芯片电泳分离—电化学发光检测联用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从分析方法和仪器搭建两方面入手,以体现微流控芯片系统快速高效分离和电化学发光检测高灵敏度为目标,进行了一些探索性工作:
     第一部分,芯片电泳是近年来发展快速且具有广泛应用前景的新技术,其中PDMS电泳芯片的表面改性是目前研究的热点之一。聚苯乙烯微球作为色谱介质或被修饰到电泳管道内已引起科学家们的关注,但将纳米级聚苯乙烯微球固定到PDMS管道内尚未见报道。本文合成了纳米级表面荷正电的聚苯乙烯微球,并采用气-液界面自组装的方法将其制备成二维聚苯乙烯微球阵列,然后将该阵列转移至PDMS电泳管道内壁上,随后将聚阴离子-聚苯乙烯磺酸钠引入管道内,通过静电吸附使管道表面带有丰富的负电荷,以改进管道内壁荷电情况。修饰后的电泳管道电渗流稳定,被分析物吸附减少,分离效率显著提高。将修饰好的电泳芯片与柱端碳盘电极电化学检测联用,用于多巴胺、5-羟色胺、肾上腺素这3种神经递质以及儿茶酚的分离,这4种物质在修饰后的管道上达到了基线分离,其中多巴胺和5-羟色胺的分离度达到了12.5,显著优于已有文献报道。
     第二部分,电化学发光分析法(ECL)由于其可控性好、灵敏度高、仪器简单等优点已成功应用于环境科学、生命科学和材料科学等领域。鲁米诺是最常见的发光试剂之一,它具备很好的发光性能,尤其是有活性氧存在时强烈增敏其发光,提供了优异的检测平台。鲁米诺的电化学发光作为酶催化反应的信号输出,研制ECL生物传感器是现代分析化学的前沿领域之一。本文在碳纳米管/铁氰化钾修饰的铂电极上吸附胆碱氧化酶(ChOx),基于鲁米诺的电化学发光构建了一种对胆碱有灵敏和选择性响应的ECL生物传感器,实验优化了传感器研制和检测的最佳条件。酶反应中产生的过氧化氢增强鲁米诺的电化学发光强度,从而可得到发光强度与溶液中底物胆碱浓度的线性关系。对所制备传感器分析性能进行了表征,并应用于大鼠血清中胆碱的检测。该传感器显示了对胆碱的快速响应并具有良好的稳定性和重复性,较宽的线性范围和更低的检出限,为胆碱检测在医疗领域的应用提供了一种高性能的新方法。
     第三部分,电化学发光修饰电极提高和改善了电化学发光的分析性能,ITO玻璃作为一种常见修饰电极基底,具有成本低、表面电阻小、光透性好等优点。实验中发现,在碱性溶液中没有发光试剂存在时,向ITO电极施加脉冲电压依然可监测到发光信号,本文对这一发光现象及其机理进行了探索。实验证明:发光实体为溶液中的活性氧,而ITO玻璃对发光有增强作用,向ITO施加脉冲电压时其对发光的增强作用更为明显。量子点作为一种新兴的电化学发光纳米材料,具有高灵敏度、高选择性、快速和成本低等优点。且研究表明,纳米金或碳纳米管对量子点电化学发光有增强作用。本文合成了水溶性CdTe量子点,并将其与碳纳米管和壳聚糖纳米复合材料混合修饰到导电玻璃(ITO)电极上,制备了性能稳定的电化学发光电极并将其应用到分析检测中。由于不同的研究工作对电化学发光仪器的要求不尽相同,所以至今电化学发光研究所用的仪器多由研究者自己自行设计、搭建,尤其是电化学发光池的设计与使用更是如此。本文设计了一种基于CdTe量子点纳米复合材料修饰ITO电化学发光电极的纳升级微型电化学发光检测池。其特征在于:检测池体积小、几无死体积;测试溶液输入流路正对工作电极、灵敏度高;ITO玻璃电极兼具发光池光窗的作用,正对PMT光窗,光信号采集效率高。将流动注射装置与该发光池联用,结合了电化学发光的高灵敏度和流动注射的实用性,单流路,简单高效,并以此为基础,优化了电化学发光脉冲电压、助反应剂三乙胺(TEA)的浓度和流动注射流速等因素,研究了对电化学发光有猝灭作用的多巴胺的检测,检测限为3.6pM,质量检测限达1.08amol,是目前可检索文献中灵敏度最高的方法之一。
     第四部分,微型电化学发光检测池研制的终极目标就是使之与芯片电泳分离联用,以实现高效分离和高效检测的结合。本文对芯片电泳分离-电化学发光检测联用技术进行了初步研究。考察了电泳高压场对电化学发光过程的影响,工作电极和芯片电泳管道出口端的距离等因素,并在此联用装置上实现了对多巴胺的检测。初步研究结果为下一步研究指明了方向,包括:1、结合本研究中已经采用的聚苯乙烯纳米小球分离管道修饰技术以提高分离效率,改善溶质峰峰形并同时得到更高检测灵敏度;2、对分离管道尺寸和检测池的匹配进行优化,以充分发挥多巴胺等物质对CdTe量子点电化学发光的猝灭效率而提高检测灵敏度;3、针对芯片电泳进样量较小限制检测灵敏度这一重要因素,采用进样富集等技术进一步提高检测灵敏度。
Including in the fast progress in development of microchip analytic technique in the past decade, studies on modification of microchennal and miniaturization of detector appear to be the hot research topics. Electrochemiluminescence (ECL), also known as electrogenerated chemiluminescence, is an excellent analytic method that possessed the advantages of both electrochemical and chemiluminescent methods. It has the benefits such as simplicity, inexpensive instrumentation, low background noise, high sensitivity, good controllability and wide dynamic range. The present paper focuses on the modification of microchannel, fabrication of ECL detection cell and their hyphenated technique.
     A poly(dimethylsiloxane) (PDMS) microchip with an amperometric detector was developed for the electrophoretic separation and determination of neurotransmitters. Although the polystyrene (PS) microsphere is widely used as the modifier for chromatography, there is no report on electrophoretic separation on self-assembled nano-PS modified PDMS microchannel. To enhance the separation efficiency, the positive charged PS nano-sphere (PSNS) has been solvothermal synthesized and was self-assembly modified onto a PDMS microchannel to obtain a quasi-ordered PSNS monolayer. Followed by driving through the PSS solution, the final PSNS/PSS modified layer was built on the channel surface. Thus a stable electroosmotic ?ow (EOF) and high separation efficiency are obtained in resulted modified microchannel. Under optimized conditions, dopamine, epinephrine, catechol, and serotonin are acceptably baseline separated in this 3.5 cm length separation channel with the theoretical plate number from 4.6×104 to 2.1×105 per meter and resolution from 1.29 to 12.5, is obviously higher than some reported papers. The practicability of this microchip is validated by the recovery test with cerebrospinal ?uid as real sample which resulted from 91.7% to 106.5%.
     ECL is a simple and sensitive method for analytical detection. It provides a real-time analytical approach. An ECL choline biosensor is developed by drop- coating of choline oxidase (ChOx) onto a carbon nanotubes (CNTs) / potassium ferricyanide modified platinum electrode with ECL of luminol as readout signal. Due to the improvement of biocompatibility and electron transfer of electrode surface from CNTs, meanwhile the activation for enzyme and the ECL emission from K3Fe(CN)6, the developed biosensor possesses excellent analytical properties. It gives optimal results while the Pt basal electrode was modified with 4μL of 0.33g/L CNTs dispersoid, 2μL of 0.1mol/L K3Fe(CN)6 and 1.5U of ChOx. In the PBS buffer (pH 7.4) containing 8×10-6mol/L luminol, the ECL signal linearly responded the concentration of choline from 1×10-7mol/L to 4×10-3mol/L (r=0.994) with detection limit of 1.21×10-8mol/L under 30°C of detection temperature. The developed biosensor was applied to assay the concentration of choline in rat blood sample. The result of 0.268 mg/100mL was obtained with average recovery of 101.1%. It shows a fast response to choline with good reproducibility.
     Indium tin oxide (ITO) glass is generally used as the substrate of modified electrode, but the authors have once found a very significant phenomenon when using the indium tin oxide (ITO) glass as the anode in electrochemical studies. There were notable luminescent signals had been observed when a pulse potential was applied on the ITO electrode in alkaline solution without any luminescent reagent.The mechanism of this luminescence was discussed in details. After all of the studies, it was revealed that the yielded reactive oxygen species (ROSs) as O2??, OH˙ and H2O2 during the electrolysis and whereafter the produced singlet oxygen (1O2) acted as the indispensable right-emitting entity and the ITO was a critical determinant intensifier.
     Since the first work on the ECL of silicon quantum dots (QDs) was reported, the ECL phenomena of CdS, CdSe and CdTe in the presence of co-reactants have been studied, and further applied for the development of ECL sensors. There the TGA-capped CdTe QDs were synthesized in our lab by an improved method, which had a high quantum yield of over 50%, and an ECL electrode has been developed which was constructed based on the immobilization of TGA-capped CdTe QDs by nanocomposite of CNTs and chitosan (Chit) on ITO glass. The developed ECL electrode displayed high ECL intensity, excellent stability and good biocompatibility. It provides an excellent platform for further applications.
     To miniaturize the analytical detector is one of the trends of instrumental analysis. A nano-liter sized ?ow-cell is developed for constructing a ?ow injection analytic (FIA) system with ECL detection. The CdTe QDs composite modified ECL electrode is applied as the working electrode in this ?ow-cell. It has been demonstrated to have the efficient anodic ECL performance with the triethylamine (TEA) as the co-reactant. The ?ow-cell gives the stable ECL background under optimized conditions for parameters such as electrolytic pulse, concentration of TEA and ?ow rate, etc. The sensitive ECL quenching response of dopamine (DA) is realized on this FIA system within the linear range from 10 pM to 4 nM and a detection limit as low as 3.6 pM. It is practically used to determine the neurotransmitters in cerebro-spinal ?uid (CSF) with DA as the index and with an average recovery of 94%.
     And then the nano-liter sized ECL detection cell was hyphenated with PDMS microchip to construct a microchip-ECL electrophoretic system. The preliminary study of this microchip-ECL system reveals the practicability after the investigation on pivotal factors such as the effect of high voltage on luminescence detection and the distance between microchannel and detector. There is a confirmable electrophoretic peak of dopamine to be recorded in this microchip-ECL electrophoretic system. The study provides the foundation of experimental technique, and suggests the direction for the further researches. 1, Apply the channel modification technique with PSNS to improve the separation efficiency, outline of electrophoretic peak and therefore the detection sensitivity; 2, Optimize the matching degree between separation channel and the detection cell to improve the detection performance; 3, Adopt the technique of sampling-enrichment to conquer the limitation of little sampling quantity to enhance the detection sensitivity.
引文
1. A. Manz, N. Graber, H. M. Widmer, Sens.Actuators, 1990, B1, 244
    2. A. Manz, D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludih, H. M. Widme, J.Chromatogr A, 1992, 593, 253
    3. S. Hjerten, Electrophoresis, 1990, 11, 665
    4.陈义,毛细管电泳技术及应用,化学工业出版社,2000
    5.林炳承,毛细管电泳导论,北京,科学出版社,1996
    6. S. C. Jacobson, S. V. Ermakov, J. M. Ramsey, Anal.Chem, 1999, 71, 3273
    7. H. Beeker, C. Gartner, ElectroPhoresis,2000, 21(l), 12
    8. L. Rodriguez, Y. Zhang, H. K. Lee, et al. Journal of ChromatograPhy A, 1997, 781(l-2), 287
    9. J. C. MeDonald, G. M. Whitesides, Accounts of Chemical Researeh, 2002, 35(7), 491
    10. W. C. Sung, G. B. Lee, C. C. Tzeng,et al. Electrophoresis, 2001, 22(6), 1188
    11. H. ShadPour, H. Musyimi, J. F. Chen,et al. Journal of ChromatograPhy A, 2006, 1111(2), 238
    12. Y. N. Yang, J. Kameoka, T. Waehs, et al, Anal. Chem, 2004, 76(9), 2568
    13. J. W. Hong, T. Fujii, M. Seki, et al. ElectroPhoresis, 2001, 22(2), 328
    14. D. Ross, T. J. Johnson, L. E. Loeaseio, Anal. Chem, 2001, 73(11), 2509
    15. M. L. Chabinye, D. T. Chiu, J. C. MeDonald, et al, Anal. Chem, 2001, 73(18), 4491
    16. H. L. Zeng, H. F. Li, J. M. Lin, Analytica Chimica Acta, 2005, 551(l-2), l
    17. A. P. Dahlin, S. K. Bergstrom, P. E. Andren, et al, Anal. Chem, 2005, 77(16), 5356
    18. O. Hofmann, X. H. Whng, J. C. de Mello, et al. Lab on a Chip, 2005, 5(8), 863
    19. G. C. Ping, B. M. Zhu, M. Jabasini, et al. Anal. Chem, 2005, 77(22), 7282
    20. Q. Chen, J. H. Li, S. Qu, et al. Journal of ChromatograPhy A, 2005, 1094(l-2), 138
    21. Y. H. Chen, S. H. Chen, ElectroPhoresis, 2000, 21(l), 165
    22. B. Grass, A. Neyer, M. Johnek, et al. Sensors and Aetuators B-Chemieal, 2001, 72(3), 249
    23. G. B. Lee, S. H. Chen, G. R. Huang, et al, Sensors and Actuators B-Chemieal, 2001, 75(l-2), 142
    24. J. Wang, M. Pumera, M. P. Chatrathi, et al. Electrophoresis, 2002, 23, (4), 596
    25. M. Y. Ye, X. F. Yin, Z. L. Fang, Analytical and Bioanalytical Chemistry, 2005, 81(4),
    820
    26. Y. X. Wang, Y. Zhou, B. M. Balgley, et al, Electrophoresis, 2005, 26(19), 3631
    27. D. Lange, C. W. Storment, C. A. Conley, et al, Sensors and Actuators B-Chemieal, 2005, 107(2), 904 28. Y. Liu. H. J. Lu. W. Zhong, et al, Anal. Chem, 2006, 78(3), 801
    29. A. Lionello, J. Josserand, H. Jensen, et al, Lab on a Chip, 2005, 5(3), 254
    30. N. Malmstadt, A. S. Hoffillan, P. S. Stayton, Lab on a Chip, 2004, 4(4), 412
    31. C. Li, Y. N. Yang, H. G. Craighead, et al. Electrophoresis, 2005, 26(9), 1800
    32. M. F. Bedair, R. D. Olesehuk, Anal. Chem, 2006, 78(4), 1130
    33. Z. Y. Wu, N. XanthoPoulos, F. Reymond, et al, Eleetrophoresis, 2002, 23(5), 782
    34. D. Sabbert, J. Landsiedel, H. D. Bauer, et al, Applied Surface Seience, 1999,150(l-4), 185
    35. D. C. Duffy, H. L. Gills, J. Lin, et al, Anal. Chem, 1999, 71(20), 4669
    36. R. M. MeCormick, R .J. Nelson, M. G. AlonsoAmigo, et al, Anal. Chem, 1997, 69(14), 2626
    37.吴明华.曝光技术[J].微细加工技术,1994,l(l),39
    38. D. Qin, Y. N. Xia, J. A. Rogers, et al, SPringerBerlin/Heidelberg, 1998,1(1), 39
    39. Y. H. Dou, N. Bao, J. J. Xu, et al. Electrophoresis, 2002, 23(20), 3558
    40. H. Makamba, J. H. Kim, K. Lim, et al. Electrophoresis, 2003, 24(21), 3607
    41. J. K. Liu, M. L. Lee, Electrophoresis, 2006, 27(18), 3533
    42. J. L. Fritz, M. J. Owen, Journal of Adhesion, 1995, 54(l-2), 33
    43. J. Y. Lai, Y. Y. Lin, L. Denq, et al, Journal of Adhesion Science and Technology, 1996, 10, 3, 231
    44. K. Efimenko, W. E. Wallace, J. Genzer, Journal of Colloid and Interface Science, 2002, 254(2), 306
    45. H. K. Ye, Z.Y. Gu, D.H. Graeias, Langmuir, 2006, 22(4), 1863
    46. D. C. Duffy, J. C. McDonald, O. J. A. Schuller, G. M. Whitesides, Anal. Chem. 1998, 70, 4974
    47. A. Toth, L. Bertoti, M. Blaxso, et al, Journal of Applied Polymer science, 1994, 52(9), 1293
    48. M. J. Owen, P. J. Smith, Journalof adhesion science and technology, 1994, 8(10),1063
    49. H. J. Hettlich, F. Otterbaeh, C. Mittermayer, et al, Biomaterials, 1991, 12(5), 521
    50. S. Lee, J. Voros, Langmuir, 2005, 21(25), 11957
    51. G. Oevirk, M. Munroe, T. Tang, et al, Electrophoresis, 2000, 21(1), 107
    52. J. Z. Kang, J. L. Yan, J. F. Liu, et al, Talanta, 2005, 66(4), 1018
    53. A .J. Wang, J. J. Xu, H. Y. Chen , Analytica Chimica Aeta, 2006, 569(1-2), 188
    54. Y. Q. Luo, B. Huang, H. Wu, et al, Anal. Chem, 2006, 78(13), 4588
    55. Y. Dou, N. Bao, J. Xu, H. Chen, Electrophoresis, 2002, 23, 3558
    56. L. Chen, J. C. Ren, R. Bi, D. Chen, Electrophoresis, 2004, 25(6), 914
    57. D. P. Wu, Y. Luo, X. M. Zhou, Z. P. Dai, B. C. Lin, Electrophoresis, 2005, 26(1), 211
    58. B. Huang, H.K. Wu, S. Kim, B. K. Kobika, R. N. Zare, Lab on a Chip, 2006, 6(3), 369
    59. Y. Xiao, X.D. Yu, J.J. Xu, et al, Electrophoresis, 2007, 28(18), 3302
    60. Y. Xiao, K. Wang, X. D. Yu, et al, Talanta, 2007, 72(4), 1316
    61. D. T. Clark, J. Peeling, J. M. O’Marlery, J. Polym. Sci. Ploym. Chem, 1976, Ed.14, 543
    62. A. J. Wang, J. J. Xu, H. Y. Chen, Journal of ChromatograPhy A, 2006, 1107(l-2), 257
    63. W. Wang, L. Zhao, J. R. Zhang, et al. Joumal of ChromatograPhy A, 2006, 1136(l), 111
    64. S. Lee, J. Voros, Langmuir, 2005, 21(25), 11957
    65.田玉平,吴会灵,陈淑桂,等一体化微流控芯片的酶固定化技术[J].高等学校化学报,2004,25(5),547
    66. A. J. Wang, J. J. Xu, H. Y. Chen, Journalof ChromatograPhy A, 2007, 1147(l), 120
    67. A. Papra, A. Bernard, D. Juncker, N. B. Larsen, B. Michel, E. Delamarche, Langmuir 2001, 77, 4090
    68. S.W. Hu, X.Q. Ren, M. Bachman, C.E. Sims, et al, Langmuir, 2004, 20(13), 5569
    69. S.W. Hu, X.Q. Ren, M. Bachman, C.E. Sims et al, Anal.Chem, 2004, 76(7), 1865
    70. S. C. Jacobson, J. M. Ramsey, Anal.Chem, 1996, 68, 720
    71. Q. Fang, G .M. Xu, Z. L. Fang, Anal.Chem, 2002, 74, 1223
    72. C. S. Effenhauser , G.J.M. Bruin , A. Paulus , M. Ehrat , Anal.Chem, 1997, 69, 3451
    73. Y. Deng, J. Henion, J. Li, P. Thibault, C. Wang, D.J. Harrison, Anal.Chem, 2001, 73, 639
    74. J. Wen, Y. Lin, F. Xiang, D.W. Matson, H.R. Udseth, R.D. Smith, Electrophoresis, 2000, 21, 191
    75. L. Licklider, X. Wang, A. Desai, Y. Tai, T. D. Lee , Anal.Chem, 2000, 72, 367
    76. J. S. Kim, D.R. Knapp, Electrophoresis, 2001, 22, 3993
    77. G. A. Schultz, T. N. Corso, S. J. Prosser, S. Zhang, Anal.Chem, 2000, 72, 4058
    78. G. E. Collins, Q. Lu, Anal.Chim.Acta, 2001,436, 181
    79. Q. Mao, J. Pawliszyn, Analyst, 1999, 124, 637
    80. K.W. Ro, K. Lim, B.C. Shim, J.H. Hahn, Analy.Chem, 2005,77, 16, 5160
    81. N. A. Lacher, K. E. Garrison, R. S. Martin, S. M. Lunte, Electrophoresis, 2001, 22, 2526
    82. W. R. Vandaveer, S. A. Pasas, R. S. Martin, S. M. Lunte, Electrophoresis, 2002, 23, 3667
    83. S. D. Mangru, D.J. Harrison, Electrophoresis, 1998, 68, 2301
    84. M. Hashimoto , K. Tsukagoshi , R. Nakajima , K. Kondo , A. Arai, J.Chromatogr.A, 2000, 867, 271
    85. B. F. Liu, M. Ozaki, Y. Utsumi , T. Hattori , S. Terabe , Anal.Chem, 2003, 75, 36
    86. J. G. Velasco, Electroanalysis, 1991, 3, 261
    87. S. N. Ding, J. J. Xu, H. Y. Chen, Talanta, 70, 2006, 403
    88. A. Y. N. Hui, G. Wang, B. Lin, W. T. Chan, Journal of Analtical Atomic Spectrometry, 2006, 21(2), 134
    89. I. Moser, G. Jobst, et al, Sensors and Actuators B-Chemical B, 1997, 44(1-3), 377
    90. C. H. Fan, K. W. Plaxo, A. J. Heeger, Proceedings of the National Academy of Science of the United States of America, 2003,100, 16, 9134
    91. R. T. Dufort, D. Nightingale, L. W. Gaddum, J.Am.Chem.Soc,1927, 49, 1858
    92. N. Harvey, J.Phys.Chem, 1929, 33, 1456
    93.安镜如,林金明,陈曦,分析化学,1991(19),1340
    94. L .R. Faulkner, A. J. Bard, J.Electroanal.Chem, 1977, 10, 1
    95. L .R. Faulkner, Method Enzymol, 1978, 57, 594
    96. S. M. Park, D. A. Tryk, Rev.Chem.Intermed, 1981, 4, 43
    97. A. C. Boccara, J. Duran,B. Briat, P. J. Stephens, Chem.Phys, Lett, 1973, 19, 187
    98. R. G. Gerardi, N. W. Barnett, S. W. Lewis, Anal.Chim.Acta, 1999, 378, 1
    99. W. Y. Lee, Mikrochim.Acta, 1997, 127, 19
    100. C. H. Lyons, E. D. Abbas, J. K. Lee, M. F. Rubner, J.Am.Chem.Soc, 1998, (120), 12100
    101. G. F. Blackburn , H. P. Shah , J. H. Kenten , J. Leland , R. A. Kamin , J. Link , J. Peterman , M .J. Powell , A. Shah , D .B. Talley , S .K. Tyagi, E. Wilkins , T. G. Wu , R. J . Massey, Clin. Chem. 1991, 37 (9), 1534
    102. R. Wilson, C. Clavering, A. Hutchinson, Anal. Chem, 2003, 75, 4244
    103. T. Kuwabara, T. Noda, H . Ohtake, T. Ohtake, S. Toyama, Y. Ikariyama, Anal Biochem, 2003, 314, 30
    104. W. J. Miao, A. J. Bard, Anal. Chem, 2003, 75, 5825
    105. A. F. Karsten, P. Miloslav, G. G. George, Talanta, 2001, 54, 531-559
    106. M .M. Richter, Chemical Reviews, 2004, 104, (6), 3003
    107. L. M. Sheppard, Am.Cera.Bull, 1990, 69(11), 1801
    108.巩雄,张桂兰,汤国庆,等.化学进展,1997 ,9(4) :349-360
    109.陈丽娟,纳米材料修饰电极在电化学分析中的应用研究进展,化学研究,2010,21(5), 103
    110. X. R. Sun, Y.Du,S. J.Dong,E. K.Wang, Anal. Chem., 2005, 7(24), 8166
    111. H. Cui, Y. Xu, Z. F.Zhang, Anal. Chem., 2004, 76(14), 4002
    112. L. Authier, C. Grossiord, P. Brossier, Anal. Chem., 2001, 73 (18), 4450
    113. P. Xia, H. Liu, Y. Tian, Biosens. Bioelectron, 2009, 24(8), 2470
    114. J. Wang, L. Wang, J. Di, Y. Tu, Sensor. Actuators, B-Chemical, 2008, 135(1), 83
    115. J. Wang, L. Wang, J. Di, Y. Tu, Talanta, 2009, 77(4), 1454
    116. J. M. Nam, S. I. Stoeva, C. A.Mirkin, J. Am. Chem. Soc., 2004, 126 (19), 5932
    117. M. Q. Wang, X. Y. Du, Y. l. Liu, Q. Sun, X. C. Jiang, Chinese J Anal Chem, 2008, 36(7), 890
    118. H.Wang, C. X. Zhang, Y. Li, H. L. Qi, Anal. Chim. Acta, 2006, 575(2), 205
    119. Z. F. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, A. Korgel B, A. J. Bard, Science, 2002, 296(17), 1293
    120. N. Myung, Z. F. Ding, A. J. Bard, Nano Letters, 2002, 2(11), 1315
    121. N. Myung, X. M. Lu, K. P. Johnston, A. J. Bard, Nano Letters, 2004, 4(l), 183
    122. C. Oillic, P. Mur, E. Blanquet, G. Delapierre, F. Vinet, T. Billon, Mater. Sci. Eng.C, 2007, 27, 1500
    123. Q. Liu, B. X. Lu, J. Li, X. Yao, J. H. Li, Biosens. Bioelectron, 2007, 22(12), 3203
    124. J. You, W. P. Ding, S. J. Ding, H. X. Ju, Electroanalysis, 2009, 21(2), 190
    125. P. Du, H. X. Li, M. Z. Hua, S. F. Liu, Bioelectrochemistry, 2009, 75 (1), 37
    126. S. S. Narayanan, S. S. Sinha, P. K.Verma, S. K. Pal, Chem. Phys. Lett, 2008, 463(1-3), 160
    127. Y. X. Li, J. L. Chen, C. Q. Zhu, L. Wang, D. H. Zhao, S. J. Zhuo, Y. Q. Wu, Spectrochim. Acta, Part A, 2004, 60(8-9), 1719
    128. J. K. Xie, K. Jiao, H. Liu, Q. X. Wang, S. F. Liu, X. Fu, Chinese J Anal Chem, 2008, 36(7), 874
    129. S. Lijima, Nature, 1991, 354(6348), 56
    130. S. Daniel, T. P. Rao, K. S. Rao, S. U. Rani, G. R. K. Naidu, H. Y. Lee, T. Kawai, Sens. Actuators, B: Chemical, 2007, 122(2), 672
    131. C. Y. Khripin, M. Zheng, A. Jagota, J. Colloid Interf. Sci., 2009, 330(2), 255
    132. S. Germarie, R. C. Carlos, J. Electroanal. Chem., 606(1), 47
    133.陈亚芳,王保国,陈晋芳,山西化工,2010,30(2),27
    134.舒建华,仇伟,郑少琴,化学进展, 2009, 21, 1015
    135. K. Q. Ding, F. M. Cheng, Synthetic Metals, 2009, 159(19-20), 2122
    136. T. Yang, N. Zhou, Y. C. Zhang, W. Zhang, K. Jiao, G. C. Li, Biosens. Bioelectron, 2009, 24 (7), 2165
    137. J. Wu, Y. H. Zou, X. L. Li, H. B. Liu, G. L. Shen, R. Q. Yu, Sens. Actuators, B, 2005, 104, 43
    138. S. Bhadra, D. Khastgir, N. K.Singha, J. H. Lee, Prog. Polym. Sci., 2009, 34(8), 783
    139. Y. Sun, Z. Mo, H. Chen, R. B. Guo, L. J. Qiao, H. J. Li, Computational Materials Science, 2009, 46(1), 162
    140.常竹,祝宁宁,赵琨,樊浩,何品刚,方禹之,化学学报, 2007, 65(2), 135
    141. L. Dennany, G. G. Wallace, R. J. Forste, Langmuir, 2009, 25(24), 14053
    142. H. Cai, N. Zhu, Y. Jiang, P. G. He, Y. Z. Fang, Biosens. Bioelectron, 2003, 18(11), 1311
    143. S. H. Lee, C. K. Lee, S. R. Shin, B. K. Gu, S. I. Kim, T. M. Kang, S. J. Kim, Sens. Actuators B: Chemical, 2010, 145 (1), 89
    144. T. T. N. Lien, T. D. Lam, V. T. H. An, T. V. Hoang, D. T.Quang, D. Q. Khieu, T.Tsukahara, Y. H. Lee, J. S. Kim, Talanta, 2010, 80(3), 1164
    145. K. Kato, A. Radbruch, Cytometry, 1993, 14 (4), 384
    146. P. S. Doyle, J. Bibette, A. Bancaud Sci, 2002, 295(5563), 2237
    147. G. F. Cheng, J. Zhao, Y. H. Tu, P. G. He, Y. Z. Fang, Anal. Chim. Acta, 2005, 533(1), 11
    148. C. L. Chiang, C. S. Sung, C. Y. Chen, J. Magn. Magn. Mater, 2006, 305(2), 483
    149. L. L. Pang, J. S. Li, J. H. Jiang, Y. Le, G. L. Shen, R. Q. Yu, Sens. Actuators, B: Chemical, 2007, 127(2), 311
    150. M. Fuentes, C. Mateo, A. Rodriguez, M. Casqueiro, J. C. Tercero, H. H. Riese, Biosens. Bioelectron, 2006, 21(8), 1574
    151. Z. Chang, J. M. Zhou., K. Zhao, N. N. Zhu, P. G. He, Y. Z. Fang, Electrochim. Acta, 2006, 52(2), 575
    152. W. Miao, Chem.Rev, 2008, 108, 2506
    153. Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Scienee, 2002, 296, 1293
    154. N. Myung, S. Ding, A. J. Bard, Nano Lett, 2002, 2, 1315
    155. N. Myung, Y. Bae, A. J. Bard, Nano Lett, 2003, 3, 1053
    156. Y. Bae, N. MyUng, A. J. Bard, Nano Lett, 2004, 4, 1153
    157. N. Myung, X. Lu, K. P. Johnston, A. J. Bard, Nano Lett, 2004, 4, 183
    158. S. K. Poznyak, D. V. Talapin, E. V. Shevehenko, H. Weller, NanoLett, 2004, 4, 693
    159. T. Ren, J. Xu, Y. Tu, S. Xu, J. Zhu, Electrochem.Commun, 2005, 7, 5
    160. G. Zou, H. Ju, W. Ding, H. Chen, J.Electroanal.Chem, 2005, 579, 175
    161. J. Miao, T. Ren, L. Dong, J. Zhu, H. Chen, Small, 2005, I, 802
    162. Y. Bae, D. C. Lee, E. V. Rhogojina, D. C. Jurbergs, B. A. Korgel, A. J. Bard, Nanotechnology, 2006, 17, 3791
    163. M. Chen, L. Pan, Z. Huang, J. Cao, Y. Zheng, H. Zhang, Mater.Chem. Phys, 2007, 101, 317
    164. B. Zhou, B. Liu, L. Jiang, J. Zhu, Ultrason.Sonochem, 2007, 14, 229
    165. L. Shen, X. Cui, H. Qi, C. Zhang, J.Phys.Chem.C, 2007, 111,8172
    166. C. Ge, M. Xu, J. Liu, J. Lei, H. Ju, Chem·Commun, 2008, 450
    167. L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, J.Am.Chem.Soc, 2009, 131, 4564
    168. C. Lu, X. Wang, J. Xu, H. Chen, Electrochem Commun, 2008, 10, 1530
    169. S. Ding, J. Xu, H. Chen, Chem.Commun, 2006, 3631
    170. C. Ge, M. Xu, J. Fang, J. Lei, H. Ju, J.Phys.Chem.C, 2008, 112, 10602
    171. P. Bertoneello, R. J. Forster, Biosens.Bioelectron, 2009, 10.1016/j.bios.2009.02.O13
    172. G. Zou, H. Ju, Anal.Chem, 2004, 76, 6871
    173. G. Jie, B. Liu, J. Miao, J. Zhu, Talanta, 2007, 71, 1476
    174. Z. Dai, J. Zhang, J. Bao, X. Huang, X. Mo, J. Mater .Cbem, 2007, 17, 1087
    175. H. Han, Z. Sheng, J. Liang, Anal.Chim.Acta, 2007, 596, 73
    176. H. Jiang, H. Ju, Anal.Chem, 2007, 79, 6690
    177. L. Hua, H. Han, H. Chen, Electrochimica Acta, 2009, 54, 1389
    178. L. Hua, H. Han, X. Zhang, Talanta, 2009, 77, 1654
    179. X. Liu, H. Jiang, J. Lei, H. Ju, Anal. Chem, 2007,79,8055
    180. H. Jiang, H. Ju, Chem.Commun, 2007, 404
    181. L. Zhang, X. Zou, E. Ying, S. Dong, J. Phys.Chem.C, 2008, 112, 4451
    182. X. Liu, H. Ju, Anal.Chem, 2008, 80, 5377
    183. G. Jie, J. Zhang, Y. D. Vang, C. Cheng, H. Chen, J. Zhu, Anal. Chem, 2008, 80, 4033
    184. G. Jie, B. Liu, H. Pan, J. Zhu, H. Chen, Anal.Chem, 2007, 79, 5574
    185. H. Cui, Y. Xu, Z. Zhang, Anal.Chem, 2004, 76, 4002
    186. X. Sun, Y. Du, S. Dong, E. Wang, Anal.Chem, 2005, 77, 8166
    187. Y. Dong, H. Cui, C. Wang, J.Phys.Chem.B, 2006, 110, 18408
    188. H. Wang, C. Zhang, Y. Li, H. Qi, Anal.Chim.Acta, 2006, 575, 205
    189. H. Cui, W. Wang, C. Duan, Y. Dong, J. Guo, Chem.Eur.J, 2007, 13, 6975
    190. L. Zhang, Z. Xu, X. Sun, S. Dong, Biosens. Bioelectron, 2007, 22, 1097
    191. Y. Dong, H. Cui, Y. Xu, Langmuir, 2007, 23, 523
    192. Z. Guo, Y. Shen, M. Wang, F. Zhao, S. Dong, Anal.Chem, 2004, 76, 184
    193. Y. Du, B. Qi, X. Yang, E. wang, J. Phys. Chem. B, 2006, 110, 21662
    194. C. Wang, H. Cui, Luminescence, 2007, 22, 35
    195. Z. Guo, S. Dong, Anal.Chem, 2004, 76, 2683
    196. Y. Du, H. Wei, J. Kang, J. Yan, X. Yin, X. Yang, E. Wang, Anal.Chem, 2005, 77,7993
    197. H. N. Choi, J. Lee, Y. Lyu, W. Lee, Anal.Chim.Acta, 2006, 565, 48
    198. L. Zhang, Z. Guo, Z. Xu, S. Dong, J.Electroanal.Chem, 2006, 592,63
    199. J. Li, Y. Xu, H. Wel, T. Huo, E. Wang, Anal.Chem, 2007, 79, 5439
    200. J. V. Veetil, K. Ye, Biotechnol.Prog, 2007, 23, 517
    201. H. Wel, Y. Du, J. Kang, E. Wallg, Electrochem.Commun, 2007, 9, 1474
    202. Y.Lin, Z. Lin, X. Chen, X. Chen, X. Wang, Anal.Chim.Acta, 2007, 594, 169
    203. Y. Li, H. Qi, F. Fang, C. Zhang, Talanta, 2007, 72, 1704
    204. H. N. Choi, S.H. Yoon, Y. Lyu, W. Lee, Electroanalysis, 2007, 19, 459
    205. A. Arora, A. J. de Mello, A. Manz, Anal.Commu, 1997, 34, 393
    206. A. Arora, J. C. Eijkel, W. E. Morf, A. Manz, Anal.Chem, 2001, 73, 3282
    207.田丙正,郭文英,屠一锋,常熟理工学院学报2009,4,52
    208. R. G. Gerardi, N. W. Barnett, S. W. Lewis, Anal.Chim.Acta, 1999, 378, 1
    209. G. B.Xu, J. Z. Zhang, S. J. Dong, Microchem.J, 1999, 62, 259
    210.方肇伦,流动注射分析法,第一版,北京:科学出版社,1999,280
    211. Y. Chi, Y. Dong, G. Chen, Electrochem.Commun.2007, 9, 577
    212. X. B. Yin, S. J. Dong, E. K. Wang, Trend Anal. Chem., 2004, 23, 432
    213. X .B. Yin, E. K. Wang, Anal. Chim. Acta, 2004, 76 (13), 3846
    214.刘继锋(Liu J F),汪尔康(Wang EK).中国发明专利(CN01133 351.0)
    215. X. H. Sun, J. F. Liu, W. D. Cao, X .R. Yang, E. K. Wang, Y. S. Fung, Anal.Chim. Acta, 2002, 470, 137
    216. J. F, Liu, W. D. Cao, X. R. Yang, E. K. Wang, Talanta, 2003, 59, 453
    217. J. L. Yan, J. F. Liu, W. D. Cao, X. H. Sun, X. R. Yang, E. K. Wang, Microchim. J., 2004, 76, 11
    218. W. D. Cao, J. F. Liu, H. B. Qiu, X. R. Yang, E. K. Wang, Electroanal., 2002, 14, 1571
    219. J. F. Liu, W. D. Cao, H. B. Qiu, X. R. Yang, E. K. Wang, Clin.Chem., 2002, 48, 1049
    220. X. C. Zhao, T. Y. You, J. F. Liu, X. H. Sun, J. L. Yan, X. R. Yang, E. K. Wang, Electrophoresis, 2004, 25, 3422
    221. W. D. Cao, J. F. Liu, X. R. Yang, E. K. Wang, Electrophoresis, 2002, 23, 3683
    222. X. B. Yin, H .B. Qiu, X. H. Sun, J .L. Yan, J. F. Liu, E .K. Wang ,Anal. Chem, 2004, 76, 3846
    223. X. B. Yin, J. Z. Kang, L.Y. Fang, X. R. Yang, E.K. Wang, J. Chromatogr. A, 2004, 1055, 223
    224. X. J. Huang, S .L. Wang, Z. L. Fang, Anal.Chim. Acta, 2002, 456, 167
    225. W. D. Cao, J .B. Jia, X. R. Yang, S. J. Dong, E. K. Wang, Electrophoresis, 2002, 23, 3692
    226. A. J. Arora, C. T. Eijkel, E. Morfw,et.al, Anal.Chem, 2001, 73, 3282
    227. P. A. Greenwood, C. Merrin, T. McCreedy, et.al, Talanta, 2002, 56, 539
    228. H. B. Qiu, J. L. Yan, E. K. Wang, et.al, Anal.Chem, 2003, 75, 5435
    229. M. U. Kopp, A. J. Mello, A. Manz, Science, 1998, 280, 1046
    230. E. A. Schilling, A. E. Kamholz, P. Yager, Anal. Chem, 2002, 74, 1798
    231. K. G. Olsen, D. J. Ross, M. J. Tarlov, Anal. Chem, 2002, 74, 1436
    232. S. A. Soper, S. M. Ford, S. Qi, R. L. McCarley, K. Kelly, M. C. Murphy, Anal. Chem, 2000, 72, 642
    234. D. S. Peterson, T. Rohr, F. Svec, J. M. J. Frchet, Anal. Chem, 2002, 74, 4081
    235.C. S. Effenhauser, G. J. M. Bruin, A. Paulus, M. Ehrat, Anal. Chem, 1997, 69, 3451
    236. J. C. McDonald, G. M. Whitesides, Acc. Chem, 2002, 35, 491
    237. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, G. M. Whitesides, Anal. Chem, 1998, 70, 4974
    238. S. K. Sia, G. M. Whitesides, Electrophoresis, 2003, 24, 3563
    239. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, Electrophoresis, 2000, 21, 27
    240. H. Y. Chen, Y. Elkasabi, J. Lahann, J. Am. Chem Soc, 2006, 128, 374
    241. A. J. Wang, J. J. Xu, Q. Zhang, H. Y. Chen, Talanta, 2006, 69, 210
    242. G. D. Sui, J. Y. Wang, C. C. Lee, W. X. Lu, S. P. Lee, J. V. Leyton, A. M. Wu, Anal. Chem, 2006, 78, 5543
    243. G. T. Roman, K. McDaniel, C. T. Culbertson, Analyst, 2006, 131, 194
    244. H. Katayama, J. Ishihama, N. Asakawa, Anal. Chem, 1998, 70, 2254
    245. S. Hu, X. Ren, M. Backman, C. E. Sims, G. P. Li, N. Allbrit-ton, Anal. Chem, 2002, 74, 4117
    246. B. E. Slentz, N. A. Penner, F. E. Regnier, J. Chromatogr. A, 2002, 948, 225
    247. N. Na, Y. P. Hu, J. Ouyang, R.G. Baeyens, Willy, R. Delanghe, Joris, T. D. Beer, Analytica Chimica Acta, 2004, 527, 139
    248. G. Kleindienst, C. G. Huber, D. T. Gjerde, L. Yengoyan, G. K. Bonn,Electrophoresis, 1998, 19, 262
    249. R. Bakry, D. Gjerde, G. K. Bonn, Journal of Proteome Research, 2006, 5, 1321 250. Y. D. Yin, Y. Lu, B. Gates, Y. N. Xia, J. Am. Chem. Soc, 2001,123, 8718
    251. S. K. Lee, G. R. Yi, S. M. Yang, Lab Chip, 2006, 6, 1171
    252. S. M. Yang, G. A. Ozin, Chem.Commun, 2000, 24, 2507
    253. E. Kim, Y. N. Xia, G. M. Whitesides, Adv. Mater, 1996, 8, 245
    254. Y. Zeng, D. J. Harrison, Anal. Chem, 2007, 79, 2289
    255. Y. Xiao, K. Wang, X. D. Yu, J. J. Xu, H.Y. Chen, Talanta 2007, 72, 1316
    256. J. D. Qiu, P. F. Hu, R. P. Liang, Anal. Sci, 2007, 23, 1409
    257. J. E. Wang, H. Q. Wu, A. M. Wang, Y. J. Cao, Y. J. Duan, P. S. Yuan, Chinese Journal of Synthetic Chemistry, 2004, 12, 213
    258. Q. Zhou, J. J. Zhao, W. W. Xu, H. Zhao, Y. Wu, J. W. Zheng, J. Phys. Chem. C, 2008, 112, 2378
    259. W. Wang, L. Zhao, J. R. Zhang, X. M. Wang, J. J. Zhu, H.Y. Chen, Journal of Chromatography A, 2006, 1136, 111
    260. A. Gaspar, M. E. Piyasena, F. A. Gomez, Anal. Chem 2007, 79, 7906
    261. J. W. Zhou, V. E. Amanda, H. V. Nicolas, Electrophoresis 2010, 31, 2
    262. V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, W. W. Adams, Macromolecules, 1997, 30, 6615
    263. K. Boonsong, M. M. Caulum, B. M. Dressen, O. Chailapakul, D.M. Cropek, C. S. Henry, Electrophoresis 2008, 29, 3128
    264. X. Huang, M. J. Gordon, R. N. Zare, Anal. Chem, 1988, 60, 1837
    265. J. L. Pittman, C. S. Henry, S. D. Gilman, Anal. Chem, 2003, 75, 361
    266. A. J. Wang, J. J. Xu, H. Y. Chen, Journal of Chromatography A, 2007, 1147, 120
    267. K. Brian J, H. J. Ernest F, Electrophoresis, 2004, 25, 187
    268. S. Konig, T. Welsch, Journal of Chromatography A, 2000, 894, 79
    269. W. Wang, L. Zhao, F. Zhou, J. J. Zhu, J. R. Zhang, Talanta, 2007, 73, 534
    270. A. J. Wang, J. J. Xu, H. Y. Chen, Electroanalysis, 2007, 19, No. 6, 674
    271. Y. Y. Wu, J. M. Lin, R. G. Su, F. Qu, Z. W. Cai, Talanta, 2004, 64, 338
    272. Z. X. Wang, Y. Chen, China. Chemisty Online, 2001, 4, 243.
    273. K. Elaine Hubbard, A. Wells, Thandranese S. Owens, M. Tagen, Charles H. Fraga, Clinton F. Stewart, Biomed. Chromatogr, 2010, 24, 626
    274. J. W. Jorgenson, K. D. Lukacs, Anal. Chem, 1981, 1298, 53
    275. Y. Lu, Y. L. Hu, X. H. Xia, Talanta, 2009, 1270, 79
    276. J. L. E. Reubsaet, R. Vieskar, J. Chromatogr. A, 1999, 147, 841
    277. R. Brindle, A. Klaus, J. Chromatogr. A, 1997, 3, 757
    278. S. Karenga, Z. E. Rassi, Electrophoresis, 2010, 1, 31
    279. L. Z. Hua, G. B. Xu, Chem. Soc. Rev., 2010, 39, 3275
    280. H. Wei, E. K. Wang, Trends in Analytical Chemistry, 2008, 27, 447
    281. H. J. Li, S. Han, L. Z. Hu, G. B. Xu, Chin J Anal Chem, 2009, 37(11), 1557
    282. V. C. Tsafack, C. A. Marquette, F. Pizzolato, L. J. Blum, Biosensor and Bioelectronics, 2000, 15, 125
    283. J. O. Rinne, T. Myllykyla, P. Lonnberg, P. Marjamaki, Brain Res. 1991, 547, 167
    284. A .Jenny, K. Ashok, S. Reinhard, Brain Res. 2002, 953, 17
    285. K. Margrit, A. Jenny, K. Ashok, S. Dietlind, S. Osama, S. J?rg, S. Matthias, S.Reinhard, Int. J. Dev. Neurosci, 2003, 21, 357
    286. D. C. Yao, A. G. Vlessidis, N. P. Evmiridis, Analytica Chimica Acta, 2002, 462, 199
    287. B. C. Hsieh, K. Matsumoto, T. J. Cheng, G. Yuu, R. L. C. Chen, J. Pharm. Biomed. Anal, 2007, 45, 673
    288. M. G. Garguilo, A. C. J. Michael, Neurosci. Methods, 1996, 70, 73
    289. X. Qin, H. C. Wang, X. S. Wang, S. Li, Z. Y. Miao, N. Huang, Q. Chen, Mater. Sci. Eng. C, 2009, 29, 1453
    290. L. Doretto, D. Ferrara, S. Lora, F. Schiavon, F. M. Veronese, Enzyme Bicrob. Technol., 2000, 27, 279
    291. D. Moscone, D. D. Ottavi, D. Compagnone, G. Palleschi, Anal. Chem. 2001, 73, 2529
    292. S. S. Razola, S. Pochet, K. Grosfils, J. M. Kauffmann, Biosens. Bioelectron. 2003, 18, 185
    293. S. Iijima, Nature, 1991, 354, 56
    294. A. K. Upadhyay, T. W. Ting, S. M. Chen, Talanta, 2009, 79, 38
    295. Y. H. Bai, Y. Du, J. J. Xu, H. Y. Chen, Electrochem. Commun, 2007, 9, 2611
    296. H. H. Chu, W. Y. Guo, J. W. Di, Y. Wu, Y. F. Tu, Electroanal. 2009, 21, 1630
    297. X. Cai, J. L. Yan, H. H. Chu, M. S. Wu, Y. F. Tu, Sensors & Actuators B Chemicals, 2010, 143, 655
    298. H. H. Chu, M. S. Wu, X. Cai, Y. F. Tu, Biosensor 2010, 2010, 5, Glasgow, UK
    299. M. S. Wu, H. H. Chu, X. Cai, Y. F. Tu, First Bio-Sensing Technology Conference, 2009, 11, Bristol, UK
    300.吴梅笙,储海虹,屠一锋,苏州科技学院学报:自然科学版,2009,26(4), 35
    301.宋昭,黄加栋,史海滨,吴宝艳,赵紫霞,陈强, Chinese J. Anal. Chem.(分析化学), 2006, 34, 910
    302. A. Curulli, F. Valentini, S. Orlanduci, M. L. Terranova, G. Palleschi, Biosensors and Bioelectronics. 2004, 20, 1223
    303. A. L. Ong, A. H. Kamaruddin, S. Bhatia, W. S. Long, S. T. Lim, R. Kumari, Enzyme Microb. Technol., 2006. 39, 924
    304.康天放,刘润,鲁理平,程水源, Chinese J. Appl. Chem. (应用化学), 2006, 23, 1099
    305. U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, F. Atamny, Surface & Coatings Technology, 2006, 200, 5751
    306. R. A. Neal, C. Chet, D. Carrie, S. Adam, L. Paul, B. Michael, K. Bernard, D. Benoit, Y. Seunghyup, Thin Solid Films, 2003, 445, 342
    307. V. S. Vaishnav, P. D. Patel, N. G. Patel, Thin Solid Films, 2005, 487, 277
    308. K. Mitsubayashi, Y. Wakabayashi, S. Tanimoto, D. Murotomi, T. Endo, Biosensors and Bioelectronics, 2003, 19, 67
    309. W. Hong, H. Li, S. Yao, F. Sun, Z. H. Xu, Electrochim. Acta, 2009, 54, 3250
    310. D. H. Kim, C. M. Chung, J. W. Park, S. Y. Oh, Ultramicroscopy, 2008, 108, 1233
    311. Y. H. Kim, G. Cai, W. Lee, K. H. Hyung, B. W. Cho, J. K. Lee, S. H. Han, Curr. Appl. Phys, 2009, 9, 65
    312. X. P. Sun, Y. Du, S. J. Dong, E. K. Wang, Anal. Chem, 2005, 77, 8166
    313. Y. Du, H. Wei, J. Z. Kang, J. L. Yan, X. B. Yin, X. R. Yang, E. K. Wang, Anal. Chem, 2005, 77, 7993
    314. W. Y. Guo, J. J. Li, H. H. Chu, J. L. Yan, Y. F. Tu, J. Luminescence, 2010, 130, 2022.
    315. M. Chen, X. H. Wei, Y. F. Tu, Talanta, 2011, 85, 1304
    316. Z. Y. Wang, W. Y. Guo, J. W. Di, Y. F. Tu, Spectroscopy and Spectral Analysis, 2005, 25, 1564
    317. W. Wang, J. Z. Guo, H. Cui, J. Univ. Sci. Tech. China, 2008, 38(6), 594
    318. S. Ness, D. M. Hercules, Anal. Chem, 1969, 41, 1467
    319. A. U. Khan, M. Kasha, J. Am. Chem. Soc, 1970, 92, 3293
    320. Z. H. Guo, Y. Shen, M. K. Wang, F. Zhao, S. J. Dong, Anal. Chem, 2004, 76, 184
    321. K. H. Seo, J. H. Lee, J. J. Kim, M. I. Bertoni, B. J. Ingram, T. O. Mason, J. Am. Ceramic. Soc, 2006, 89 (11), 3431
    322. H. Yang, S. D. Han, L. Wang, I. J. Kim, Y. M. Son, Mater. Chem. Phys, 1998, 56 (2), 153
    323. E. Neyens, J. Baeyens, J. Hazard Mater, 2003, 98, 33
    324. C. X. Xi, Z. F. Liu, X. L. Hu, S. P. Liu, H. Duan, Chinese J. Chem, 2008, 26, 1619
    325. X. H. Li, G. X. Zhang, H. M. Ma, D. Q. Zhang, J. Li, D. B. Zhu, J. Am. Chem. Soc, 2004, 126, 11543
    326. W. Adam, D. V. Kazakov, V. P. Kazakov, Chem. Rev, 2005, 105, 3371
    327. W. Jiang, G. M. Wu, Y. Wang, J. G. Xing, B. Han, Nano-processing Technique (Chinese), 2009, 6, 38
    328. A. U. Khan, M. Kasha, Proc. Natl. Acad. Sci. USA, 1994, 91, 12365
    329. N. I. Krinsky, Trends Biochem. Sci, 1977, 2, 35
    330. J. F. Turrens, The Journal of Physiology, 2003, 552, 335
    331. P. S. Rao, E. Hayon, J. Phys. Chem, 1975, 79, 397
    332. Y. Miyachi, A. Yoshioka, S. Imamura, Y. Niwa, Journal of Investigative Dermatology, 1986, 86, 449
    333. H. H. Chu, W. Y. Guo, J. W. Di, Y. Wu, Y. F. Tu, Electroanalysis, 2009, 21, 1630
    334. M. C. DeRosa, R. J. Crutchley, Coordin Chem. Rev, 2002, 233-234, 351
    335. F. B. Abeles, Annual Review of Plant Physiology, 1986, 37, 49
    336. W. Y. Guo, J. L. Yan, Y. F. Tu, Sci. China Chem, 2011, 54, 1640
    337. H. C. Ye, J. A. Crooks, R. M. Crooks, Langmuir, 2007, 23(23), 11901
    338. J. F. Liu, G. Lagger, P. Tacchini, H. H. Girault, Electroanal. Chem, 2008, 619-620, 131
    339. B. G. Kwon, Photochemistry and Photobiology A: Chemistry, 2008, 199, 112
    340. Z. F. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Science, 2002, 296, 1293
    341. G. Waldner, M. Pourmodjib, R. Bauer, M. S. Neumann, Chemosphere, 2003, 50(8), 989
    342. Y .W. Chi, L .C. Chen, L.Y. Zheng, L. Zhang, G. N. Chen, Electrochem.Commun,2008, 10, 1665
    343. L.D.Zhu, Y.X. Li, G.Y. Zhu, Sensors&Actuators, B:Chemical, 2002, 86, 209
    344. K.Arai, K.Takahashi, F.Kusu, Anal.Chem, 1999, 71, 2237
    345. J. P. Preston, T. A. Nieman, Anal.Chem, 1996, 68, 966
    346.郭文英,朱亚一,屠一锋,现代科学仪器,2007,6, 27
    347.屠一锋,郭文英,黄炳强,朱亚一,光谱实验室,2001,18(2):185
    348.屠一锋,黄炳强,郭文英,陈瑾,分析化学,2002,30(6):729
    349. M. M. Richter, Chem. Rev., 2004, 104, 3003
    350. N. Myung, Z. F. Ding and A. J. Bard, Nano Lett., 2004, 2, 1315
    351. K. Ohtsubo and J. D. Marth, Cell, 2006, 126, 855
    352. G. F. Jie, B. Liu, H. C. Pan, J. J. Zhu and H. Y. Chen, Anal. Chem., 2007, 79, 5574
    353. X. F. Wang, Y. Zhou, J. J. Xu and H. Y. Chen, Adv. Funct. Mater., 2009, 19, 1444
    354. E. Han, L. Ding, S. Jin, H. X. Ju, Biosens. Bioelectron, 2011, 26, 2500
    355. H. Jiang, H. X. Ju, Chem. Commun., 2007, 404
    356. H. P. Huang, J. J. Zhu, Biosens. Bioelectron, 2009, 25, 927
    357. X. Liu, H. X. Ju, Anal. Chem., 2008, 80, 5377
    358. F. W. Wan, J. H. Yu, P. Yang, Sh. G. Ge, M. Yan, Anal Bioanal Chem., 2011, 400, 807
    359. X. Liu, L. Guo, L. X. Cheng, H. X. Ju, Talanta, 2009, 78, 691
    360. G. F. Jie, H. P. Huang, X. L. Sun, J. J. Zhu, Biosens Bioelectron, 2008, 23, 1896
    361. L. H. Zhang, X. Q. Zou, E. B. Ying, S. J. Dong, J. Phys. Chem. C, 2008, 112, 4451
    362. R. N. Goyal, S. Chatterjee and S. Bishnoi, Anal. Chim. Acta, 2009, 643, 95
    363. C. X. Yu, J. L. Yan, Y. F. Tu, Microchimca Acta., 2011, in press
    364. S. N. Ding, J. J. Xu, H. Y. Chen, Chem. Commun. 2006, 3631
    365. G. F. Jie, P. Liu, L. Wang, Sh. Sh. Zhang, Electrochemistry Communications, 2010, 12, 22
    366. G. Zh. Zou, H. X. Ju, Anal. Chem., 2004, 76, 6871
    367. R. D. Gerardi, N. W. Barnett, S. W. Lewis, Anal. Chim. Acta, 1999, 378, 1
    368. X. B. Yin, S. J. Dong, E. K. Wang, Trends in Anal. Chem., 2004, 23, 432
    369. X. Liu, L. X. Cheng, J. P. Lei, H. X. Ju, Analyst, 2008, 133, 1161
    370. G. Z. Zou, H. X. Ju, W. P. Ding, H. Y. Chen, J. Electroanal. Chem., 2005, 579, 175
    371. K. Arai, K. J. Takahashi, F. Kusu, Anal. Chem., 1999, 71, 2237
    372. Y. W. Chi, J. P. Duan, S. D. Lin, G. N. Chen, Anal. Chem., 2006, 78, 1568
    373. J. Y. Chen, M. Miyake, Y. W. Chi, T. Nishiumi, K. Aoki, Electroanalysis, 2007, 19(2-3), 181
    374. D. Arora, A. J. Mello, A. Manz, Anal. Commun, 1997, 34, 393
    375. G. M. Greenway, P. J. Knight, Anal. Proc., 1995, 32, 251
    376. W. Knight, G. M. Greenway, Analyst, 1995, 20, 2543
    377. J. F. Liu, J. L. Yan, X. Y. Yang, E. K. Wang, Anal. Chem., 2003, 75, 3637
    378. J. Wei, M. L. Gostkowski, M. J. Gordon, J. B. Shear, Anal. Chem., 1998, 70, 3470
    379.V. Najmanova, L. Rambousek et al., Chromatographia, 2011, DOI 10.1007/s10337-011-1959-9
    380. Niwa, H. Tabei, B. P. Solomon, F. M. Xie, P. T. Kissiger, Journal of Chromatography B, 1995, 670, 21
    381. L. L. Li, H. Y. Liu, Y. Y. Shen, J. R. Zhang, J. J. Zhu, Anal. Chem., 2011, 83, 661
    382. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, H. Weller, J. Phys. Chem. B, 2002, 106 (29), 7177
    383. M. Abhijit, T. Naoto, J. Phys. Chem. C, 2008, 112 (22), 8244
    384. K. Zhao, J. Li, H. Zh. Wang, J. Q. Zhuang, W. Sh. Yang, J. Phys. Chem. C, 2007, 111 (15), 5618
    385. V. C. Tsafack, C. A. Marquette, B. Leca, L. J. Blum, Analyst, 2000, 125, 151
    386. H. P. Wu, T. L. Cheng, W. L. Tseng, Langmuir, 2007, 23, 7880
    387. D. Figeys, D. Pinto, Anal. Chem. 2000, 72(9), 330
    388. R. D. Reyes, D. Iossifidis, A. P. Auroux, A. Manz, Anal. Chem. 2002, 74(12),2623
    389. A. P. Auroux, D. Iossifidis, R. D. Reyes, A. Manz, Anal. Chem. 2002, 74(12),2637
    390. D. Schmalzing, A. Adourian, et al, Anal. Chem. 1998, 70(11), 2303
    391. G. B. Lee, S. H. Chen, et al, Sens. Actuators B, 2001, 75(1), 142
    392. W. D. Cao, X. Y. Chen, X. R. Yang, E. K. Wang, Electrophoresis, 2003, 24, 3124
    393. X. B. Yin, S. J. Dong, E. K. Wang, Trend Anal. Chem. 2004, 23, 432
    394. S. Pal, M. J. Kim, Y. K. Tak, H. T. Kwon, J. M. Song, Biomed Microdevices, 2009, 11, 971
    395. Y. L. Luo, Inorganic Chemistry Communications, 2009, 12, 588
    396. R. P. Liang, P. F. Hu, G. H. Gan, J. D. Qiu, Talanta,2009, 77, 1647
    397. J. Wang, G. Chen, Talanta, 2003, 60, 1239
    398. K.Y. Yan, R.L. Smith, S.D. Collins, Biomedical Microdevices, 2000, 2:3, 221
    399. Y. Du, E. K. Wang, J. Sep. Sci. 2007, 30, 875
    400. H. Wei, E. K. Wang, Trends in Analytical Chemistry, 2008, 27(5), 447
    401. S. N. Ding, J. J. Xu, H. Y. Chen, Talanta 2006, 70, 403
    402. S. N. Ding, J. J. Xu, W. J. Zhang, H. Y. Chen, Talanta 2006, 70, 572
    403. H. B. Qiu, J. L. Yan, E. K. Wang, et al, Anal. Chem. 2003, 75, 5435
    404. X. C. Zhao, T. Y. You, E. K. Wang, et al, J. Chromatogr. B, 2004, 810, 137
    405. S. L. Simpson Jr,J. P. Quirino, S. Terabe, Journal of Chromatography A, 2008, 1184, 504
    406. M. J. Gong, K. R. Wehmeyer, P. A. Limbach, F. Arias, W. R. Heineman, Anal. Chem. 2006, 78, 3730
    407. B. Jung, R. Bharadwaj, J. G. Santiago, Electrophoresis 2003, 24, 3476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700