroanal Chem,2009,626 (1-2):6-13.
    [127]Razmi H,Heidari K,Electroless immobilization and electrochemical characteristics of nickel hexacyanoruthenate film at an aluminum substrate [J].Electrochimica Acta 2006,51:1293-1303.
    [128]Yang M H,Yang Y H,Qu F L,Lu Y S,Shen G L,Yu R Q,Attachment of nickel hexacyano--ferrates nanoparticles on carbon nanotubes:Preparation,characterization and bioapplication[J].Anal Chim Acta,2006,571:211-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700