酶催化合成水溶性导电聚苯胺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了辣根过氧化物酶(HRP)催化水溶性导电聚苯胺的模板导向聚合。选用
    聚乙烯磺酸钠(PVS)作为苯胺聚合的新模板,仔细考察了反应条件对聚合产物的影响
    并与其他模板聚合产物进行了比较。在此基础上,对固定化辣根过氧化物酶酶促苯
    胺聚合进行了探索性研究。
    在游离态酶酶促聚合水溶性导电聚苯胺的研究中,考察了反应体系的pH值、
    H2O2浓度及苯胺单体与模板的摩尔比对聚合的影响,用UV-vis-near-IR、FTIR、TGA
    及四探针电导率测试仪对产物进行了表征。研究结果表明,PVS可以作为HRP酶催
    化苯胺聚合的模板。反应在室温(25℃)下进行,反应体系的pH值应该控制在4. 0-
    5. 0之间,作为引发剂的H2O2浓度在10mM-20mM之间为宜,PVS(单体单元)与苯
    胺的摩尔比应控制在1-1. 5之间。PANI/PVS的电导率为4. 78×10-1S/cm,明显高于
    已见报道的其他模板聚合物。
    在固定化酶酶促聚合导电聚苯胺的研究中,考察了通过共价交联法将酶分别固
    定在壳聚糖粉末表面和海藻酸钙(CA)凝胶微球表面实现酶的固定化、以及通过海藻
    酸钠-壳聚糖-海藻酸钠(ACA)微胶囊固定酶。实验结果表明,通过共价交联法得
    到的固定化酶可以成功用于催化苯胺聚合,而微胶囊固定化酶用于聚合则不成功。
    固定在壳聚糖表面的HRP酶保持了稳定性,室温下在pH6. 0的缓冲液中储存72小
    时仍然具有活性,用于催化聚合PANI/PVS时,反应体系的最适pH值、引发剂H2O2
    的最佳浓度均与使用游离酶时相同,固定化酶的最佳用量在0. 1g/mL附近。海藻酸
    钙凝胶微球表面固定HRP酶即得到功能微球,较壳聚糖粉末便于过滤回收,减少酶
    的损失。功能微球是一种很有研究前途的酶固定法,还有待深入探索。
    本文的研究工作为以后进一步研究酶催化苯胺聚合提供了必要的实验和理论基
    础。
Enzymatic synthesis of a water-soluble, conducting polyanline (PANI) using a template-guided approach was studied in this paper. Horseradish peroxidase (HRP) is used to polymerize aniline in the presence of a new polyanionic template, poly(vinylsulfonic acid, sodium salt) (PVS). The effects of reaction conditions on the polymerization were worked out. Meanwhile, the products were compared with those synthesized using different templates. And what is more, the method for the synthesis of polyaniline with the immobilized horseradish peroxidase enzyme was investigated.In the study of polymerization of aniline catalyzed by free HRP, effects of different buffer solution, concentration of initiator (H2O2), and the molar ratio of aniline to PVS (based on the monomer repeat unit) on the polymerization were investigated. The products were characterized by UV-vis-near-IR and FTIR spectroscopy, thermogravimetric analysis, and four-point probe conductivity measurement. The results showed that PVS could be used as a new template in the synthesis of PANI. The reaction should be carried out in a 4.0~5.0 pH buffer aqueous solution at room temperature (25 °C). The concentration of initiator (H2O2) was 10nM~20nM, and the molar ratio of PVS to aniline was 1-1.5. The conductivity of PVS/PANI complex was 4.78 X10'1 S/cm, which was obviously higher than any other complex already having been reported.In the study of polymerization of aniline catalyzed by immobilized HRP, the enzyme HRP was immobilized on chitonsan powder and the surface of calcium alginate (CA) microspheres respectively by a simple glutaraldehyde bridge method. The alginate-chitosan-alginate (ACA) microcapsules were also used to immobilize HRP. The results showed that the HRP immobilized on chitosan powder and CA microspheres was an effective catalyst for the polymerization of aniline. It was defeated while using the HRP immobilized by ACA microcapsules as catalyst. The HRP immobilized on chitosan powder was stable and remained active after being stored in pH6.0 buffer solution at room temperature for about 72hr. When the immobilized HRP was used in the reaction, the proper pH of buffer solution and concentration of initiator (H2O2) were similar to that of
    
    polyaniline obtained with free HRP. The amount of catalyst used should be controlled around 0.lg/mL. The microspheres with HRP immobilized on the surface were functional microspheres, which were easier to recover than the chitosan powder. Functional microspheres are remarkable and need to be further investigated.This paper provides necessary experimental and theoretical foundation for further studies of enzyme-catalyzed polymerization of aniline.
引文
[1] Macdiarmid A.G, Chiang J.C., Richter A.F., Epstein A.J. Polyaniline: a new concept in conducting polymers. [J] Synth. Met. 1987, v18, 285-290.
    [2] Genies E. M., Lapkowski M. Polyaniline films.Electrochemical redox mechanisms. [J] Synth. Met. 1988,v24,61-68.
    [3] Ginder J.M., Epstein A.J., MacDiarmid A.G Electronic phenomena in polyaniline. [J] Synth. Met. 1989, v29, 395-400.
    [4] Ahmad N., MacDiarmid A.G.Inhibition of corrosion of steels with the exploitation of conducting polymers. [J] Synth. Met. 1996, v78, 103-110.
    [5] (a) Trivedi D.C., Dhawan S.K. Shielding of electromangnetic interference using polyaniline. [J] Synth. Met. 1993, v59, 267-272. (b)杜仕国.屏蔽电磁波干扰塑料及其开发动向.[J]塑料科 技,1995,v2,1-3.
    [6] (a) Agbor N.E., Petty M.C., Monkman A.P. Polyaniline thin films for gas sensing. [J] Sensors and Actuators B. 1995, v28, 173-179. (b) Agbor N.E., Cresswell J.P., Petty M.C., Monkman A.P. An optical gas sensor based on polyaniline Langmuir-Blodgett films. [J] Sensors and Actuators B. 1997, v41,137-141.
    [7] (a) Paul E.W., Rico A.J., Wrighton M.S. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. [J] J. Phys. Chem. 1985, v89, 1441-1447. (b) Chen S.-A., Fang Y. Polyaniline schottky barrier: effect of doping on rectification and photovoltaic characteristics. [J] Synth. Met. 1993, v60, 215-222.
    [8] Gustafsson G., Cao Y., Treacy GM., Colaneri N., Heeger A.J. Flexible light-emitting diodes made from soluble conducting polymers. [J] Nature 1992, v357,477-479.
    [9] (a) Kitani A., Yano J., Sasaki K. ECD materials for the three primary colors developed by polyanilines. [J] J. Electroanal. Chem. 1986, v209, 227-232. (b) Jelle B.P., Hagen G. Transmission Spectra of an Electrochromic Window Based on Polyaniline, Prussian Blue, and Tungsten Oxide. [J] J. Electrochem. Soc. 1993, v140, 3560-3563.
    [10] Huang W.S., MacDiarmid A.G.Optical properties of polyaniline. [J] Polymer 1993, v34, 1833-1845.
    [11] Tim Stevens. Electrically conductive polymers. [J] Materials Engineering 1991, v108, 21-24.
    
    [12]Takeo Ito, Hideki Shirakawa, Sakuji Ikeda. Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. [J] J .Polym. Sci., Polym. Chem. Ed. 1974, vl2,11-20.
    [13]Chiang C.K., Fincher C.R., Jr., Park Y.W., Heeger A.J. Electrical Conductivity in Doped Polyacetylene. [J] Phys. Rev. Lett. 1977, v39, 1098-1101.
    [14](a) MacDiarmid A.G Polyaniline and polypyrrole: Where are we headed? [J] Synth. Met. 1997, v84, 27-34. (b) Macdiarmid A.G., Chiang J.C., Richter A.F., Epstein A.J. Polyaniline: a new concept in conducting polymers. [J] Synth. Met. 1987, vl8, 285-290. (c) Chinn D., Dubow J., Liess M., Josowicz M., Janata J. Comparison of Chemically and Electrochemically Prepared Polyaniline. Films. 1. Electrical Properties. [J] Chem. Mater. 1995, v7, 1504-1509. (d) MacDiarmid AC, Epstein A.J. [M] Science and Applications of Conducting Polymers. Salaneck W.R., Clark D.T., Samuelsen E.J., Eds.; Adam Hilger: Bristol, England, 1990. (e) Cao Y., Li S., Xue Z., Guo D. Spectroscopic and electrical characterization of some aniline oligomers and polyaniline. [J] Synth. Met. 1986, vl6, 305-315.
    [15](a) Dong Y., Mu S. Photoelectrochemical behaviour of polyaniline affected by potentials and pH of solutions. [J] Electrochim. Acta 1991, v36, 2015-2018. (b) Noufi R., Nozik A.J., White J., Warren L.F. Enhanced Stability of Photoelectrodes with Electrogenerated Polyaniline Films. [J] J. Electrochem. Soc. 1982, vl29, 2261-2267.
    [16](a) Chen W.-C, Jenekhe S.A. New polyaniline derivatives: poly(4,4'-diphenylamine methylenes) and poly(4,4'-diphenylimine methines). [J] Macromolecules 1992, v25, 5919-5926. (b) Westerweele E., Smith P., Heeger A.J. "Inverted" polymer light-Emitting diodes on cylindrical metal substrates. [J] Adv. Mater. 1995, v7, 788-790.
    [17]Conklin J.A., Huang S.C., Huang S.M., Wen T.L., Kaner R.B. Thermal Properties of Polyaniline and Poly(aniline-co-o-ethylaniline). [J] Macromolecules 1995, v28, 6522-6527.
    [18]Focke W.W., Wnek G.E., Wei Y. Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. [J] J. Phys. Chem. 1987, v91, 5813-5818.
    [19]Wudl F., Angus R.O., Lu F.L., Allemand P.M., Vachon D., Nowak M., Liu Z.X., Schaffer H., Heeger A.J. Poly-p-phenyleneamineimine: synthesis and comparison to polyaniline. [J] J. Am. Chem. Soc. 1987, vl09, 3677-3684.
    [20]Diaz A.F., Logan J.A. Electroactive polyaniline films. [J] J. Electroanal. Chem. 1980, v111,
     111-114.
    
    [21] Wei X.L., Epstein A.J. Synthesis of highly sulfonated polyaniline. [J] Synth. Met. 1995, v74, 123-125.
    [22]Baker GL. Progress Toward Processable, Environmentally Stable Conducting Polymers. [J] Adv. Chem. Ser. 1988, v218,271-276.
    [23]Chen S.-A., Hwang G-W. Water-Soluble Self-Acid-Doped Conducting Polyaniline: Structure and Properties. [J] J. Am. Chem. Soc. 1995, vll7, 10055-10062.
    [24]Chan H.S.O., Ho P.K.H., Ng S.C., Tan B.T.G., Tan K.L. A New Water-Soluble, Self-Doping Conducting Polyaniline from Poly(o-aminobenzylphosphonic acid) and Its Sodium Salts: Synthesis and Characterization. [J] J. Am. Chem. Soc. 1995, vl 17, 8517-8523.
    [25]Liao Y.H., Levon K., Osterholm J.E. Solubilization of polyaniline in water by interpolymer complexation. [J] Macromol. Rapid Commun. 1995, vl6, 393-397.
    [26]Pron A., Osterholm J-E., Smith P., Heeger A. J., Laska J., Zagorska M. Processable conducting polyaniline. [J] Synth. Met. 1993, v57,3520-3525.
    [27]Wei X.L., Wang Y.Z., Long S.M., Bobeczko C, Epstein A.P. Synthesis and Physical Properties of Highly Sulfonated Polyaniline. [J] J. Am. Chem. Soc. 1996, vl 18, 2545-2555.
    [28]Yue J., Epstein A.J. Synthesis of self-doped conducting polyaniline. [J] J. Am. Chem. Soc. 1990, vl12, 2800-2801.
    [29]Nguyen M.T., Kasai P., Miller J.L., Diaz F.D. Synthesis and Properties of Novel Water-Soluble Conducting Polyaniline Copolymers. [J] Macromolecules 1994, v27,3625-3631.
    [30]Yang, C.H.; Wen, T.C. [J] J. Appl. Electrochem. 1994, v24, 166-178.
    [31]Alva K.S., Kumar J., Marx K.A., Tripathy S.K. Biochemical synthesis of water soluble polyanilines: Poly(p-aminobenzoic acid). [J] Macromol. Rapid Commun. 1996, vl7, 859-863.
    [32]Wei Y., Focke W.W., Wnek G.E., Ray A., MacDiarmid A.G. Synthesis and electrochemistry of alkyl ring-substituted polyanilines. [J] J. Phys. Chem. 1989, v93, 495-499.
    [33]Macinnes D., Funt B.L. Poly-o-methoxyaniline: A new soluble conducting polymer. [J] Synth. Met. 1998, v25, 235-242.
    [34]Bartlett P.N., Wang J.H. Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)-poly(styrenesulfonate) composite films. [J] J. Chem. Soc, Faraday Trans. 1996, v92, 4137-4143.
    
    [35] Liu J.-M., Sun L., Hwang J., Yang H.S.C. [J] Mater. Res. Soc. Symp. Proc. 1992, v247, 601-605.
    [36] Sun L., Liu H., Clark R., Yang S.C. Double-strand polyaniline. [J] Synth. Met. 1997, v84, 67-68.
    [37] Liu J.M., Yang S.C. Novel colloidal polyaniline fibrils made by template guided chemical polymerization. [J] J. Chem. Soc., Chem. Commun. 1991, issue 21,1529-1530.
    [38] 周震涛,刘芳,杨洪业.聚苯胺合成的中试放大研究[J]华南理工大学学报(自然科学版), 1997,v25(10) ,57-60.
    [39] 景遐斌,王献红,耿延候.导电高分子研究二十年--成功与希望;江明,府寿宽.高分子科 学的近代论题[C]上海,复旦大学出版社,1997,212-230.
    [40] 肖诗特,黄怡,田海明.聚苯胺PA-6导电复合膜的电化学合成与性能[J]功能高分子学报, 1998,v11(2) ,257-260.
    [41] 黄怡,肖诗特,田海明.聚苯胺自支撑导电膜的电化学合成及性能[J]功能高分子学报, 1998,v11(1) ,44-47.
    [42] Dunford H.B. [M] Peroxidases in Chemistry and Biology. Everse J., Everse K.E., Grisham M.B., Eds.; CRC Press: Boca Raton, FL, 1991, v2, 1-24.
    [43] Ryu K., McEldoon J.P., Pokora A.R., Cyrus W., Dordick J.S. Numerical and Monte Carlo simulations of phenolic polymerizations catalyzed by peroxidase. [J] Biotechnol. Bioeng. 1993, v42, 807-814.
    [44] Saunders B.C., Holmes-Siedle A.G., Stark B.P. [M] Peroxidases. Butterworths: London, 1964.
    [45] (a) Dordick J.S., Marietta M.A., Klibanov A.M. Polymerization of phenols catalyzed by peroxidase in nonaqueous media. [J] Biotechnol. Bioeng. 1987, v30, 31-36. (b) Akkara J.A., Senecal K.J., Kaplan D.L. Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane. [J] J. Polym. Sci., Part A: Polym. Chem. 1991, v29, 1561-1574. (c) Wang P., Dordick J.S. Enzymatic Synthesis of Unique Thymidine-Containing Polyphenols. [J] Macromolecules 1998, v31, 941-943. (d) Ikeda R., Uyama H., Kobayashi S. Novel Synthetic Pathway to a Poly(phenylene oxide). Laccase-Catalyzed Oxidative Polymerization of Syringic Acid. [J] Macromolecules 1996, v29, 3053-3054.
    [46] (a) Alva K.S., Kumar J., Marx K.A., Tripathy S.K. Enzymatic Synthesis and Characterization of a Novel Water-Soluble Polyaniline: Poly(2,5-diaminobenzenesulfonate). [J] Macromolecules 1997, v30, 4024-4029. (b) Alva K.S., Marx K.A., Kumar J., Tripathy S.K. Biochemical synthesis of water soluble polyanilines: Poly(p-aminobenzoic acid). [J] Macromol. Rapid Commun. 1996, v17, 859-863.
    
    [47]Liu W., Wang J.D., Ma L., Liu X.H., Sun X.D., Cheng Y.H., Li T.J. Enzymatic polymerization of p-phenylphenol in aqueous micelles. [J] Ann. N.Y. Acad. Sci. 1995, v750, 138-145.
    [48](a) Rao A.M., John V.T., Gonzalez R.D., Akkara J.A., Kaplan D.L. Catalytic and interfacial aspects of enzymatic polymer synthesis in reversed micellar systems. [J] Biotechnol. Bioeng. 1993, v41, 531-540. (b) Premachandran R., Banerjee S., John V.T., McPherson G.L., Akkara J.A., Kaplan D.L. The Enzymatic Synthesis of Thiol-Containing Polymers to Prepare Polymer-CdS Nanocomposites. [J] Chem. Mater. 1997, v9, 1342-1347. (c) Premachandran R.S., Banerjee S., Wu X.-K., John V.T., McPherson G.L., Akkara J.A., Ayyagari M., Kaplan D.L. Enzymatic Synthesis of Fluorescent Naphthol-Based Polymers. [J] Macromolecules 1996, v29, 6452-6460.
    [49]Bruno F.F., Akkara J.A., Samuelson L.A., Kaplan D.L., Marx K.A., Kumar J., Tripathy S.K. Enzymic Mediated Synthesis of Conjugated Polymers at the Langmuir Trough Air-Water Interface. [J] Langmuir 1995, vl 1, 889-892.
    [50](a) Samuelson L.A., Anagnostopoulos A., Alva K.S., Kumar J., Tripathy S.K. Biologically Derived Conducting and Water Soluble Polyaniline. [J] Macromolecules 1998, v31, 4376-4378. (b) Liu W., Kumar J., Tripathy S.K., Senecal K.J., Samuelson L.A. Enzymatically Synthesized Conducting Polyaniline. [J] J. Am. Chem. Soc. 1999, vl21, 71-78.
    [51]Lide D.R. [M] Handbook of Chemistry and Physics. 68th ed.; CRC Press: Boca, Raton, FL, 1993, ppD159-161.
    [52]Dautzenberg D., Jaeger W., Kotz J., Philipp B., Seidel C, Stscherbina D. [M] Polyelectrolytes: Formation, Characterization and Application. Hanser/Gardner Publications: Cincinnati. 1994.
    [53] Wei Liu, Ashok L. Cholli, Ramaswamy Nagarajan, Jayant Kumar, Sukant Tripathy, Ferdinando F. Bruno, Lynne Samuelson. The Role of Template in the Enzymatic Synthesis of Conducting Polyaniline. [J] J. Am. Chem. Soc. 1999, vl21, 11345-11355.
    [54](a) Stafstrom S., Bredas J.L., Epstein A.J., Woo H.S., Tanner D.B., Huang W.S., MacDiarmid A.G. Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. [J] Phys. Rev. Lett. 1987, v59, 1464-1467. (b) Ginder J.M., Epstein A.J. Role of ring torsion angle in polyaniline: Electronic structure and defect states. [J] Phys. Rev. B 1990, v41, 10674-10685. (c) Wudl F., Angus R.O., Lu F.L., Allemand P.M., Vachon D.J., Nowak M., Liu Z.X., Heeger A.J. Poly-p-phenyleneamineimine: synthesis and comparison to polyaniline. [J] J. Am. Chem. Soc.
     1987, v109,3677-3684. (d) Cao Y., Smith P., Heeger A.J. Spectroscopic studies of polyaniline in solution and in spin-cast films. [J] Synth. Met. 1989, v32, 263-281.
    [5
    
    [55] (a) Gospodinova N., Terlemezyan L., Mokreva P., Kossev K. On the mechanism of oxidative polymerization of aniline. [J] Polymer 1993, v34, 2434-2437. (b) Gospodinova N., Mokreva P., Terlemezyan L. Alternative concept of the transition emeraldine base-emeraldine salt. [J] Polymer 1993, v34,1330-1332.
    [56] Ryu K., McEldoon J.P., Pokora A.R., Cyrus W., Dordick J.S. Numerical and Monte Carlo simulations of phenolic polymerizations catalyzed by peroxidase. [J] Biotech. Bioeng. 1993, v42, 807-814.
    [57] Zemel H., Quinn J.F. Enzymatic synthesis of polyaniline. [P] U.S. Patent 5,420,237A, 1995.
    [58] (a) Manning G.S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. [J] J. Chem. Phys. 1969, v51, 924-933. (b) Manning GS. Counterion binding in polyelectrolyte theory. [J] Acc. Chem. Res. 1979, v12,443-449.
    [59] Fendler J.H. [M] Membrane Mimetic Chemistry: Characterizations and Applications of Micelles, Microemulsions, Monolayers, Bilayers, and Applications of Micelles, Microemulsions, Monolayers, Bilayers, Vesicles, Host-Guest Systems, and Polyions. John Willey & Sons: New York, 1982, pp6,206.
    [60] Lochhead M.J., Letellier S.R., Vogel V.J. Assessing the Role of Interfacial Electrostatics in Oriented Mineral Nucleation at Charged Organic Monolayers. [J] Phys. Chem. B 1997, v101, 10821-10827.
    [61] Sucharita R., Jacqueline M.F., Ramaswamy N., et.al. Biomimetic Synthesis of a Water Solute Conducting Molecular Complex of Polyaniline and Lignosulfonate. [J] Biomacromolecules 2002, v3, 937-941.
    [62] 宋健,陈磊,李效军.[M]微胶囊化技术及应用.化学工程出版社,200l,1-20.
    [63] Jin Z., Su Y.X., Duan Y.X. In a novel method for polyaniline synthesis with the immobilized horseradish peroxidase enzyme. [J] Synth. Met. 2001, v122, 237-242.
    [64] Alvarez S., Manolache S., Denesl F. Synthesis of Polyaniline Using Horseradish Peroxidase Immobilized on Plasma-Functionalized Polyethylene Surface as Initiator. [J] J. App. Polym. Sci. 2003, v88, 369-379.
    [65] Bahar T., Tuncel A. Immobilization of α-Chymotrypsin onto Newly Produced Poly(Hydroxy Propyl Methacrylate-co-Methacrylic Acid) Hydrogel Beads. [J] React.&Funct. Polym. 2000, v44, 71-78.
    [6
    
    [66] Qian J., Liu Y., Liu H., et al. Immobilization of Horseradish Peroxidase with a Regenerated Silk Fibroin Menbrance and its Application to Atetrathiafulvalene-Mediating H2O2 sensor. [J] Biosen.&Bioele. 1997, v12, 1213-1218.
    [67] 郑连英,曾嘉,朱江峰.几丁质固定化纤维素酶降解壳聚糖的研究.[J]化学反应工程与工艺. 200l,v17,344-348.
    [68] 姚劲挺.生物微胶囊固定化溶栓酶及酿酒酵母微囊化培养模型化的初步研究.[D]浙江大学 硕士论文(导师 梅乐和)2000,2-7.
    [69] Vandenberg GW., Drolet C., Scott S.L., et al. Factors Affecting Protein Release from Alginate-Chitosan Coacervate Microcapsules during Production and Gastric/intestinal Simulation. [J] J. Controlled Release. 2001, v77, 297-307.
    [70] Sakuragawa A., Taniai T., Okutani T. Fluorometric determination of microamounts of hydrogen peroxide with an immobilized enzyme prepared by coupling horseradish peroxidase to chitosan beads. [J] Anal. Chim. Acta 1998, v374, 191-200.
    [71] 蔡智奇.辣根过氧化物酶酶促体系引发乙烯基单体聚合研究.[D]浙大大学硕士论文(导师 孙建中)2003,39-44.
    [72] Ramaswamy Nagarajan, Sukant Tripathy, Jayant Kumar, et.al. An Enzymatically Synthesized Conducting Molecular Complex of Polyaniline and Poly(vinylphosphonic acid). [J] Macromolecules 2000, v33,9542-9547.
    [73] Sucharita R., Jacqueline M.F., Ramaswamy N., et.al. In Biomimetic Synthesis of a Water Solute Conducting Molecular Complex of Polyaniline and Lignosulfonate. [J] Biomacromolecules 2002, v3, 937-941.
    [74] Ramaswamy Nagarajan, Wei Liu, Jayant Kumar, et.al. In Manipulating DNA Conformation Using Intertwined Conducting Polymer Chains. [J] Macromolecules 2001, v34, 3921-3927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700