不对称双希夫碱-锌系列催化剂的开发及催化制备脂肪族聚酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪族聚酯类高分子材料作为生物可降解材料的主要代表之一,因具有较好的力学性能,生物相容性,易加工等特点,在医用高分子材料、医药等领域有着巨大的应用潜力。聚酯合成中具备优良性能催化剂的开发一直是发展聚酯行业的重要突破之一
     本文合成了1个单边希夫碱-锌配合物和7个不对称双边希夫碱-锌配合物,并通过元素分析、X-射线单晶衍射、X-射线粉末衍射、核磁共振、紫外光谱、红外光谱和热重分析等对其结构表征:以开发的上述配合物为催化剂,探讨了其催化丙交酯(LA)的均聚、马来酸酐(MA)与氧化环己烯(CHO)的共聚行为,并探索性地尝试了其对L-LA与MA共聚、L-LA与CHO共聚研究;利用凝胶渗透色谱测定了所有聚合物的分子量(Mn)及分子量分布(PDI),利用红外光谱、核磁共振氢谱对其微观结构进行了表征,并利用热重分析对聚合物的稳定性进行了评价;在催化聚合过程中,重点剖析了催化剂结构与聚合效果之间的对应关系,并用筛选的性能优异催化剂考察了单体与催化剂的比例、助催化剂、聚合反应时间、聚合反应温度等对聚合效果的影响,为不对称双希夫碱金属催化剂催化制备生物可降解脂肪族聚酯材料提供新思路。
     首先,进行1-苯基-3-甲基-4-苯甲酰基-5-吡唑酮(PMBP)与邻苯二胺的单侧-NH2的选择性酮胺缩合,合成了希夫碱前驱体L;并选用具有生物相容性的锌金属离子配位,合成1个单边希夫碱-锌LZn催化剂;再通过金属锌离子的模板效应,利用希夫碱前驱体L与系列醛进一步自组装,开发出具有无毒潜质,结构稳定的7个不对称双边希夫碱-锌LZn-1~LZn-7催化剂,其中LZn-1~LZn-5为单核结构,LZn-7为三核结构。
     其次,对LZn,LZn-1~LZn-6共7个催化剂催化LA(L-及L,D-)熔融均聚的聚合效果进行了研究。结果表明:该系列催化剂相比催化LD-LA而言,在催化L-LA开环均聚时具有较好的催化活性(0.650×103~4.749×103g·mol-1h-1并探索出性能较好(催化活性为4.160×103g·mol-1h-1,聚乳酸分子量M。为4.298×103g·mol-1,分子量分布PDI为1.19)的LZn-3实现L-丙交酯开环聚合的优化工艺条件为:单体与催化剂比例为1000:1,聚合反应时间为24h,聚合反应温度为160℃。
     再次,对LZn,LZn-1~LZn-7共8个催化剂分别在4-二甲氨基毗啶(DMAP)协同下参与催化L-LA与MA熔融共聚效果进行了研究。结果表明:该系列催化剂能够实现L-LA与MA共聚并表现出中等催化活性(0.429×103~1.641×103g·mol-1h-1)。对筛选出的LZn-3催化剂,考察其在不同催化条件下的共聚表现有:当单体与催化剂比例为250:250:1:1,反应时间24h,反应温度130℃,与DMAP配伍时有较好的聚合效果(催化活性为2.880×103g·mol-1h-1,共聚物P(LLA-MA)分子量Mn为1.023×104g·mol-1,分子量分布PDI为1.50)。
     然后,对LZn,LZn-1~LZn-7共8个催化剂分别在DMAP协同下参与催化L-LA与CHO熔融共聚效果进行了研究。结果表明:该系列催化剂能够实现L-LA与CHO共聚并表现出中等催化活性(0.265×103~0.919×103g·mol-1h-1)。综合考察LZn-3在不同催化条件下的共聚表现有:当单体与催化剂比例为250:250:1:1,聚合反应时间为24h,与DMAP配伍时有较好的聚合效果(催化剂的催化活性为0.913×103g·mol-1h-1,共聚物P(LLA-CHO)分子量Mn为2.404×103g·mol-1,分子量分布PDI为1.07)。
     另外,对LZn,LZn-1~LZn-7共8个催化剂分别在DMAP协同下参与MA与CHO熔融、溶液共聚进行了研究。结果表明:该系列催化剂能够实现MA与CHO熔融、溶液共聚并表现出较高的催化活性(0.52×103~6.57×103g·-mol-1h-1),且都能得到相同数量级(103-104)的共聚物。对筛选出的LZn-3催化剂,考察其在不同催化条件下的共聚表现有:当单体与催化剂比例为250:250:1:1,熔融聚合时间150min,反应温度110℃,与DMAP配伍时有较好的聚合效果(催化活性为6.10×103g·mol-1h-1,共聚物P(MA-CHO)分子量Mn为1.656×104g·mol-1,分子量分布PDI为1.66)。考察LZn-7在不同催化条件下的聚合表现有:当单体与催化剂比例为150:150:1:1,熔融聚合时间150min,聚合反应温度110℃,与DMAP配伍时有较好的聚合效果(催化活性为3.22×103g·mol-1h-1,共聚物P(MA-CHO)分子量Mn为1.403×104g·mol-1,分子量分布PDI为1.17)。
     最后,综合LZn,LZn-1~LZn-7共8个催化剂在四个不同聚合体系的催化表现有:该系列催化剂能够实现催化L-LA开环均聚,L-LA与MA共聚,L-LA与CHO共聚,MA与CHO共聚;催化剂的催化效果与其结构以及取代基团的空间效应和电子效应有重要关系,不对称双希夫碱锌比单边希夫碱锌催化效果好,三核催化剂比相应单核催化剂具有更好的催化能力;具有拉电子取代基和大位阻取代基结构的催化剂表现出较好的催化行为。
Aliphatic polyesters, as the most typical representative of the variety of biodegradable polymers known, had become increasingly important in the development of biomedical polymer materials and drug delivery systems due to their characteristic properties of high mechanical strength, biocompatibility and easily processed ability. As the key to synthesis, the development of catalysts was one of the important breakthroughs in aliphatic polyester industry.
     In this thesis, one Zn(Ⅱ) unilateral Schiff-base complex and seven Zn(Ⅱ) asymmetric bis-Schiff-base complexes were obtained, respectively. They were characterized by element analysis (EA), X-ray single-crystal diffraction (XRD), powder X-ray diffraction (PXRD), nuclear magnetic resonance spectrum (NMR), ultraviolet-visible absorption spectrum (UV-Vis), infrared spectrum (FT-IR) and thermo-gravimetric analysis (TGA). Moreover, all the eight complexes were used as catalysts for the ring-opening polymerization of lactide as well as the copolymerization of L-lactide (LLA) and maleic anhydride (MA), LLA and cyclohexene oxide (CHO) or MA and CHO. The molecular weight size (Mn or Mw) and the molecular weight distribution (PDI=Mw/Mn) of the obtained polymers were determined by gel permeation chromatography (GPC). In addition, the microstructures and properties of polymers were characterized by the FT-IR,1H NMR and TGA. During the process of polymerization, the study on the corresponding relationship between catalysts structure and the polymerization behavior was focused. The catalysts with excellent performance were selected to investigate the effects of the molar ratio of monomer and catalyst, co-catalyst, polymerization time and polymerization temperature on detailed polymerization.
     Firstly, based on the unilateral Schiff-base ligand L synthesized from the selective condensation reaction of1-Phenyl-3-methyl-4-benzoyl-2-pyrazolin-5-one (PMBP) and one-NH2of1,2-diaminobenzene, the zinc(Ⅱ) unilateral Schiff-base complex LZn was obtained by the coordination of Zn ion with two ligands L. Furthermore, utilizing the Zn-templating effect, seven asymmetric zinc(Ⅱ) bis-Schiff-based complexes (LZn-1~LZn-7) were obtained from the condensation reaction of L and one of aldehyde derivatives (salicylaldehyde,5-bromo-2-hydroxy-benzaldehyde,3,5-dibromo-2-hydroxy-benzal-dehyde, o-vanillin,5-bro-mo-3-methoxy-2-hydroxy-benzaldehyde and3,5-ditert-butyl-2-hydroxybenzaldehyde). The X-ray single crystal diffraction determinations showed that five (LZn-1~LZn-5) of the complexes were monomers and one (LZn-7) of complexes had homo-trinuclear framework.
     Secondly, the bulk polymerization behaviors of LA (LLA and L,D-LA) were studied in detail by using complexes LZn and LZn-1~LZn-6as the catalysts. The results showed that all the zinc(II) catalysts had a relatively higher catalytic activity (0.650-4.749×103g·mol-1h-1) for the polymerization of LLA in contrast to that of L,D-LA. On the condition of better catalytic behaviors (Catalytic activity of4.160×103g·mol-h-1, Mn of4.298×103g·mol-1and PDI of1.19) from the selected catalyst LZn-3, the controllable polymerization process was based on the molar ratio of monomer and catalyst of1000:1, the polymerization time of24h and the polymerization temperature of160℃.
     Thirdly, the bulk copolymerization behaviors of LLA and MA were studied in detail by using the eight complexes LZn and LZn-1-LZn-7as the catalysts in presence of4-dimethylaminopyridine (DMAP). The results showed that the effective copolymerization of LLA and MA was realized with the moderate catalytic activity (0.429~1.641×103g·mol-1h-1). Using the selected LZn-3as the suitable catalyst from the copolymerization condition of the molar ratio of LLA, MA, catalyst and DMAP of250:250:1:1, the reaction time of24h and the polymerization temperature of130℃, the relatively better catalytic behaviors were obtained, where the catalytic activity was up to2.880×103g·mol-1h-1, the Mn of the P(LLA-MA) was1.023×104g·mol-1and PDI was1.50.
     The bulk copolymerization behaviors of LLA and CHO were also studied in detail by using the eight complexes LZn and LZn-l-LZn-7as the catalysts in presence of DMAP. The results showed that the effective copolymerization of LLA and CHO was realized with the moderate catalytic activity (0.265×103~0.919×103g·mol-1h-1). Using the selected LZn-3as the suitable catalyst from the copolymerization condition of the molar ratio of LLA, CHO, catalyst and DMAP of250:250:1:1, the reaction time of24h and the polymerization temperature of115℃, the relatively better catalytic behaviors were obtained, where the catalytic activity was0.913×103g·mol-1h-1, the Mn of the P(LLA-CHO) was2.404×103g·mol-1and PDI was1.07.
     Fourthly, the copolymerization behaviors of MA and CHO in both bulk and in solvent were studied in detail by using the eight complexes LZn and LZn-1-LZn-7as the catalysts in presence of DMAP. The results showed that the effective copolymerization of MA and CHO was realized with the excellent catalytic activity (0.52×103~6.57×103g·mol-1h-1). Using the selected LZn-3as the suitable catalyst from the copolymerization condition of the molar ratio of MA, CHO, catalyst and DMAP of250:250:1:1, the reaction time of150min and the polymerization temperature of110℃in bulk, the relatively better catalytic behaviors were obtained, where the catalytic activity was6.10×103g·mol-1h-1, the Mn of the P(MA-CHO) was1.656×104g·mol-1and the PDI was1.66. Using the selected LZn-7as the suitable catalyst from the copolymerization condition of the molar ratio of MA, CHO, catalyst and DMAP of150:150:1:1, the reaction time of150min and the polymerization temperature of110℃in bulk, the relatively better catalytic behaviors were obtained, where the catalytic activity was3.22×103g·mol-1, the Mn of the P(MA-CHO) was1.403×104g·mol-1and the PDI was1.17.
     Finally, all the performances of the series zinc(Ⅱ) catalysts demonstrated that it could achieve the polymerization of LLA, the co-polymerization of LLA and MA, of LLA and CHO and of MA and CHO. The effect of polymerization was clearly influenced by the structure of the catalyst, especially the steric effects and the electronic effects of the catalysts. The asymmetric zinc(Ⅱ) bis-schiff-based catalysts had better catalytic effect than the zinc(Ⅱ) unilateral schiff based ones. The zinc(Ⅱ) catalyst with trinuclear structure had better catalytic effect than the zinc(Ⅱ) with mononuclear ones. The catalyst with the withdrawing substituent groups or having a large steric hindrance groups showed superior catalytic effect.
引文
[1]Ikada Y., Tsuji H.. Biodegradable polyester for medical and ecological applications [J]. Macromol. Rapid Commun.,2000,21(3):117-132
    [2]Middlenton J. C., Tipton A. J.. Synthetic biodegradable polymers as orthopedic devices [J]. Biomaterials,2000,21:2335-2346
    [3]Langer R.. Biomaterials in drug delivery and tissue engineering [J]. Acc Chem. Res.,2000, 33(2):94-101
    [4]Gilding D. K., Reed A. M.. Biodegradable polymers for use in surger-y-polyglycolic/ poly lactic acid homo-and copolymers [J]. Polymer,1979,20:1459-1464
    [5]Amass W., Amass A., Tighe B.. A review of biodegradable polymer:uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradable studies [J]. Polym. Int., 1998,47:89-144
    [6]Middlenton J. C., Tipton A. J.. Synthetic biodegradable polymers as orthopedic devices [J]. Biomaterials,2000,21:2335-2346
    [7]Daniels A. U., Chang M. K. O., Adriano K. P.. mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone [J]. J. Appl. Biomater., 1990,1(1):57-78
    [8]Athanasiou K. A., Niederauer G. G., Agrawal C. M.. Sterilization, toxicity, biocompatibi-lity and clinical applications of polylactic acid/polyglycolic acid copolymers [J]. Biomaterials,1996,17(2):93-102
    [9]Jerome C., Lecomte P.. Recent advances in the synthesis of aliphatic polyesters by ring opening polymerization [J]. Advanced Drug Delivery Reviews,2008,60:1056-1076
    [10]Albertsson A. C., Varma I.. Aliphatic polyesters:synthesis, properties and applications [J]. Adv. Polym. Sci.,2002,157:1-40
    [11]Albertsson A. C., Varma I. K.. Recent developments in ring opening polymerization of lactones for biomedical applications [J]. Biomacromolecules,2003,4:1466-1486
    [12]Jain R., Shah N. H., Malick A.W., et al. Controlled drug delivery by biodegradable poly(ester) devices:different preparative approaches [J]. Drug Dev. Ind. Pharm.,1998, 24:703-727
    [13]Ikada Y.. Basics and application of biodegradable polymers [M]. Lisevier, Tokyo:1990
    [14]Jeske R. C., DiCiccio A. M., Coates G.W.. Alternating Copolymerization of Epoxides and Cyclic Anhydrides:An Improved Route to Aliphatic Polyesters [J]. J. Am. Chem. Soc.,2007,129:11330-11331
    [15]Dawes E., Senior P.. The role and regulation of energy reserve polymers in microrgani-sms [J]. Advances in Microbial Physiology,1973,10:135-266
    [16]Kusaka S., Abe H., Doi Y.. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters [J]. Progress in Polymer Science,2000,25:1503-1555
    [17]Dionisi D., Majone M., Tandoi V., et al. Sequencing batch reactor:influence of periodic operation on performance of activated sludges in biological wastewater treatment:novel reactor engineering for the new millennium [J]. Industrial and Engineering Chemistry Research,2001,40:5110-5119
    [18]黄金,代洪亮,张慧莉,等.微生物法合成生物高分子—聚羟基脂肪酸(酯)进展[J].2012,38(3):132-136
    [19]高明,王秀芬,郭锐等.PBS基生物降解材料的研究进展[J].高分子通报,2004,5:51-55
    [20]Brown A. H., Sheares V.V.. Amorphous unsaturated aliphatic polyesters derived from dicarboxylic monomers synthesized by Diels-Alder chemistry [J]. Macromolecules, 2007,40:4848-4853
    [21]Wang Y., Ameer G.A., Sheppard B.J., et al. A tough biodegradable elastomer [J]. Nat. Biotech.,2002,20:602-606
    [22]Coulembier O., Dege'e P., Hedrick J. L.. From controlled ring-opening polymerization to biodegradable aliphatic polyester:Especially poly(β-malic acid) derivatives [J]. Prog. Polym.Sci.,2006,31:723-747
    [23]Albertsson A. C. Varma I. K.. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications [J]. Biomacromolecules,2003,4:1466-1486
    [24]Darensbourg D. J., Choi W., Karroonnirun O.. Ring-Opening Polymeriza-tion of Cyclic Monomers by Complexes Derived from Biocompatible Metals. Production of Poly(lactide), Poly(trimethylene carbonate), and Their Copolymers [J]. Macromolecules, 2008,41:3493-3502
    [25]Nieuwenhuis J.. Synthesis of polylactides, polyglycolides and their copolymers [J]. Clin. Mater.,1992,10(1-2):59-67
    [26]Li H., Zhang S. H., Jiao J. C. Controlled Synthesis of Polylactides Using Biogenic Creatinine Carboxylate Initiators [J].Biomacromolecules,2009,10:1311-1314
    [27]Wang J. F., Yao Y. M., Zhang Y.. Bridged Bis(amidinate) Ytterbium Alkoxide and Phenoxide:Syntheses, Structures, and Their High Activity for Controlled Polymerization of L-Lactide and ε-Caprolactone [J]. Inorg. Chem.,2009,48:744-751
    [28]Samantaray M. K., Katiyar V., Roy D., et al. A Cationic (N-Heterocyclic carbene)silver Complex as Catalyst for Bulk Ring-Opening Polymerization of L-Lactides [J]. Eur. J. Inorg. Chem.,2006,15:2975:2984
    [29]Ray L., Katiyar V., Raihan M. J., et al. First Example of a Gold(Ⅰ) N-Heterocyclic-Carbene-Based Initiator for the Bulk Ring-Opening Polymerization of L-Lactide [J]. Eur. J. Inorg. Chem.,2006,18:3724-3730
    [30]Chisholm M. H., Gallucci J. C., Phomphrai K.. Lactide Polymerization by Well-Defined Calcium Coordination Complexes:Comparisons with Related Magnesium and Zinc Chemistry [J]. Chem. Commun.,2003:48-49
    [31]Myers M., Connor E. F., Glauser T., et al. Phosphines:Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides [J]. J. Polym. Sci. Part A:Polym. Chem.,2002,40(7):844-851
    [32]Spassky N.. Stereospecific and anionic ring-opening polymerization [J]. Makromol Chemie-Macromol. Symp.,1991,42/43:15-49
    [33]Sodergard A., Stolt M.. Properties of lactic acid based polymers and their correlation with composition [J]. Prog. Polym. Sci.,2002,27(6):1123-1163
    [34]Kimura Y., Tang Z., Fukushima K., et al. Polylactic acid with good moldability and high crystallinity and melting point [J]. PCT. Int. Appl.,2006,58
    [35]Tsuji H.. Poly(lactide) stereocomplexes:formation, structure, properties, degradation, and applications [J]. Macromol. Biosci.,2005,5(7):569-597
    [36]Biela T., Duda A., Penczek S.. Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes [J]. Macromolecules,2006,39:3710-3713
    [37]Connor E.F., Nyce G. W., Myers M, et al. First example of N-heterocyclic carbenes as catalysts for living polymerization:organocatalytic ring-opening polymerization of cyclic esters [J]. J. Am. Chem. Soc.,2002,124(6):914-915
    [38]Tanzi M. C., Verderio P., Lumpugnani M. G., et al. Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use [J]. J. Mater. Sci.: Mater. Med.,1994,5(6&7):393-396
    [39]杨延慧,严涵,康晓梅等.聚己内酯的应用研究进展[J].化工新型材料,2011,39(12):13-15
    [40]Kricheldorf H. R., Stficker A., Langanke D., The reactivity of cyclic and noncyclic dibutyltin bisalkoxides as initiators in the polymerization of lactones [J]. Macromol., 2001,202:2525-2534
    [41]解德良,姜标.羟基酸引发ε-己内酯开环聚合的研究[J].高分子学报,2000,10(5):532-537
    [42]Van B. K., Jerome R., Jerome C. Functional amphiphilic and biodegradeable copolymers for intravenous vectorisation [J]. Polymer 2007,48(26):7431-7443
    [43]Shen Y., Zhu K. J., Shen Z., et al. Synthesis and characterization of highly random copolymer of e-caprolactone and lactide using rare earth catalyst [J]. J. Polym. Sci. Part A:Polym. Chem.,1996,34:1799-1805
    [44]Nomura N., Akita A., Ishii R.. Random Copolymerization of ε-Caprolac -tone with Lactide Using a Homosalen-Al Complex [J]. J. Am. Chem. Soc.,2010,132:1750-1751
    [45]Marcincinova-Benabdillah K., Boustta M., Coudane J., et al. Novel Degradable Polymers Combining d-Gluconic Acid, a Sugar of Vegetal Origin, with Lactic and Glycolic Acids [J]. Biomacromolecules,2001,4(2):1279-1284
    [46]杨利川,叶瑞荣,余世钦等.一种生物材料聚(乳酸—蛋氨酸)的制备与表征[J].高分子材料科学与工程,2010,26(12):129-132.
    [47]Huijser S., Nejad E. H., Sablong R., et al. Ring-Opening Co- and Terpolymerization of an Alicyclic Oxirane with Carboxylic Acid Anhydrides and CO2 in the Presence of Chromium Porphyrinato and Salen Catalysts [J]. Macromolecules,2011,44:1132-1139
    [48]Fischer R. F.. Polyesters from expoxides and anhydrides [J]. J. Polym. Sci.,1960, 44(143),155-172.
    [49]Rajkhowa R., Varma I. K., Albertsson A. C., et al. Enzyme-catalyzed copolymerizations of oxiranes with dicarboxylic acid anhydrides [J]. Appl. Polym. Sci.,2005,97:697-704
    [50]Jeske J. C., DiCiccio A. M., Coates G. W.. Alternating copolymerization of epoxides and cyclic anhydrides:an improved route to aliphatic polyesters [J]. Am. Chem. Soc.,2007, 129(37):11330-11331
    [51]Feng L., Hao J., Xiong C., et al. A novel biodegradable and thermosensitive polymer with PEG-analogue macromolecular structure [J]. Chem.Commun.,2009:4411-4413
    [52]Aida T., Sanuki K., Inoue S.. Well-controlled polymerization by metalloporphyrin. synthesis of copolymer with alternating sequence and regulated molecular weight from cyclic acid anhydride and epoxide catalyzed by the system of aluminum porphyrin coupled with quaternary organic salt [J]. Macromolecules,1985,18(6):1049-1055
    [53]Jeske R. C., DiCiccio A. M., Coates Geoffrey W.. Alternating Copolymerization of Epoxides and Cyclic Anhydrides:An Improved Route to Aliphatic Polyesters [J]. J. Am. Chem. Soc.,2007,129:11330-11331
    [54]Stnnaett V., Szwarc M.. Polyocndensation of six-membered lactones [J]. Jomual of Polymer Science,1953,10(6):587-591
    [55]Kricheldorf H. R., Dunsing R.. Polylactones & Mechanism of the cationie Polymerization of L, L-dilactide [J]. Makromol. Chem.,1986,187:1611-1625
    [56]Kricheldorf H. R., Kreiser-Saunders I.. Polylactones 19 anionic polymerization of L-lactide in solution [J]. Makromol. Chem.,1990,191:1057-1066
    [57]Kleine J., Kleine H. H. Ber hochmolekulare, insbesondere optisch aktive polyester der milchsaure, ein beitrag zur stereochemie makromolekularer verbindungen [J]. Makromol. Chem.,1959,30:23-38
    [58](a) Kricheldorf H. R., Boettcher C. Polylactones 26. Lithium alkoxide-initiated polymerizations of L-lactide [J]. Makromol. Chem.,1993,194:1665-1669 (b) Kricheldorf H. R., Boettcher C. Polylactones.27. Anionic polymerization of L-lactide. Variation of end groups and synthesis of block copolymers with poly (ethylene oxide) [J]. Makromol. Chem., Macromol. Symp.,1993,73:47-64
    [59]Xie W., Chen D., Fan X., ea al. Lithium chloride as catalyst for the ring-opening polymerization of lactide in the presence of hydroxyl-containing compounds [J]. J. Polym. Sci., Part A:Polym. Chem.,1999,37(17):3486-3491
    [60]Jedlinski Z., Walach W., Kurcok P., et al. Polymerization of lactones,12. Polymerization of L-dilactide and L,D-dilactide in the presence of potassium methoxide [J]. Makromol. Chem.,1991,192(9):2051-2057
    [61](a) Sipos L., Zsuga M.. Anionic-polymerization of L-lactide effect of lithium and potassium as counterions [J]. Pure Appl. Chem.,1997, A 34(7):1269-1284 (b) Sipos L., Gunda T., Zsuga M.. The role of complex-formation in the anionic-polymerization of L-lactide [J]. Polym. Bull.,1997,38(5):609-612
    [62]Kasperczyk J. E.. Microstructure Analysis of Poly(lactic acid) Obtained by Lithium tert-Butoxide as Initiator [J]. Macromolecules,1995,28(11):3937-3939.
    [63]Bero M., Dobrzynski P., Kasperczyk J. Synthesis of disyndiotactic polylactide [J]., J. Polym. Sci., Part A:Polym. Chem.,1999,37(22):4038-4042
    [64]Chisholm M. H., Lin C. C., Gallucci J. C., et al. Binolate complexes of lithium, zinc, aluminium, and titanium, preparations, structures, and studies of lactide polymerization [J]. Dalton Trans.,2003,3:406-412
    [65]Ko B. T., Lin C. C. A mixed aryloxide/alkoxide tetramer has been characterized crystallographically [J]. J. Am. Chem. Soc.,2001,123:7973-7977
    [66]Dittrich W., Schulz R. C. Kinetik und Mechanismus der ringoffnenden Polymerisation von L-Lactid [J]. Angew. Makromol. Chem.,1971,15(1):109-126
    [67]Kricheldorf H. R., Berl M., Scharnagl N.. Poly lactones Polymerization Mechanism of Metal Alkoxide-Initiated Polymerizations of Lactide and Various Lactones [J]. Macromolecules,1988,21:286-293
    [68]Dubois P., Jacobs C., Jerome R., et al. Macromolecular engineering of polylactones and polylactides.4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide [J]. Macromolecules,1991,24(9):2266-2270
    [69]Wang Y. B., Hillmyer A.. Synthesis of polybutadiene-polylactide diblock copolymers using aluminum alkoxide macroinitiators [J]. Kinetics Mech Macromol.,2000,33: 7395-403
    [70]Degee P., Dubois P., Jerome R.. Bulk polymerization of lactides initiated by aluminium isopropoxide,2. Beneficial effect of lewis bases and transfer agents [J]. Macromol. Chem. Phys.,1997,198(6):1973-1984
    [71]Eguiburu J. L., Fernandez-Berridi M. J., Cossio F. P., et al. Ring-Opening Polymerization of 1-Lactide Initiated by (2-Methacryloxy)ethyloxy-Aluminum Trialkoxides. Kinetics [J]. Macromolecules,1999,32(25):8252-8258
    [72]Von Schenk H., Ryner M., Albertsson A. C., et al. Ring-opening polymerization of lact-ones and lactides with Sn(Ⅳ) and Al(Ⅲ) initiators [J] Macromolecules,2002,35(5): 1556-1562
    [73]Degee P., Dubois P., Jerome R., et al. New catalysis for fast bulk ring-opening polymerization of lactide monomers [J]. Macromol. Symp.,1999,144(1):289-302
    [74]Kricheldorf H. R., Kreiser-Saunders I., Stricker A.. Polylactones 48. SnOct2-Initiated Polymerizations of Lactide:A Mechanistic Study [J]. Macromolecules,2000,33(3): 702-709
    [75]Kowalski A., Duda A., Penczek S.. Kinetics and Mechanism of Cyclic Esters Polymeriza- tion Initiated with Tin(Ⅱ) Octoate.3.-Polymerization of L,L-Dilactide [J]. Macromolecul -es 2000,33(20):7359-7370
    [76]Chisholm M. H., Delbridge E. E.. Ring-opening of lactides and related cyclic monomers by triaryltin (Ⅳ) alkoxides and amides [J]. Chem. Commun.,2001,14:1308-1309
    [77]Malcolm H. C., Ewan E. D.. A study of the ring-opening polymerization (ROP) of L-lactide by Ph2SnX2 precursors (X=NMe2, OPri):the notable influence of initiator group [J]. New J. Chem.,2003,27:1177-1183
    [78]Stridsberg K., Ryner M., Albertsson A. C. Dihydroxy-Terminated Poly(1-lactide) Obtain-ed by Controlled Ring-Opening Polymerization:Investigation of the Polymerization Mechanism [J]. Macromolecules,2000,33(8):2862-2869
    [79]Nimitsiriwat N., Marshall E. L., Gibson V. C., et al. Unprecedented reversible migration of amide to schiff base ligands attached to tin:latent single-site initiators for lactide polymerization [J]. J. Am. Chem. Soc.,2004,126(42):13598-13599
    [80]Alaaeddine A., Thomas C.M., Roisnel T., et al. Aluminum and yttrium complexes of anunsymmetrical mixed fluorous alkoxy/Phenoxy-diimino ligand:synthesis, structure, and ring-opening polymerizationeatalysis [J]. Organometallies,2009,28:1469-1475
    [81]Ovitt T.M., Coates G.W.. Stereochemistry of lactide polymerization with chiral catalysts: New opportunities for stereoeontrol using polymer exchange mechanisms [J]. J. Am. Chem. Soc.,2002,124:1316-1326
    [82]Wu J. C., Pan X. B., Tang N., et al. Synthesis, characterization of aluminum complexes and the application in ring-opening polymerization of L-lactide [J]. Eur. Polyln. J.,2007, 43:5040-5046
    [83]Kowalski A., Duda A., Penczek S.. polymerization of L,L-lactide initiated by aluminum isopropoxide trimer or tetramer [J]. Macromolecules,1998,31(7):2114-2122.
    [84]游效曾.配位化学进展[M].北京:高等教育出版社,2003
    [85](a) Venkataramanan N. S., Kuppuraj K., Rajagopai S.. Metal-salen complexes as efficient catalysts for the oxygenation of heteroatom containing organic compounds-synthetic and mechanistic aspects[J]. Coord. Chem. Rev.,2005,249:1249-1268 (b) Baleizao C., Garcia H.. Chiral salen complexes:an overview to recoverable and reusable homogeneous and heterogeneous catalysts [J]. Chem. Rev.,2006,106: 3987-4043 (c) Ma R., Hou Y. B., Gao J., et al. Recent progress in the vinylic polymerization and copolymerization of norbornene catalyzed by transition metal catalysts [J]. Polym. Rev.,2009,49:249-287 (d) Gupta K. C., Sutar A. K... Catalytic activities of Schiff base transition metal complexes [J]. Coord. Chem. Rev.,2008,252:1420-1450
    [86]Lee J., Kim Y., Do Y.. Novel Chlorotitanium Complexes Containing Chiral Tridentate Schiff Base Ligands for Ring-Opening Polymerization of Lactide [J].2007,46: 7701-7703
    [87]Idage B. B., Idage S.B., Kasegaonkar A.S., et al. Ring opening polymerization of dilactide using salen complex as catalyst [J]. Materials Science and Engineering B,2010, 168:193-198
    [88]John A., Katiyar V., Ghosh P.. Ni(Ⅱ) and Cu(Ⅱ) complexes of phenoxy-ketimine ligands: synthesis, structures and their utility in bulk ring-opening polymerization (ROP) of L-lactide [J]. Polyhedron,2007,26:4033-4044
    [89]Chen L. L., Ding L.Q., Lu X. Q.. Bulk solvent-free melt ring-opening polymerization of L-lactide catalyzed by Cu(Ⅱ) and Cu(Ⅱ)-Nd(Ⅲ) complexes of the Salen-type Schiff -base ligand [J].2011,25:310-316
    [90]Hyon S. H., Jamshidi K., Ikada Y., Synthesis of polylactides with different molecular weights [J]. Biomaterials,1997,18(22):1503-1508
    [91]Mecerreyes D., Jerome R. From living to controlled aluminium alkoxide mediated ring-opening polymerization of (di)lactones, a powerful tool for the macromolecular engineering of aliphatic polyesters [J]. Macromol. Chem. Phys.1999,200(12): 2581-2590
    [92]Puaux J. P., Banu I., Nagy I., et al. A Study of L-Lactide Ring-Opening Polymerization Kinetics [J]. Macromol. Symp.,2007,259(1):318-326
    [93]Xiao G. Q. Yan B., Bao F.. Bulk ring-opening polymerization (ROP) of L-lactide catalyzed by Ni(Ⅱ) and Ni(Ⅱ)-Sm(Ⅲ) complexes based on a salen-type schiff-base ligand [J]. Polym. Chem. Polym. Chem.,2011,2:659-664
    [94]Zhang C., Wang Z. X.. Aluminum and zinc complexes supported by function-nalized phenolate ligands:Synthesis, characterization and catalysis in the ring-opening polymerization of s-caprolactone and rac-lactide [J]. Journal of Organometallic Chemistry,2008,693:3151-3158
    [95]Wu J. C., Huang B. H., Hsueh M. L., et al. Ring-opening polymerization of lactideinitiat-ed by magnesium and zinc alkoxides [J].Polymer,2005,4(23):9784-9792
    [96]Aida T., Inoue S.. Catalytic Reaction on Both Sides of a Metalloporphyrin Pla -ne. Alternating Copolymerization of Phthalic Anhydride and Epoxypropane with an Aluminum Porphyrin-Quaternary Salt System [J]. J. Am. Chem. Soc.1985,107(5): 1358-1364
    [97]Maeda Y.. Ring-opening copolymerization of succinic anhydride with ethylene oxide initiated by magnesium diethoxide [J]. Polymer,1997,38(18):4719-4725
    [98](a) Yokota S., Tachi Y., Itoh S. Oxidative degradation of β-diketiminate ligand in copper(Ⅱ) and zinc(Ⅱ) complexes [J]. Inorg. Chem.,2002,41:1342-1344 (b) Carey D. T., Cope-Eatough E. K., Vilaplana-Mafe E.,et al. Structures and reactions of monomeric and dimeric lithium diazapentadienyl complexes with electrophiles: synthesis of a-C,C'-dialkyl-b-diimines, and dissolution-reversible synthesis of an a-alkoxylithium-b-diimine. Dalton Trans.,2003:1083-1093 (c) Basuli F., Huffman J. C., Mindiola D. J. Reactivity at the beta-Diketiminate Ligand Nacnac" on Titanium(IV) (Nacnac-= [Ar]NC(CH3)CHC(CH3)N[Ar], Ar= 2,6-[CH(CH3)2]2C6H3). Diimine-alkoxo and Bis-anilido Ligands Stemming from the Nacnac-Skeleton [J]. Inorg. Chem.,2003,42(24):8003-8010
    [99]DiCiccio A. M., Coates G. W.. Ring-Opening Copolymerization of Maleic Anhydride with Epoxides:A Chain-Growth Approach to Unsaturated Polyesters [J].J. Am. Chem. Soc.,2011,133:10724-10727
    [100](a) Hua Z., Qi G., Chen S. Ring-opening copolymerization of maleic anhydride with propylene oxide by double-metal cyanide [J] J. Appl. Polym. Sci.,2004,93(4): 1788-1792 (b) Suh H. S., Ha J. Y., Yoon J. H., et al. Polyester polyol synthesis by alternating copolymerization of propylene oxide with cyclic acid anhydrides by using double metal cyanide catalyst [J]. React. Funct. Polym.,2010,70:288-293
    [101]Huijser S., Hosseini N. E., Duchateau R., et al. Ring-Opening Co-and Terpolymeriza-tion of an Alicyclic Oxirane with Carboxylic Acid Anhydrides and CO2 in the Presence of Chromium Porphyrinato and Salen Catalysts [J]. Macromolecules,2011,44: 1132-1139
    [102]Nejad E. H., Paoniasari A., Duchateau R.. Semi-aromatic polyesters by alternating ring-opening copolymerisation of styrene oxide and anhydrides [J]. Polym. Chem., 2012,3:1308-1313
    [103]Darensbourg D. J., Poland Ross R., Escobedo C. Kinetic Studies of the Alternating Copolymerization of Cyclic Acid Anhydrides and Epoxides, and the Terpolymerization of Cyclic Acid Anhydrides, Epoxides, and CO2 Catalyzed by (salen)CrⅢCl [J]. Macromolecules,2012,45:2242-2248
    [1]Sheikhshoaie I. A., Shamspur T., Ebrahimipur S. Y.. Asymmetric Schiff base as carrier in PVC membrane electrodes for manganese (Ⅱ) ions [J]. Arabian Journal of Chemistry, 2012,5(2):201-205
    [2]Gungor O., Gurkan P.. Synthesis and spectroscopic properties of novel asymmetric Schiff bases [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010, 77(1):304-311
    [3]Saeid M., Azadeh A., Abbas T., et al. Synthesis, characterization and electrochemical study of synthesis of a new Schiff base ligand and their two asymmetric Schiff base complexes of Ni(Ⅱ) and Cu(Ⅱ) with NN'OS coordination spheres [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,97:1033-1040
    [4]Gupta K.C., Sutar A. K.. Catalytic activities of Schiff base transition metal complexes [J]. Coordination Chemistry Reviews,2008,252(12-14):1420-1450
    [5]Shouvik C., Michael G. B., Ashutosh G. Anion directed templated synthesis of mono-and di-Schiff base complexes of Ni(Ⅱ) [J]. Polyhedron,2007,26(14):3513-3522
    [6]Bibal C., Daran J. C., Deroover S.. Ionic Schiff base dioxidomolybdenum(Ⅵ) complexes as catalysts in ionic liquid media for cyclooctene epoxidation [J]. Polyhedron,2010, 29(1):639-647
    [7]Shebl M., Khalil Saied M.E., Ahmed S. A., et al. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi-and tri-nuclear metal complexes of a new Schiff base ligand [J]. Journal of Molecular Structure,2010,980(1-30):39-50
    [8]姚克敏,周文,鲁桂,等.一种新的不对称Schiff碱与稀土配合物的合成机理及波谱[J].中国科学(B辑),1999,29(3):260-263
    [9]毕彩生,范玉华.稀土异双希夫碱配合物的合成、表征及热分解反应动力学[J].稀有金属,2004,28(4):700-702
    [10]Leandro D. P., Jairton D., Roberto F. de Souza, et al.Catalytic asymmetric epoxidation of limonene using manganese Schiff-base complexes immobilized in ionic liquids [J].Catalysis Communications,2008,9(1):135-139
    [11]Bedioui F.. Zeolite-encapsulated and Clay-intercalated Metal Porphyrin, Phthalocya Nine and Schif-base Complexes as Models for Biomimetic Oxidation Catalysts:an Overview [J]. Coordination Chemistry Reviews,1995,144:38-39
    [12]李爱科.NTN'O型后过渡金属铁、钴、镍、钮系列配合物的合成、表征及催化烯烃聚合反应的研究[D].福建:福建师范大学,2009
    [13]Yao K. M., Li N., Shen L. F.. Synthesis and Catalytic Activity of Ln (Ⅲ) Complexes with an Unsymmetrical Schiff Base Including Multi-C= N-Groups [J]. Science in China (Series B),2003,46(1):75-83
    [14]Elder R. C.. Tridentate and unsymmetrical tetradentate Schiff base ligands from Salicyldehydes and diamines:Their monomeric and dimeric nickel (Ⅱ)complexes [J]. Australian Journal Chem.,1978,31(1):35-45
    [15]Atkins R., Brewer G., Kokot E.. Copper (Ⅱ) and Nickel(Ⅱ)complexes of unsymmetrical tetradentate schiff base [J]. Inorg. Chem.,1985,24(2):127-134
    [16]Nabel A. N., Ahmed F. El Farargy. New Schiff Base Cationic Surfactants:Surface and Thermodynamic Properties and Applicability in Bacterial Growth and Metal Corrosion prevention [J].Biomacromolecules,2010,4:1457-1465
    [17]Vikas P., Viney C., Shailendra K. S.. Comparative study of conventional and microwave-assisted synthesis of some Schiff bases and their potential as antimicrobial agents [J]. Med. Chem. Res.,2010,9(1):1311-1328
    [18]Zhong Y. T., Liu L., Liu G. F., et al. Crystal structure and photoisomerism of 1-phenyl-3-methyl-4-(4-fluorobenzal)-5-pyrazolone 4-methyl thiosemicarbazone in the solid state [J]. J. Mol. Struct.,2008,889:259-264
    [19]Kotova O., Semenov S., Eliseeva S., et al.New Helical Zinc Complexes with Schiff Base Derivatives of β-Diketonates or β-Keto Esters and Ethylenediamine [J]. Eur. J. Inorg. Chem.,2009,3467-3474
    [20]Bhunora S., Jane M., Bhaw-Luximon A., et al. The use of Cu and Zn salicylaldimine complexes as catalyst precursors in ring opening polymerization of lactides:ligand effects on polymer characteristics [J]. Appl. Organometal. Chem.,2011,25,133-145
    [1]Dechy C. O., Martin V. B., Bourissou D.. Controlled ring-opening polymerization of lactide and glycolide [J]. Chem. Rev.,2004,104(12):6147-6176
    [2]Vert M.. Aliphatic polyesters:Great degradable polymers that cannot do everything [J]. Biomacromolecules,2005,6(2):538-546
    [3]Khan. J. H., Schue S., George G. A.. Heterogeneous ring-opening polymerization of lactones for biomedical applications [J]. Polym. Int.,2009,58(3):296-301
    [4]Cao T. P. A., Buchard A., Williams C. K.. Phosphasalen Yttrium Complexes:Highly Active and Stereoselective Initiators for Lactide Polymerization [J]. Inorg. Chem.,2012, 51:2157-2169
    [5]Platel R. H., Hodgson L. M., Williams C. K. Biocompatible initiators for lactid polymerization [J]. Polym. Rev.,2008,48(1):11-63
    [6]Wang C. Y., Zhao Y. M.. Synthesis of biodegradable material polylacticacid [J]. Chemical Industry and Engineering Progress,2003,22(7):678-682
    [7]Zhao Y. M., Wang Z. Y., Wang J., et al. Direct synthesis of poly (D, L-lactic acid) via melt polycondensation and it's application indrug delivery [J]. J. Appl. Polym. Sci.,2004, 91(4):2143-2150
    [8]魏志勇,刘炼,张辉,等.环烷氧锡引发L-丙交酯的开环聚合[J].高分子材料科学与工程,2007,23(2):92-95
    [9]Li G., Lamberti M., Mazzeo M., et al. Anilidopyridyl-Pyrrolide and Anilidopyridyl-Indolide Group 3 Metal Complexes:Highly Active Initiators for the Ring-Opening Polymerization of rac-Lactide [J]. Organometallics,2012,31:1180-1188
    [10]Alaaeddine A., Thomas C. M., RoisnelT., et, al. Aluminum and yttrium complexes of anunsymmetrical mixed fluorous alkoxy/Phenoxy-diimino ligand:synthesis, structure, and ring-opening polymerizationeatalysis [J]. Organo metal lies,2009,28:1469-1475
    [11]Idage B. B., Idage S. B., Kasegaonkar A.S., et al. Ring opening polymerization of dilactide using salen complex as catalyst [J]. Materials Science and Engineering B,2010, 168:193-198
    [12]John A., Katiyar V., Ghosh P.. Ni(Ⅱ) and Cu(Ⅱ) complexes of phenoxy-ketimine ligands: Synthesis, structures and their utility in bulk ring-opening polymerization (ROP) of L-lactide [J]. Polyhedron,2007,26:4033-4044
    [13]Zhang C., Wang Z. X.. Aluminum and zinc complexes supported by functionalized phenolate ligands:Synthesis, characterization and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide [J]. Journal of Organometallic Chemistry,2008,693:3151-3158
    [14]Wu J. C., Huang B. H., Hsueh M. L., et al. Ring-opening polymerization of lactideinitiat-ed by magnesium and zinc alkoxides [J].Polymer,2005,4(23):9784-9792
    [15]Chamberlain B.M., Cheng M., Moore D. R., et al. Polymerization of lactide with zinc and magnesium beta-diiminate complexes:stereocontroland mechanism [J]. J. Am. Chem. Soc.,2001,123:3229-3238
    [16]Albertsson A. C. Varma I. K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications [J] Biomacromolecules,2003,4(6):1466-1486.
    [17]单成基,李玉良,逢束芬,等.Nd(OR)3-nCln-AlEt3催化体系对丁二烯的聚合Ⅱ聚合物微观结构和催化剂诱导效应指数的关系[J].化学学报,1983,41(6):498-504
    [18]Throckmoron M. C., Farson F. S.. An HF-Nickel-R3A1 Catalyst System for Producing High Cis-1,4-Polybutadiene [J]. Rubber Chem. Technol.,1972,45(1):268-277
    [19]Odile D. C., Blanca M. V., Didier B.. Controlled Ring-Opening Polymerization of Lactide and Glycolide [J]. Chem. Rev.,2004,104,6147-6176
    [20]Aida T., Inoue S.. Catalytic Reaction on Both Sides of a Metalloporphyrin Pla-ne. Alternating Copolymerization of Phthalic Anhydride and Epoxypropane with an Aluminum Porphyrin-Quaternary Salt System [J]. J. Am. Chem. Soc.,1985,107(5): 1358-1364
    [1]Drumright R. E., Gruber P. E., Henton D.E.. Polylactic acid technology [J]. Advanced Materials,2000,12(23):1841-1846
    [2]Lunt J.. Large-scale production, properties and commercial applications of polylactic acid polymers [J]. Polymer Degradation and Stability,1998,59:145-152
    [3]Yu Y. T., Zhang X. D., Sheng W., et al. Biomedical Materials, in Chinese [M]. Tianjin: 1sted., Tianjin University Press,2000,54
    [4]Niu X. F., Wang Y. L., Luo Y. F., et al. Synthesis of the biomimetic polymer:Alphatic diamine and RGDS modified poly(d,l-lactic acid) [J]. Chin. Chem. Lett.,2005,16(8): 1035-1038
    [5]Luo B. H., Quan D. P., Liao K. R., et al. Synthesis and characterization of novel copolymers containing pendant amine functional groups based on D,L-lactide, glycolide and poly(PEG-co-L-aspartic acid) [J]. Acta Polym. Sinica,2005,3:327-332
    [6]Shi P. J., Li Y. G., Pan C. Y., Block and star block copolymers by mechanism transformation X. Synthesis of poly(ethylene oxide) methyl ether polystyrene poly(1-lactide) ABC miktoarm star copolymers by combination of RAFT and ROP [J]. Eur. Polym. J.,2004,40(7):1283-1290
    [7]Nomura Nobuyoshi, Akita Azusa, Ishii Ryohei. Random Copolymerization of s-Caprolac-tone with Lactide Using a Homosalen-Al Complex [J]. J. Am. Chem. Soc.,2010,132: 1750-1751
    [8]杨利川,叶瑞荣,余世钦等.一种生物材料聚(乳酸—蛋氨酸)的制备与表征[J].高分子材料科学与工程,2010,26(12):129-132
    [9]Raquez J. M., NarayaR. N., Dubois P.. Recent Advances in reactive extrusion processing of biodegradable polymer-based compositions [J]. Macromolecular Materials and Engineering,2008,293:447-470
    [10]Nava H.. Kirk-Othmer Encyclopedia of Chemical Technology,5th ed [M]. New York: 2004,95-119
    [11]Gaylord N. G., Mehta R.. Radical-catalyzed homopolymerization ofmaleic anhydride in presence of polar organic compounds [J]. Journal of Polymer Science Part A:Polymer Chemistry,1988,26:1903-1909
    [12]Kasper F. K., Tanahashi K., Fisher J. P. et al.. Synthesis of Poly(Propylene Fumarate) [J]. Nat. Protoc.,2009,4(4):518-525
    [13]Lukaszczyk J., Smiga-Matuszowicz M. Polimerowei kompozytowe cementy kostne oraz materia3y pokrewne [J]. Polimery,2010,55(2):83-92
    [14]Alemdar N., Karagoz B., Erciyes, A. T., et al. Surface modification of silica, titania, and zinc oxide micro particles with epoxidized soybean oil for preparation of polystyrene composite films [J]. J. Appl. Polym. Sci.,2010,116(1):165-171
    [15]Huang M. N., Luo Y. F., Wang Y. L.. Synthesis and characterization of biodegradable polymer:Poly (ethene maleic acid ester-co-D,L-lactide acid) [J]. Chinese Chemical Letters,2007,18:605-608
    [16]DiCiccio A. M., Coates G. W.. Ring-Opening Copolymerization of Maleic Anhydride with Epoxides:A Chain-Growth Approach to Unsaturated Polyesters [J].J. Am. Chem. Soc.,2011,133:10724-10727
    [17]Zhang C., Wang Z. X.. Aluminum and zinc complexes supported by functionalized phenolate ligands:Synthesis, characterization and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide [J]. Journal of Organometallic Chemistry,2008,693:3151-3158
    [1]Auras R., Harte B., Selke S.. An overview of polylactides as packaging materials [J] Macromol. Biosci.,2004,4(9):835-864
    [2]Niu X. F., Wang Y. L., Luo Y. F., et al. Synthesis of the biomimetic polymer:Alphatic diamine and RGDS modified poly(d,l-lactic acid) [J]. Chin. Chem. Lett.2005,16(8): 1035-1038
    [3]Tasaka F., Ohya Y., Ouchi T.. One-pot synthesis of novel branched polylactide through the copolymerization of lactide with mevalonolactone [J]. Macromol. Rapid Commun., 2001,22:820-824.
    [4]Nakayama A., Kawasaki N., Aiba S., et al. Synthesis and biodegradability of novel copolyesters containg γ-butyrolactone units [J]. Polymer,1998,39(5):1213-1222.
    [5]Xu J., Gross R. A., Kaplan D. L., et al. Chemoenzymatic Route to Poly(3-hydroxybutyrate) [J]. Macromol. Sci.,1996,29:3857-3861
    [6]Yamashita M., Takemoto Y., Ihara E., et al. Organolanthanide Initiated Living Polymeriza-tion of ε-Caprolactone,5-Valerolactone, and β-Propiolactone [J]. Macromolecules,1996, 29:1798-1806
    [7]杨利川,叶瑞荣,余世钦等.一种生物材料聚(乳酸—蛋氨酸)的制各与表征[J].高分子材料科学与工程,2010,26(12):129-132
    [8]Petchsuk A., Nakayama A., Aiba S.. Synthesis and biodegradability of L-lactide/glycidol copolymers [J]. Polymer Degradation and Stability,2009,94:1700-1706
    [9]谭伟,沙磊,赵宝祥.环氧烷化合物在有机合成中的应用[J].有机合成,2004,11:384-390
    [10]Taylor S. K.. Reactions of Epoxides with ester, ketone and amide enolates [J].Tetrahedron,2000,56:1149-1163
    [11]Nakano K., Nakamura M., Nozaki K.. Alternating Copolymerization of Cyclohexene Oxide with Carbon Dioxide Catalyzed by (salalen)CrCl Complexe [J]. Macromolecules, 2009,42(18):6972-6980
    [12]Nejad E. H., van Melis Carlo G. W., Duchateau R.. Alternating Ring-Opening Polymerization of Cyclohexene Oxide and Anhydrides:Effect of Catalyst, Cocatalyst, and Anhydride Structure [J]. Macromolecules,2012,45:1770-1776
    [13]Hua L., Kai W., Inoue Y.. A new poly (L-lactide)-grafted graphite oxide composite: Facile synthesis, electrical properties and crystallization behaviors [J]. Polymer Degradation and Stability,2010,95:2619-2627
    [14]Haitao Q., Adam R. W., Thomas R. H.. A Strategy for Control of "Random" Copolymerization of Lactide and Glycolide:Application to Synthesis of PEG-b-PLGA Block Polymers Having Narrow Dispersity [J]. Macromolecules,2011,44:7132-7140
    [15]Nejad E. H., van Melis Carlo G. W., Duchateau R.. Alternating Ring-Opening Polymerization of Cyclohexene Oxide and Anhydrides:Effect of Catalyst, Cocatalyst, and Anhydride Structure [J]. Macromolecules,2012,45:1770-1776
    [16]Zhang C., Wang Z. X.. Aluminum and zinc complexes supported by functionalized phenolate ligands:Synthesis, characterization and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide [J]. Journal of Organometallic Chemistry,2008,693:3151-3158
    [1]Fischer R. F.. Polyesters from expoxides and anhydrides [J]. J. Polym. Sci.,1960,44(143): 155-172
    [2]Rajkhowa R., Varma I. K., Albertsson A.-C., et al. Enzyme-catalyzed copolymerizations of oxiranes with dicarboxylic acid anhydrides [J]. Appl. Polym. Sci.,2005,97:697-704
    [3]Aida T., Inoue S.. Catalytic Reaction on Both Sides of a Metalloporphyrin Plane Alternating Copolymerization of Phthalic Anhydride and Epoxypropane with an Aluminum Porphyrin-Quaternary Salt System [J]. J. Am. Chem. Soc.,1985,107(5): 1358-1364
    [4]Maeda Y., Nakayama A., Kawasaki N., et al. Ring-opening copolymerization of succinic anhydride with ethylene oxide initiated by magnesium diethoxide [J] Polymer,1997, 38(18):4719-4725
    [5]Jeske R. C., DiCiccio A. M., Coates G. W.. Alternating Copolymerization of Epoxides and Cyclic Anhydrides:An Improved Route to Aliphatic Polyesters [J]. J. Am. Chem. Soc.,2007,129:11330-11331
    [6]Nejad E. H., van Melis Carlo G. W., Duchateau R.. Alternating Ring-Opening Polymerization of Cyclohexene Oxide and Anhydrides:Effect of Catalyst, Cocatalyst, and Anhydride Structure [J]. Macromolecules,2012,45:1770-1776
    [7]DiCiccio Angela M., Coates G. W.. Ring-Opening Copolymerization of Maleic Anhydride with Epoxides:A Chain-Growth Approach to Unsaturated Polyesters [J]. J. Am. Chem. Soc.,2011,133:10724-10727
    [8]Nava H.. Kirk-Othmer Encyclopedia of Chemical Technology,5th ed [M]. New York: 2004,95-119.
    [9]Worzakowska M. Curing reaction of unsaturated (epoxy) polyesters based on different aliphatic glycols [J]. J. Therm. Anal. Calorim.,2010,102(2):745-750
    [10]Cai L., Wang S. Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity [J]. Biomaterials,2010,31(29):7423-7434
    [11]Dadsetan M., Liu Z., Pumberger M., et al. A stimuli-responsive hydrogel for doxorubicin delivery [J]. Biomaterials,2010,31(31):8051-8062
    [12]Huijser S., Hosseini N. E., Duchateau R., et al. Ring-Opening Co-and Terpolymerization of an Alicyclic Oxirane with Carboxylic Acid Anhydrides and CO2 in the Presence of Chromium Porphyrinato and Salen Catalysts [J]. Macromolecules,2011,44:1132-1139
    [13]Huijser S., Staal B. B. P., Huang J. et al. Chemical Composition and Topology of Poly(lactide-co-glycolide) Revealed by Pushing MALDI-TOF MS to Its Limit [J] Angew. Chem. Int. Ed.,2006,45(25):4104-4108
    [14]Zhang C., Wang Z. X.. Aluminum and zinc complexes supported by functionalized phenolate ligands:Synthesis, characterization and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide [J]. Journal of Organometallic Chemistry,2008,693:3151-3158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700