新颖形态功能高分子材料的设计、合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在新颖形态(空核/孔壳结构、光控交联胶束以及有序微凝胶晶态结构)功能高分子材料的设计、合成及其在环境、医药等领域的应用研究。
     随着功能高分子材料在抗癌药物载体和环境友好等应用方面的不断发展,越来越多的新颖形态功能高分子材料走进人们的视野。论文系统总结、评述了特殊形态的功能高分子材料的设计、制备及其相关应用进展;开发了空核/孔壳结构聚砜微球,并应用于油水分离方面的研究;设计合成了两种光控释药的交联胶束载体(葡聚糖-血红素,聚乙烯醇-血红素)以实现化疗、光动力学疗法相结合的多重抗癌作用;合成了有序结构的晶态聚丙烯酸微凝胶;利用现代仪器技术,分析和表征不同聚合物材料的合成及其在乳液体系下的各种新颖形态的形成情况。
     本论文的主要内容如下:
     1.利用溶剂蒸发法制备出粒径均一的孔状聚砜微球。通过对乳化剂类型、反应温度、乳液类型等实验参数的调控,掌握多孔聚砜微球的形态控制因素。实验结果表明所选用的乳化剂类型对孔状聚砜微球的形成起着至关重要的作用,利用油酸作为乳化剂可以得到空核/孔壳结构聚砜微球。接触角测试结果表明,不同形貌的聚砜微球的疏水亲油性能并没有明显的改变。然而在油水分离上却存在一定差距,其中空核/孔壳结构聚砜微球具有最佳吸油能力,究其原因在于这种特殊的空核/孔壳结构不仅有利于漂浮性能,更可以作为油的储仓,吸附大量漂浮在水面的油,其吸油能力达到了33.6g/g,是原始聚砜粉末的44.8倍。该聚砜微球制备简单,并且由于其特殊的孔隙结构有望在油水分离、环境净化方面得到广泛应用。
     2.设计开发了基于血红素中双键交联的葡聚糖(聚乙烯醇)胶束,用于化疗药物5-氟尿嘧啶的装载和光控释放,以及与光动力学疗法的协同抗肿瘤作用。交联后的胶束稳定性增强,对高度稀释能保持稳定,有望在体内安全输运。体外实验表明交联的载5-氟尿嘧啶的胶束对5-氟尿嘧啶的释放具有光响应性:对于葡聚糖-血红素交联胶束,在非光照情况下383分钟内只有约15%的5-氟尿嘧啶释放出来,在光照下,383分钟后释放出92%的5-氟尿嘧啶;而对于聚乙烯醇-血红素交联胶束,其稳定性提高,在光照下360分钟后释放出36%的5-氟尿嘧啶。采用1,3-二苯基异苯并呋喃作为探针分子,通过紫外光谱检测表明所制备的载药交联胶束在光照下也能产生单线态氧,源于交联胶束中血红素的光敏性。MTT和荧光显微镜观察结果表明,激光照射下载药交联胶束具有多重抗肿瘤效果。该葡聚糖(聚乙烯醇)衍生物交联胶束制备简单,具有良好的降解性、生物相容性和潜在的多重抗癌作用,在抗癌领域具有良好的应用前景。
     3.利用表面活性剂既可以作为聚合物结晶的成核剂,又可以在聚合反应过程中充当乳化剂的特性,设计实验方案使乳液聚合过程中的表面活性剂(十二烷基硫酸钠)充当成核剂,在聚合反应过程中实现结晶过程。实验结果表明简单乳液聚合方法可以得到晶态聚丙烯酸微凝胶晶体。在聚合反应过程中通过乳化剂与聚合物之间的作用,使其在聚合过程中自组装形成晶态结构。在此基础上,探讨反应条件(如反应温度、破乳剂NaCl加入量等)对聚丙烯酸微凝胶结晶性的影响。研究了结晶性聚丙烯酸微凝胶的力学性能,其杨氏模量为非晶态的7.8倍。这表明晶态结构的形成有利于材料力学性能的改善。
The studies on design, synthesis of functional polymer with novel morphology (hollow core/pore shell structure, cross-linked micelles as photo-responsive and microcrystalline gels) and their applications in environment, medicine and other fields are the main aims of this disfucation.
     With the constant development of functional polymer on biocompatibility and environmental friendliness, more and more functional polymer with novel morphology come into people's field of vision. The research progress of design, synthesis and applications of them are reviewed in this paper; Polysulfone (PSF) microspheres with hollow core/pore shell structure are developed and applied in oil-water sparation; Two kinds of cross-linking micelles (dextran-hemin, polyvinyl alcohol-hemin) as photo-responsive release drugs carriers, combining chemotherapy and photodynamic therapy for multimodal cancer therapy, are designed and synthesized; The microcrystalline polyacrylic acid gels are synthesized by emulsion polymerization. The modern instrument technology is used for characterizing the synthesis and varies of structure of polymers in the emulsion system.
     The main contents and results of the work are as follows:
     1. The porous polysulfone (PSF) microspheres are prepared by using emulsion solvent evaporation technique. The morphology can be controlled by varying the type of surfactant, the preparation temperature and the emulsion type from W/O to either O/W or multiple W/O/W. The results demonstrate that the type of surfactant is the important point in to the morphology. The PSF microspheres with hollow core/pore shell structure can be obtained using oleic acid as surfactant. Contact angles test show that there is no obvious difference among all kinds of microspheres, but a considerable gap in the oil-water separation. The PSF microspheres with hollow core/pore shell structure have higher absorption capacity, causing by floatation performance and high porosity and appropriate void size of sorbent provided large amounts of storage volume for oil, acting as an oil reservoir, which was the key for the high adsorption capacity. The separation efficiency of the porous PSF microspheres is33.6g/g, which is44.8times higher than that of the pristine PSF powder. The PSF microspheres possess simple and excellent pore structure, which is expected to be widely used in oil-water separation.
     2. Double bond in hemin-crosslinked dextran (polyvinyl alcohol) micelles were designed for photo-triggered release of5-fluorouracil (5FU), an antitumor drug. The crosslinked micelles were stable even high dilution, In vitro release studies showed light-responsive release of5FU. For the cross-linking micelles of dextran-hemin, only15%5FU was released from dextran-hemin, after383min in10mM PB.92%5FU was released in383min in laser irradiation under the same conditions. However, for the cross-linking micelles of polyvinyl alcohol-hemin, the stability become higher,36%5FU was released in360min in laser irradiation. Using1,3-Diphenylisobenzofuran (DPBF) as a chemical trapping agent, the as-prepared crosslinked micelles can generate singlet oxygen effectively through ultravioler spectroscopy detecting device, this is due to photosensitive of heme. The photo-responsive5-FU loaded cross-linked micelles combining chemotherapy and photodynamic therapy observed by MTT and fluorescence microscopy. These novel nano-vehicles have the advantages of convenient preparation, favorable biocompatibility, degradability, and effective antitumor activity with promising applications.
     3. Surfactant has dual roles of polymer crystallization nucleating agent and emulsifiers in the polymerization process. Experiment design will be in the process of emulsion polymerization. In this system, emulsion (sodium dodecyl sulfate) acts as a nucleating agent. Experimental results show that microcrystalline polyacrylic acid gels can be obtained through a simple emulsion polymerization method. In the process of polymerization, proper emulsifier holds the adjacent molecules together, making PAA microgels growth along crystallographically possible reactive directions. The experimental conditions influence the crystallinity and morphology of PAA microgels. It should be noted that the Young's modulus of microcrystalline polyacrylic acid gels is7.8times of amorphous gel. This indicates that the synthesis of microcrystalline PAA gles is conducive to improve mechanical properties.
引文
[1]Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery[J]. ActaBiomater.2009,5:817-831.
    [2]Rajagopal K, Schneider JP. Self-assembling peptides and proteins for nanotechnological applications[J]. Current Opinion in Structural Biology.2004, 14:480-486.
    [3]M WGB. Beyond molecules:self-assembly of mesoscopic and macroscopic components[J]. Proc Natl Acad Sci USA.2002,99:4769-4774.
    [4]Zhou YF, Yan DY. Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions:progress, characteristics and perspectives [J]. Chemical Communication.2009:1172-1188.
    [5]Tu RS, Tirrell M. Bottom-up design of biomimetic assemblies [J]. Advanced Drug Deliver Revews.2004,56:1537-1563.
    [6]Rughani RV, Schneider JP. Molecular design of beta-hairpin peptides for material construction[J]. Mrs Bull.2008,33:530-535.
    [7]Sagar GH, Arunagirinathan MA, Bellare JR. Self-assembled surfactant nano-structures important in drug delivery:A review[J]. Indian Joural of Experimental Biology.2007,45:133-159.
    [8]Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W. Block copolymer vesicles-using concepts from polymer chemistry to mimic biomembranes[J]. Polymer.2005, 46:3540-3563.
    [9]Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery [J]. Pharmacol Therapeut 2006,112:630-648.
    [10]Qiu LY, Zheng C, Jin Y, Zhu KJE. Polymeric micelles as nanocarriers for drug delivery[J]. Expert Opinion on Therapeutic Patents.2007,17:819-830.
    [11]Torchilin VP. Micellar nanocarriers:Pharmaceutical perspectives [J]. Pharmaceutical Research.2007,24:1-16.
    [12]Croy SR, Kwon GS. Polymeric micelles for drug delivery [J]. Curr Pharm Design. 2006,12:4669-4684.
    [13]Torchilin VP. Block copolymer micelles as a solution for drug delivery problems[J]. Expert Opinion on Therapeutic Patents.2005,15:63-75.
    [14]Forrest ML, Won CY, Malick AW, Kwon GS. In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles[J]. Journal of Controlled Release.2006,110:370-377.
    [15]Forrest ML, Yanez JA, Remsberg CM, Ohgami Y, Kwon GS, Davies NM. Paclitaxel prodrugs with sustained release and high solubility in poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelle nanocarriers:Pharmacokinetic disposition, tolerability, and cytotoxicity[J]. Pharmaceutical Research.2008, 25:194-206.
    [16]Molavi O, Ma ZS, Mahmud A, Alshamsan A, Samuel J, Lai R, et al. Polymeric micelles for the solubilization and delivery of STAT3 inhibitor cucurbitacins in solid tumors[J]. International Journal of Pharmaceutics.2008,347:118-127.
    [17]Gao JM, Ming J, He B, Gu ZW, Zhang XD. Controlled release of 9-nitro-20(S)camptothecin from methoxy poly(ethylene glycol)-poly(D,L-lactide) micelles[J]. Biomedical Materials.2008,3.
    [18]Im JH, Lee YK, Huh KM. Preparation and characterization of PEG-PLA(PLGA) micelles for solubilization of pioglitazone[J]. Polym-Korea.2008,32:143-149.
    [19]Liu YH, Wu JB, Meng LZ, Zhang LF, Lu XJ. Self-assembled, fluorescent polymeric micelles of a graft copolymer containing carbazole for thermo-controlled drug delivery in vitro[J]. Journal of Biomedical Materials Research Part B-applied Biomaterials.2008,85:435-443.
    [20]Yang ZL, Li XR, Yang KW, Liu Y. Amphotericin B-loaded polyethylene glycol)-poly(lactide) micelles:Preparation, freeze-drying, and in vitro release[J]. Journal of Biomedical Materials Research Part A.2008,85 A:539-546.
    [21]Zhang Y, Jin T, Zhuo RX. Methotrexate-loaded biodegradable polymeric micelles:Preparation, physicochemical properties and in vitro drug release[J]. Colloid Surface B.2005,44:104-109.
    [22]Elsabahy M, Perron ME, Bertrand N, Yu GE, Leroux JC. Solubilization of docetaxel in poly(ethylene oxide)-block-poly(butylene/styrene oxide) micelles[J]. Biomacromolecules.2007,8:2250-2257.
    [23]Lebugle A RA, Bonnevialle P, Voigt JJ, Canal P, Rodriguez F. Study of implantable calcium phosphate systems for the slow release of methotrexate[J]. Biomaterials.2002,23:3517-3522.
    [24]Cabral H, Nishiyama N, Okazaki S, Koyama H, Kataoka K. Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(Ⅱ) (DACHPt)-loaded polymeric micelles[J]. Journal of Controlled Release.2005, 101:223-232.
    [25]Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property:Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy[J]. Bioconjugate Chemistry.2005,16:122-130.
    [26]Sant VP, Smith D, Leroux JC. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs:preparation and characterization[J]. Journal of Controlled Release.2004,97:301-312.
    [27]Sant VP, Smith D, Leroux JC. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies[J]. Journal of Controlled Release.2005, 104:289-300.
    [28]Satturwar P, Eddine MN, Ravenelle F, Leroux JC. pH-responsive polymeric micelles of poly(ethylene glycol)-b-poly(alkyl(meth)acrylate-co-methacrylic acid): Influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil[J]. European Journal of Pharmaceutics and Biopharmaceutics. 2007,65:379-387.
    [29]Wei H, Zhang XZ, Zhou Y, Cheng SX, Zhuo RX. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate) [J]. Biomaterials.2006,27:2028-2034.
    [30]Lee, H.; Wu, W.; Oh, JK; Mueller, L.; Sherwood, G.; Peteanu, L.; Kowalewski, T.; Matyjaszewski, K. Light-induced reversible formation of polymeric micelles[J]. Angewandte Chemie International Edition.2007,46:2453-2457.
    [31]BvtvnV.,Top R.B., Ufuklar S., Synthesis and Characterization of Novel "Schizophrenic" Water-Soluble Triblock Copolymers and Shell Cross-Linked Micelles[J], Macromolecules,2006,39:1216-1225.
    [32]J Zhang, X Jiang, Y Zhang, Y Li, S Liu, Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability[J], Macromolecules, 2007,40:9125-9132.
    [33]Y Li, BS Lokitz, SP Armes, CL McCormick, Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents[J], Macromolecules, 2006,39:81-89.
    [34]Jiang, G Zhang, R Narain, S Liu, Fabrication of two types of shell-cross-linked micelles with "inverted" structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click[J], Langmuir,2009,25:2046-2054.
    [35]Weaver, JVM; Tang, YQ; Liu, SY, Preparation of shell cross-linked micelles by polyelectrolyte complexation[J], Angewandte Chemie International Edition,2004, 43:1389-1392.
    [36]X Jiang, G Zhang, R Narain, S Liu, Covalently stabilized temperature and pH responsive four-layer nanoparticles fabricated from surface'clickable'shell cross-linked micelles[J], Soft Matter,2009,5:1530-1538.
    [37]Rao, JY; Zhang, YF; Zhang, JY; Liu, SY, Facile Preparation of Well-Defined AB(2) Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry[J], Biomacromolecules,2008, 9:2586-2593.
    [38]J Tao, S Stewart, G Liu, M Yang, Star and Cylindrical Micelles of Polystyrene-block-poly (2-cinnamoylethyl methacrylate) in Cyclopentane[J], Macromolecules,1997,30:2738-2745.
    [39]S. Matsumoto, R. J. Christie, N. Nishiyama, K. Miyata, A. Ishii, M. Oba, H. Koyama, Y. Yamasaki, K. Kataoka, Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery[J], Biomacromolecules,2009,10:119-127.
    [40]Harada-Shiba M YK, Harada A, Takamisawa I, Shimokado K, Kataoka K. Polyion complex micelles as vectors in gene therapy-pharmacokinetics and in vivo gene transfer[J]. Gene Therapy and molecular Biology.2002,9:407-414.
    [41]Wiradharma N, Khan M, Tong YW, Wang S, Yang YY. Self-assembled cationic peptide nanoparticles capable of inducing efficient gene expression in vitro[J]. Advanced Functional Materials.2008,18:943-951.
    [42]Wakebayashi D, Nishiyama N, Yamasaki Y, Itaka K, Kanayama N, Harada A, et al. Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system:their preparation and gene transfecting efficiency against cultured HepG2 cells[J]. Journal of Controlled Release.2004,95:653-664.
    [43]Wang Y, Gao SJ, Ye WH, Yoon HS, Yang YY. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer[J]. Nature Materials.2006,5:791-796.
    [44]Richards R. The phase equilibria between a crystalline polymer and solvents[J]. Transactions of the Faraday Society,1946;41:10-9.
    [45]He XD, Ge XW, Liu HR, Wang MZ, Zhang ZC. Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface[J]. Chemistry of Materials.2005, 17:5891-5892.
    [46]梁志武,郝广杰,申小义等.中空结构聚合物微粒的制备方法[J].高分子通报2003,10:36-41.
    [47]Huang H Y REE, Kowalewski T, et al. Nanocages derived from shell cross-linked micelle templates[J]. Journal of the American Chemical Society.1999, 121:3805-3806.
    [48]Burda C, Chen XB, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews.2005,105:1025-1102.
    [49]Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM. Shape control in gold nanoparticle synthesis[J]. Chemical Society Reviews.2008,37:1783-1791.
    [50]Tao AR, Habas S, Yang PD. Shape control of colloidal metal nanocrystals[J]. Small.2008,4:310-325.
    [51]J. Economy WV, and R. H. Geiss. Ordering in aromatic polyesters[J]. Molecular Crystals and Liquid Crystals.1984,105:289.
    [52]Kimura K, Kohama S, Yamazaki S. Morphology control of aromatic polymers in concert with polymerization[J]. Polymer Journal.2006,38:1005-1022.
    [53]J. Liu PHG. Morphological observations of nascent poly(p-oxybenzoate) [J]. Polymer.1993,34:1366-1374.
    [54]P. Iannelli DYY. Structures of poly (p-hydroxybenzoic acid)(PHBA) at ambient temperature[J]. Joural of Polymer Science Part B-Polymer Physics.1995, 33:977-983.
    [55]NV Lukasheva AS, T. Thomas, J. Brickmann. Ordered Structures of Poly (p-hydroxybenzoic acid).1. Nonbonded Interactions in Layers of Phenyl Rings Orthogonal to the Chain Axis[J]. Macromolecules.1994,27:4726-4732.
    [56]Nuraje N, Su K, Yang NL, Matsui H. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers[J]. Acs Nano. 2008,2:502-506.
    [57]Winther-Jensen B, Chen J, West K, Wallace G. Vapor phase polymerization of pyrrole and thiophene using iron(Ⅲ) sulfonates as oxidizing agents[J]. Macromolecules.2004,37:5930-5935.
    [58]Winther-Jensen B, West K. Vapor-phase polymerization of 3,4-ethylenedioxythiophene:A route to highly conducting polymer surface layers[J]. Macromolecules.2004,37:4538-4543.
    [59]Gao Y, Kang ZH, Li X, Cui XJ, Gong J. Vapour phase synthesis of crystalline polyaniline with dendritic morphology [J]. Crystengcomm.2011,13:3370-3372.
    [60]Wang G, Cai FL, Yang M, Si LC, Wang ZQ, Duan X. A simple chemical approach to the production of nano-sized crystals of poly(acrylic acid) [J]. Polymer International,2006,55:1456-1461.
    [61]Cheng DM, Zhou XD, Xia HB, Chan HSO. Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes [J]. Chemistry of Materials.2005,17:3578-3581.
    [62]Crespy D SM, Hoffmann-Richter C, Ziener U, Landfester K. Polymeric nanoreactors for hydrophilic reagents synthesis by interfacial polycondensation on miniemulsion droplets[J]. Macromolecules 2007,40:3122-3135.
    [63]Kamata K LY, Xia YN. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores[J]. Journal of the American Chemical Society.2003,125:2384-2385.
    [64]Broz P, Driamov S, Ziegler J, Ben-Haim N, Marsch S, Meier W, et al. Toward intelligent nanosize bioreactors:A pH-switchable, channel-equipped, functional polymer nanocontainer[J]. Nano Letters,2006,6:2349-2353.
    [65]Choi HJ, Montemagno CD. Light-driven hybrid bioreactor based on protein-incorporated polymer vesicles[J]. IEEE T Nanotechnol.2007,6:171-176.
    [66]Nallani M, de Hoog HPM, Cornelissen JJLM, Palmans ARA, van Hest JCM, Nolte RJM. Polymersome nanoreactors for enzymatic ring-opening polymerization[J]. Biomacromolecules.2007,8:3723-3728.
    [67]Li GL, Yang XL. Facile synthesis of hollow polymer microspheres with movable cores with the aid of hydrogen-bonding interaction[J]. The Journal of Physical Chemistry B.2007,111:12781-12786.
    [68]Blanazs A, Armes SP, Ryan AJ. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications[J]. Macromolecular Rapid Communications.2009,30:267-277.
    [69]Li WJ, Szoka FC. Lipid-based nanoparticles for nucleic acid deli very [J]. Pharmaceutical Research.2007,24:438-449.
    [70]KL. W. Shell crosslinked polymer assemblies:nanoscale constructs inspired from biological systems[J]. Journal of Polymer Science Part A-polymer Chemistry, 2000,2:397-407.
    [71]Zhao C, Liu XD, Nomizu M, Nishi N. Preparation of polysulfone hollow microspheres encapsulating DNA and their functional utilization[J]. Journal of Microencapsulation.2004,21:283-291.
    [72]Cavalieri F, El Hamassi A, Chiessi E, Paradossi G. Stable polymeric microballoons as multifunctional device for biomedical uses:Synthesis and characterization[J]. Langmuir.2005,21:8758-8764.
    [73]Levine DP GP, Freudenberg J, Zhang G, Therien MJ, Greene MI, Hammer DA, Murali R. Polysomes:a new multi-functional tool for cancer diagnosis and therapy[J]. Methods 2008,46:25-32.
    [74]Cegnar M, Kristl J, Kos J. Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours[J]. Expert Opinion on Biological Therapy,2005, 5:1557-1569.
    [75]Leson A, Hauschild S, Rank A, Neub A, Schubert R, Forster S, et al. Molecular exchange through membranes of poly(2-vinylpyridine-block-ethylene oxide) vesicles[J]. Small.2007,3:1074-1083.
    [76]Hu Y, Ding Y, Ding D, Sun MJ, Zhang LY, Jiang XQ, et al. Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers[J]. Biomacromolecules.2007, 8:1069-1076.
    [77]Li SL, Byrne B, Welsh J, Palmer AF. Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers[J]. Biotechnology Progress,2007,23:278-285.
    [78]Ben-Haim N, Broz P, Marsch S, Meier W, Hunziker P. Cell-specific integration of artificial organelles based on functionalized polymer vesicles[J]. Nano Letters. 2008,8:1368-1373.
    [79]Holowka EP, Sun VZ, Kamei DT, Deming TJ. Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery [J]. Nature Materials.2007,6:52-57.
    [80]Sun G, Fang HF, Cheng C, Lu P, Zhang K, Walker AV, et al. Benzaldehyde-Functionalized Polymer Vesicles[J]. Acs Nano.2009,3:673-681.
    [81]Cohn D SH, Benyamin A, Lando G. Engineering thermoresponsive polymer nanoshells[J]. Biomaterials.2009,30:3289-3296.
    [82]Li GL, Lei CL, Wang CH, Neoh KG, Kang ET, Yang XL. Narrowly Dispersed Double-Walled Concentric Hollow Polymeric Microspheres with Independent pH and Temperature Sensitivity [J]. Macromolecules.2008,41:9487-9490.
    [83]Lim YB, Moon KS, Lee M. Rod-coil block molecules:their aqueous self-assembly and biomaterials applications[J]. Journal of Materials Chemistry.2008, 18:2909-2918.
    [84]Jung YK, Kim TW, Kim J, Kim JM, Park HG. Universal colorimetric detection of nucleic acids based on polydiacetylene (PDA) liposomes[J]. Advanced Functional Materials.2008,18:701-708.
    [85]Kolusheva S, Zadmard R, Schrader T, Jelinek R. Color fingerprinting of proteins by calixarenes embedded in lipid/polydiacetylene vesicles [J]. Journal of the American Chemical Society,2006,128:13592-13598.
    [86]Ahn DJ, Kim JM. Fluorogenic polydiacetylene supramolecules:Immobilization, micropatterning, and application to label-free chemosensors[J]. Accounts of Chemical Research,2008,41:805-816.
    [87]Nehring R, Palivan CG, Casse O, Tanner P, Tuxen J, Meier W. Amphiphilic Diblock Copolymers for Molecular Recognition:Metal-Nitrilotriacetic Acid Functionalized Vesicles[J]. Langmuir.2009,25:1122-1130.
    [88]Tam E, Podsiadlo P, Shevchenko E, Ogletree DF, Delplancke-Ogletree MP, Ashby PD. Mechanical Properties of Face-Centered Cubic Supercrystals of Nanocrystals[J]. Nano Letters.2010,10:2363-2367.
    [89]Podsiadlo P, Krylova G, Lee B, Critchley K, Gosztola DJ, Talapin DV, et al. The Role of Order, Nanocrystal Size, and Capping Ligands in the Collective Mechanical Response of Three-Dimensional Nanocrystal Solids[J]. Journal of the American Chemical Society,2010,132:8953-8960.
    [1]H. T. Zhu, S. S. Qiu, W. Jiang, D. X. Wu, C. Y. Zhang. Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup[J]. Environ Sci Technol,2011,45(10):4527-4531.
    [2]A. Bayat, S. F. Aghamiri, A. Moheb, G. R. Vakili-Nezhaad. Oil spill cleanup from sea water by sorbent materials[J]. Chem Eng Technol,2005,28(12):1525-1528.
    [3]Q. Zhu, F. Tao, Q. M. Pan. Fast and Selective Removal of Oils from Water Surface via Highly Hydrophobic Core-Shell Fe(2)O(3)@C Nanoparticles under Magnetic Field[J]. Acs Appl Mater Inter,2010,2(11):3141-3146.
    [4]Y. L. Zhang, S. Wei, F. J. Liu, Y. C. Du, S. Liu, Y. Y. Ji, T. Yokoi, T. Tatsumi, F. S. Xiao. Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds[J]. Nano Today,2009,4(2):135-142.
    [5]A. Li, H. X. Sun, D. Z. Tan, W. J. Fan, S. H. Wen, X. J. Qing, G. X. Li, S. Y. Li, W. Q. Deng. Superhydrophobic conjugated microporous polymers for separation and adsorption[J]. Energ Environ Sci,2011,4(6):2062-2065.
    [6]R.L. Frost M. O. Adebajo, J.T. Kloprogge, O. Carmody and S. Kokot. Porous Materials for Oil Spill Cleanup:A Review of Symthesis and Absorbing Properties [J]. Journal of Porous Materials,2003:159-170.
    [7]I. Akartuna, E. Tervoort, A. R. Studart, L. J. Gauckler. General Route for the Assembly of Functional Inorganic Capsules[J]. Langmuir,2009,25(21):12419-12424.
    [8]X. L. Xu, S. A. Asher. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals[J]. J Am Chem Soc,2004, 126(25):7940-7945.
    [9]Rachel A. Caruso Frank Caruso, Helmuth Mohwald. Nanoengineering of inorganic and Hybrid Hollow Spheres by Colloidal TemplatingfJ]. Science,1998, 282:1111-1114.
    [10]Yong Wang by Xiong Wen Lou, Chongli Yuan, Jim Yang Lee, and Lynden A. Archer. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity[J]. Adv. Mater.,2006,18:2325-2329.
    [11]Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, E. Kumacheva. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors[J]. J Am Chem Soc,2005,127(22):8058-8063.
    [12]Z. H. Nie, W. Li, M. Seo, S. Q. Xu, E. Kumacheva. Janus and ternary particles generated by microfluidic synthesis:Design, synthesis, and self-assembly [J]. J Am Chem Soc,2006,128(29):9408-9412.
    [13]Imhof, B. C. I. Z. a. A., Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating[J]. advanced materials,2005,17:924-928.
    [14]Xiong Wen Lou, C. Y., Qing Zhang, and Lynden A. Archer, Platinum-Functionalized Octahedral Silica Nanocages:Synthesis and Characterization[J]. Angew. Chem. Int. Ed,2006,45:3825-3829.
    [15]He, X. D.; Ge, X. W.; Liu, H. R.; Wang, M. Z.; Zhang, Z. C, Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface[J]. Chem Mater, 2005,17 (24):5891-5892.
    [16]M.F. Zambaux, F. B., R. Gref, P. Maincent, E. Dellacherie, M.J. Alonso, P. Labrude, C. Vigneron, Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method[J]. Journal of Controlled Release,1998,50:31-40.
    [17]Bouissou, C; Potter, U.; Altroff, H.; Mardon, H.; van der Walle, C, Controlled release of the fibronectin central cell binding domain from polymeric microspheres [J]. Journal of Controlled Release,2004,95(3):557-566.
    [18]Nicole Nihant, C. S., Christian Grandfils, Robert Jerome, and Philippe Teyssie, Polylactide microparticles prepared by double emulsion/evaporation technique. I. effect of primary emulsion stability [J]. Pharmaceutical Research,1994, 11:1479-1484.
    [19]Tai-Shung Chung Yi-Yan Yang, Xin-Lai Bai, Woon-Khiong Chan. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method[J]. Chemical Engineering Science,2000,55:2223-2236.
    [20]Tai-Shung Chung. The limitations of using Flory-Huggins equation for the states of solutions during asymmetric hollow-fiber formation[J]. Journal of Membrane Science,1997,126:19-34.
    [21]Zhu H. T., Qiu S. S., Jiang W., Wu D. X., Zhang C. Y., Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup[J]. Sci. Technol.,2011,45:4527-4531.
    [1]Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine:Therapeutic applications and developments[J]. Clin Pharmacol Ther. 2008,83:761-769.
    [2]Torchilin VP. Multifunctional nanocarriers[J] Adv. Drug Delivery Rev.2006, 58:1532-1555.
    [3]I. Brigger, C Dubernet, P. Couvreur. Nanoparticles in cancer therapy and diagnosis[J], Adv Drug Delivery Rev.2002,54:631-651.
    [4]Maeda H. Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting[J], P Jpn Acad B-Phys.2012,88:53-71.
    [5]Bae YH, Yin HQ. Stability issues of polymeric micelles[J], J Controll Release. 2008,131:2-4.
    [6]HM Burt, X Zhang, Toleikis P, Embree L, WL Hunter. Development of copolymers of poly(D, L-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel[J], Colloid Surface B,1999,16:161-171.
    [7]Savic R, Azzam T, Eisenberg A, Maysinger D. Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions:A fluorogenic-based approach[J], Langmuir.2006,22:3570-3578.
    [8]Lin W, Kim D. pH-Sensitive Micelles with Cross-Linked Cores Formed from Polyaspartamide Derivatives for Drug Delivery[J]. Langmuir.2011,27:12090-12097.
    [9]Oberoi HS, Laquer FC, Marky LA, Kabanov AV, Bronich TK. Core cross-linked block ionomer micelles as pH-responsive carriers for cis-diamminedichloroplatinum(II)[J], J Controll Release.2011,153:64-72.
    [10]KB Thurmond, T Kowalewski, KL Wooley. Water-Soluble Knedel-like Structures: The Preparation of Shell-Cross-Linked Small Particles[J], J Am Chem Soc.1996,118: 7239-7240.
    [11]Zhang L, Bernard J, Davis TP, Barner-Kowollik C, Stenzel MH. Acid-degradable core-crosslinked micelles prepared from thermosensitive glycopolymers synthesized via RAFT polymerization[J], Macromol Rapid Comm.2008,29:123-129.
    [12]Xu HF, Meng FH, Zhong ZY. Reversibly crosslinked temperature-responsive nano-sized polymersomes:synthesis and triggered drug release[J], J Mater Chem; 2009,19:4183-4190.
    [13]C Chang, H Wei, DQ Wu, Bin Yang, Ni Chen, SX Cheng, XZ Zhang,, RX Zhuo. Thermo-responsive shell cross-linked PMMA-b-P(NIPAAm-co-NAS) micelles for drug delivery[J], Int J Pharm.2011,420:333-340.
    [14]D Kim, ES Lee, KT Oh, Zhong GG, YH Bae. Doxorubicin-Loaded Polymeric Micelle Overcomes Multidrug Resistance of Cancer by Double-Targeting Folate Receptor and Early Endosomal pH[J]. Small.2008,4:2043-2050.
    [15]Li YL, Zhu L, Liu ZZ, Cheng R, Meng FH, Cui JH, et al. Reversibly Stabilized Multifunctional Dextran Nanoparticles Efficiently Deliver Doxorubicin into the Nuclei of Cancer Cells[J], Angew Chem Int Edit.2009,48:9914-9918.
    [16]YC Wang, Y Li, TM Sun, MH Xiong, J Wu, YY Yang, J Wang. Core-Shell-Corona Micelle Stabilized by Reversible Cross-Linkage for Intracellular Drug Deliverya[J]. Macromol Rapid Commun.2010,31:1201-1206.
    [17]S. Cajot, N Lautram, C. Passirani, C. Jerome, Design of reversibly core cross-linked micelles sensitive to reductive environment[J], J Controll Release.2011, 152:30-36.
    [18]Rijcken CJ, Snel CJ, Schiffelers RM, CF van Nostrum, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles:Synthesis, characterisation and in vivo studies[J], Biomaterials.2007,28:5581-5593.
    [19]Jiang JQ, Tong X, Morris D, Zhao Y. Toward photocontrolled release using light-dissociable block copolymer micelles[J], Macromolecules.2006,39:4633-4640.
    [20]Y Zhao. Photocontrollable block copolymer micelles:what can we control?[J], J Mater Chem.2009,19:4887-4895.
    [21]Wang G, Tong X, Zhao Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates[J]. Macromolecules. 2004,37:8911-8917.
    [22]Liu XK, Jiang M. Optical switching of self-assembly:Micellization and micelle-hollow-sphere transition of hydrogen-bonded polymers[J]. Angew Chem Int Edit.2006,45:3846-3850.
    [23]Goodwin AP, Mynar JL, Ma YZ, Fleming GR, Frechet JMJ. Synthetic micelle sensitive to IR light via a two-photon process[J], J Am Chem Soc.2005, 127:9952-9953.
    [24]A Lopez, P Monsan, Dextran synthesis by immobilized dextran sucrase[J]. Biochimie.1980,62:323-329.
    [25]K Peng, I Tomatsu, B van den Broek, C Cui, AV Korobko, J van Noort, AH Meijer, HP Spaink, A Kros, Dextran based photodegradable hydrogels formed via a Michael addition[J]. Soft Matter.2011,7:4881-4887.
    [26]R Tong, HD Hemmati, R Langer, DS Kohane. Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery[J]. J Am Chem Soc.2012, 134:8848-8855.
    [27]AV Kabanov, IR Nazarova, IV Astafieva, EV Batrakova, VY Alakhov, AA Yaroslavov, VA Kabanov. Micelle Formation and Solubilization of Fluorescent Probes in Poly(oxyethylene-b-oxypropylene-b-oxyethylene) Solutions[J]. Macromolecules. 1995,28; 2303-2314.
    [28]S Hartner, HC Kim, N hammpp, Phototriggered Release of Photolabile Drugs via Two-Photon Absorption-Induced Cleavage of Polymer-Bound Dicoumarin[J]. J. Polym. Sci., Part A:Polym. Chem.2007,45:2443-2452.
    [29]Y Zhang, C XU, B Li, Self-assembly of hemin on carbon nanotube as highly active peroxidase mimetic and its application for biosensing[J], RSC Adv.,2013, 3:6044-6050.
    [1]J Stejskal, P Kratochvil, M Helmstedt Polyaniline dispersions.5. Poly (vinyl alcohol) and poly (N-vinylpyrrolidone) as steric stabilizers[J]. Langmuir,1996,12 (14):3389-3392.
    [2]JH Juang, S Bonner-Weir, Y Ogawa, JP Vacanti Outcome of Subcutaneous Islet Transplantation Improved By Polymer Device 1[J]. Transplantation,1996, 61:1557-1561.
    [3]SH HyonY Ikada, M Kita, Y Ogura, Y Honda Poly (vinyl alcohol) hydrogels as soft contact lens material[J]. J. Biomater. Sci. Polym. Ed.1994,5:397.
    [4]Hyon SH, Cha WI, Ikada Y, Kita M, Ogura Y, Honda Y. Poly(vinyl alcohol) hydrogels as soft contact lens material[J]. J Biomater Sci Polym Ed 1994,5:397-406.
    [5]H Kobayashi, Y Ikada Covalent immobilization of proteins on to the surface of poly (vinyl alcohol) hydrogel[J]. Biomaterials,1991,12:747-751.
    [6]M Qi, Y Gu, N Sakata, D Kim, Y Shirouzu, C Yamamoto PVA hydrogel sheet macroencapsulation for the bioartificial pancreas[J]. Biomaterials,2004, 25:5885-5892.
    [7]JK Vasir, K Tambwekar, S Garg Bioadhesive microspheres as a controlled drug delivery system[J]. Int. J. Pharm,2003,255:13-32.
    [8]P Bouillot, V Babak, E Dellacherie Novel bioresorbable and bioeliminable surfactants for microsphere preparation[J]. E. Pharm. Res,1999,16:148-154.
    [9]JM Bezemer, R Radersma, DW Grijpma et. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers:1. Influence of preparation techniques on particle characteristics and protein delivery[J]. J. Controlled Release, 2000,67:233-248.
    [10]M Jiang, T Wang, Q Xu, Y Wu Novel Amphiphilic Hyperbranched Poly (amine-ester) Copolymers Nanoparticles as Protein Drug Delivery [J]. Mini-Reviews in Medicinal Chemistry,2009,9:1342-1356.
    [11]KY Cho, J Yim, J Park, KS Lee Evaluation of the Stability of Biodegradable Nanoparticle with Time via Particle Size Measurement[J]. Polymer-Korea,2008, 32:246.
    [12]Zhang, DW Grijpma, J Feijen Poly(trimethylene carbonate) and monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) nanoparticles for the controlled release of dexamethasone[J]. J. Controlled Release,2006,111:263-270.
    [13]CP Cruz, J Eidt, J Drouilhet, AT Brown, YF Wang et. Saratin, an inhibitor of von Willebrand factor-dependent platelet adhesion, decreases platelet aggregation and intimal hyperplasia in a rat carotid endarterectomy model[J]. J. Vasc. Surg.,2001, 34:724-729.
    [14]CG Oster, M Wittmar, F Unger, L Barbu-Tudoran et. Sign of amine-modified graft polyesters for effective gene delivery using DNA-loaded nanoparticles [J]. Pharm. Res.,2004,21:927-931.
    [15]LA Dailey, M Wittmar, T Kissel The role of branched polyesters and their modifications in the development of modern drug delivery vehicles[J]. J. Control. Release,2005,101:137-149.
    [16]Westedt, M Kalinowski, M Wittmar, T Merdan et. Poly (vinyl alcohol)-graft-poly (lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment[J]. J. Control. Release,2007,119:41-45.
    [17]Sheikh F, Barakat NAM, Kim BS et. Self-assembled amphiphilic polyhedral oligosilsesquioxane (POSS) grafted poly(vinyl alcohol) (PVA) nanoparticles[J]. Mater Sci Eng, C.,2009,29:869-76.
    [18]K Ito, K Tanaka, H Tanaka, G Imai, S Kawaguchi et. Poly (ethylene oxide) macromonomers.7. Micellar polymerization in water[J]. Macromolecules,1991, 24:2348-2354.
    [19]K Ishizu, K Sunahara Synthesis of star polymers by organized polymerization of macromonomers[J]. Polymer,1995,36:4155-4157.
    [20]Prochazka, K., Baloch, MK and Tuzar, Z.,Photochemical stabilization of block copolymer micelles[J]. Makromol. Chem.,1979,180:2521-2523.
    [21]A Guo, G Liu, J Tao Star polymers and nanospheres from cross-linkable diblock copolymers[J]. Macromolecules,1996,29:2487-2493.
    [22]H Ringsdorf, B Schlarb et. Molecular architecture and function of polymeric oriented systems:models for the study of organization, surface recognition, and dynamics of biomembranes[J]. Angew. Chem. Int. Ed.,1988,27:113-158
    [23]KB Thurmond, T Kowalewski et. Shell cross-linked knedels:A synthetic study of the factors affecting the dimensions and properties of amphiphilic core-shell nanospheres[J]. J. Am. Chem. Soc,1997,119 (28):6656-6665.
    [24]TK Bronich, PA Keifer, LS Shlyakhtenko Polymer micelle with cross-linked ionic core[J]. J. Am. Chem. Soc,2005,127:8236-8237.
    [25]G Zheng, C Pan Facile One-Pot Synthesis of NANO Sized Core Cross-Linked Micelles via RAFT Polymerization in Selective Solvent[J]. Acta Polymerica Sinica, 2005,5:664-667.
    [26]Tong R, Hemmati HD, Langer R, Kohane DS. Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery[J], J Am Chem Soc,2012, 134:8848-8855.
    [27]W Cui, XM Lu, K Cui, J Wu, Y Wei, QH Lu, Photosensitive nanoparticles of chitosan complex for controlled release of dye molecules[J], Nanotechnology,2011, 22:1-9.
    [28]S HSrtner, HC Kim, N hammpp, Phototriggered Release of Photolabile Drugs via Two-Photon Absorption-Induced Cleavage of Polymer-Bound Dicoumarin[J], J. Polym. Sci., Part A:Polym. Chem.,2007,45:2443-2452
    [29]YF Zhang, CL XU, BX Li, Self-assembly of hemin on carbon nanotube as highly active peroxidase mimetic and its application for biosensing [J], RSC Adv.,2013, 3:6044-6050.
    [1]Patrick F. Kiser, G. W., David Needham, A synthetic mimic of the secretory granule for drug delivery[J]. Nature,1998,394:459-462.
    [2]Patrick F. Kiser, G. W., David Needham, Lipid-caoted microgels for the triggered release of doxorubicin[J]. J. Controlled Release,2000,68:9-22.
    [3]S.A. Theron, E. Z., A.L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions [J]. Polymer,2004, 45:2017-2030.
    [4]Tian, Y.; He, Q.; Cui, Y.; Tao, C; Li, J. B., Assembly of nanotubes of poly(4-vinylpyridine) and poly(acrylic acid) through hydrogen bonding[J]. Chemistry-a European Journal,2006,12(18):4808-4812.
    [5]Argentiere, S.; Blasi, L.; Ciccarella, G.; Barbarella, G.; Cingolani, R.; Gigli, G., Synthesis of Poly(acrylic acid) Nanogels and Application in Loading and Release of an Oligothiophene Fluorophore and Its Bovine Serum Albumin Conjugate[J]. Macromol. Symp.,2009,281:69-76.
    [6]M.L Miller, K.O. D., J Skogman, Crystalline polyacrylic acid[J]. J. Colloid Interface Sci.,1962,17(7):649-659.
    [7]Wang, G.; Cai, F. L.; Si, L. C; Wang, Z. Q.; Duan, X., An approach towards nano-size crystals of poly(acrylic acid):Polymerization using layered double hydroxides as template[J]. Chem. Lett,2005,34(1):94-95.
    [8]Prof. Dr. Markus Antonietti, J. C, Synthesis of Very Highly Ordered Liquid Crystalline Phases by Complex Formation of Polyacrylic Acid with Cationic Surfactants[J]. Angew. Chem. Int. Ed.,1994,33(18):1869-1870.
    [9]Gao, Y.; Kang, Z. H.; Li, X.; Cui, X. J.; Gong, J., Vapour phase synthesis of crystalline polyaniline with dendritic morphology [J]. Crystengcomm,2011, 13(10):3370-3372.
    [10]Narendra V. Bhat, D. T. S., Ratna S. Phadke, Simultaneous polymerization and crystallization of aniline[J]. Synth. Met.,2002,130:185-192.
    [11]B.D. Busbee, S.O. Obare. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods[J]. Adv. Mater.,2003:15(5):414-416.
    [12]Wiley BJ, YJ Xiong, ZY Li, Right bipyramids of silver:A new shape derived from single twinned seeds[J]. Nano Lett.,2006,6:765-768.
    [13]Wan T, Wang L, Yao J, Ma XL, Yin QS, Zang TS. Saline solution absorbency and structure study of poly (AA-AM) water superabsorbent by inverse microemulsion polymerization[J]. Polym. Bull.,2008,60:431-440.
    [14]Mo Z., Lee K. B., Moon Y. B., Kobayashi M., Heeger A. J., Wudl F. X-ray scattering from poly (thiophene):crystallinity and crystallographic structure[J]. Macromol.,1985,18:1972-1977.
    [15]Sun X.S., Chiu Y. Y., Lee L. J., Microgel Formation in the Free Radical Cross-Linking Copolymerization of Methyl Methacrylate (MMA) and Ethylene Glycol Dimethacrylate (EGDMA)[J]. Ind. Eng. Chem. Res.,1997,36:1343-1351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700