高糖环境增强布比卡因引起的细胞凋亡—通过线粒体及内质网依赖途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病周围神经病(diabetic peripheral neuropathy, DPN)是最常见的糖尿病慢性并发症之一,威胁糖尿病患者的生命并影响其生活质量。糖尿病足部溃疡与DPN密切相关,病史长可最终导致截肢。此种并发症可能因长期高糖环境导致,也有报道高糖环境与周围及中枢神经的结构、功能异常相关。但至今DPN的发病机制仍不明确。糖尿病患者数量的增加导致DPN发病率逐年升高,此类病人需要区域神经阻滞下手术或镇痛的人数亦随之逐年增加。
     局部麻醉药广泛用于神经阻滞与镇痛已逾百年。局部麻醉药虽具有良好的安全性,但近年来关于其神经毒性的报道日渐增多,因而引起了麻醉医生的关注。但局部麻醉药神经毒性的具体发生机制还未完全阐明。高糖环境引起已存在或潜在的神经损伤可能增强局部麻醉药的神经毒性。研究DPN患者是否对局部麻醉药的神经毒性更加敏感及其机制,有利于防治糖尿病患者局部麻醉药中毒及选择局部麻醉药种类和剂量。
     体内外实验报道局部麻醉药与高糖可诱导细胞凋亡,以致细胞功能障碍甚至死亡。有学者发现线粒体功能障碍,可引起细胞内的活性氧族(reactive oxygen species, ROS)产生增多,而增多的ROS又可正反馈影响线粒体功能,同时ROS的爆发与内质网应激(endoplasmic reticulum stress, ERS)有关。线粒体功能障碍及内质网应激达到一定程度后,分别激活线粒体及内质网依赖的凋亡通路,最终导致细胞凋亡。
     本研究构建体外高糖神经损伤模型,研究高糖环境下的神经细胞是否对于局部麻醉药的神经毒性更加敏感,及其具体作用机制一是否与细胞凋亡,线粒体功能障碍以及内质网应激有关。另一方面,在活性氧抑制剂一银杏内酯B(Ginkgolide B, GB)作用下,探讨布比卡因引起线粒体功能障碍及内置网应激是否与ROS有关,以明确ROS下游靶点。
     第一部分建立体外高糖神经损伤模型
     目的在体外建立SH-SY5Y细胞株的高糖神经损伤模型,观测高糖环境对SH-SY5Y细胞活性及凋亡程度的影响。
     方法将SH-SY5Y细胞分为C组:无血清培养基处理24h;‘M1-5组:分别用溶有5,25,50,100,200mmol/L甘露醇的无血清培养基培养24h;G1-5组:分别用溶有5,25,50,100,200mmol/L无水葡萄糖(除培养基含有的葡萄糖外)的无血清培养基培养24h。Cell counting Kit-8(CCK-8)试剂盒检测细胞活性,流式细胞术(flow cytometry, FCM)检测细胞凋亡数。透射电镜观察SH-SY5Y细胞超微结构变化。
     计量资料均以均数±标准差(x±s)表示,采用SPSS17.0统计软件分析。不同浓度的甘露醇与葡萄糖对细胞活性及凋亡数采用两因素析因设计方差分析,单独效应分析时,组间比较采用t检验或单因素方差分析,多重比较采用LSD法,方差不齐时采用Welch法和Dunnett's T3法,P<0.05为差异有统计学意义。
     结果细胞活性、凋亡数在不同浓度的葡萄糖组间(F=60.064,P=0.000;F=241.828,P=0.000)及甘露醇组间(F=24.661,P=0.000;F=88.191,P=0.000)的差异均具有统计学意义。有与对照组相比,不同浓度的葡萄糖均可引起SH-SY5Y细胞活力下降,浓度增高,细胞活性下降程度也随之增加。100mmol/L的葡萄糖对SH-SY5Y细胞活性的影响大于同浓度的甘露醇(t=-3.052,P=0.012),差异具有统计学意义。溶有25,50,100,200mmol/L葡萄糖培养基培养24h后,SH-SY5Y细胞的凋亡数均高于同浓度的甘露醇组(t=5.531,P=0.001;t=4.231,P=0.003;t=15.267,P=0.000,t=6.284,P=0.000),差异具有统计学意义,并在浓度为100mmol/L时,两组之间的凋亡细胞数目差异最大。
     结论葡萄糖对SH-SY5Y细胞有毒性作用,且随着浓度增加,细胞毒性相应增加。在较高浓度时(25,50,100,200mmol/L),葡萄糖对细胞凋亡的影响强于甘露醇,尤其是M4与G4之间,差别最为明显。推测,100mmol/L的葡萄糖的细胞毒性主要由代谢产生,而不是渗透压。故选择100mmol/L葡萄糖培养24h的SH-SY5Y细胞作为体外高糖神经损伤模型。
     第二部分高糖培养的SH-SY5Y细胞对布比卡因神经毒性更加敏感
     目的采用高糖培养的SH-SY5Y细胞,予以布比卡因作用,通过电镜观察亚细胞结构,测定细胞活力,细胞凋亡率,探讨高糖培养细胞是否对布比卡因伸进细胞毒性更加敏感。
     方法SH-SY5Y细胞100mmol/L高糖培养或者无血清培养基培养24h后,用含有不同浓度(0.25,0.5,1.0,2.0mmol/L)布比卡因的无血清培养基24h。CCK-8试剂盒检测细胞活性,FCM检测细胞凋亡数。选择合适的布比卡因浓度后,SH-SY5Y细胞离体培养,分为4组,即:对照组(Con组,无血清培养基培养细胞48h),布比卡因组(Bup组,无血清培养基培养24h+含有1mmol/L布比卡因的无血清培养基培养24h),高糖组(Glu组,含有100mmol/L葡萄糖培养24h+无血清培养基培养24h),高糖+布比卡因组(Glu+Bup组,含有100mmol/L葡萄糖培养24h+1mmol/L布比卡因的无血清培养基培养24h),透射电镜观察细胞亚细胞结构变化。
     计量资料均以均数±标准差(x±s)表示,采用SPSS17.0统计软件分析。高糖预处理与非高糖预处理之间的细胞活性及凋亡数采用两因素析因设计方差分析,单独效应分析时,组间比较采用t检验或单因素方差分析,多重比较采用LSD法,方差不齐时采用Welch法和Dunnett's T3法,P<0.05为差异有统计学意义。
     结果细胞活性、凋亡数在不同浓度布比卡因组间(F=72.039,P=0.000;F=33.522,P=0.000)及高糖预处理后的布比卡因组间(F=72.039,P=0.004;F=72.039,P=60.832)的差异具有统计学意义。布比卡因可引起细胞活性下降以及细胞凋亡数增加,并随着布比卡因浓度增高,这一作用相应增强。高糖预处理较非高糖预处理的细胞,在0.25,0.5,1.0mmol/L布比卡因处理后,细胞活性下降(t=10.450,P=0.000;t=11.283,P=4.302;t=15.267,P=0.002)且凋亡细胞数目增加(t=-2.413,P=0.036;t=-3.647,P=0.004;t=-3.761,P=0.004),差异均具有统计学意义。选择1mmol/L作为后续实验实验的布比卡因浓度。电镜下观察SH-SY5Y细胞亚结构,较Con组,Glu组与Bup组细胞粗面内质网出现脱颗粒、肿胀等表现,线粒体出现水肿等形态学改变,Glu组细胞亚结构与Bup组类似,但程度轻,Glu+Bup组细胞亚细胞机构破坏较其他组更明显,基本细胞结构模糊。
     结论高糖预处理明显增加了布比卡因的神经毒性,导致细胞凋亡数也较非预处理组明显增加,并产生不同的细胞器结构的改变。提示高糖环境培养的细胞较正常培养的细胞对于布比卡因的神经毒性更加敏感,推测这种敏感性的增加可能与细胞凋亡增加及细胞器的结构功能改变有关。
     第三部分高糖培养的SH-SY5Y细胞在布比卡因作用下线粒体功能变化
     目的通过研究高糖培养的SH-SY5Y细胞在布比卡因作用下,细胞内的ROS水平,线粒体特异性产生的ROS,线粒体复合物Ⅰ、Ⅲ活性,线粒体膜电位的变化以及cleaved Caspase-3和HtrA2蛋白表达水平,以探讨高糖环境引起布比卡因神经毒性的增加是否与ROS产生、线粒体功能障碍有关。
     方法SH-SY5Y细胞离体培养,分为4组,即:对照组(Con组,无血清培养基培养细胞48h),布比卡因组(Bup组,无血清培养基培养24h+含有1mmol/L布比卡因的无血清培养基培养24h),高糖组(Glu组,含有100mmol/L葡萄糖培养24h+无血清培养基培养24h),高糖+布比卡因组(Glu+Bup组,含有含有100mmol/L葡萄糖培养24h+1mmol/L布比卡因的无血清培养基培养24h)。FCM分析细胞内ROS水平及线粒体特异性的ROS水平,四氯四乙基苯并咪唑基羰花青碘化物(5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazole-carbocyanide iodine, JC-1)检测线粒体膜电位。分光光度计检测线粒体复合物Ⅰ和Ⅲ的活性。Western blot法检测cleaved Caspase-3和HtrA2蛋白表达水平。
     计量资料均以均数±标准差(x±s)表示,采用SPSS17.0统计软件分析。细胞内ROS水平,线粒体特异产生的ROS含量,线粒体膜电位,线粒体呼复合物Ⅰ和Ⅲ及cleaved Caspase-3和HtrA2蛋白表达水平组间比较采用单因素方差分析,多重比较采用LSD法,方差不齐时采用Welch法和Dunnett's T3法,P<0.05为差异有统计学意义。
     结果细胞内及线粒体内的ROS水平、线粒体复合物Ⅰ和Ⅲ活性、JC-1聚合体/单体比值及HtrA2和Cleaved caspase-3蛋白表达水平在不同组间的差异均具有统计学意义(F=121.071;F=78.122;F=481.327,F=78.561;F=30.997;F=10.241,F=9.603;P均小于0.05)。Bup组及Glu组均较Con组细胞内的ROS产生水平增高(P=0.000,P=0.000),Glu+Bup组的水平高于Bup组(P=0.000),差异均具有统计学意义。线粒体特异性的ROS与细胞内ROS水平结果类似。FCM检测线粒体膜JC-1聚合体、单体比值显示,Bup组和Glu组分别为1.96±0.29和3.17±0.78均低于Con组(6.58±2.07)(P=0.000,P=0.002),而Glu+Bup组的比值(0.59+0.30)较Bup减低(P=0.047),差异具有统计学意义。布比卡因均可影响线粒体复合物Ⅰ和Ⅲ活性(P=0.000,P=0.000),高糖预处理后加强了布比卡因对于线粒体复合物Ⅰ和Ⅲ活性的影响(P=0.000,P=0.002)。Western blot显示,Bup组的HtrA2和Cleaved caspase-3蛋白表达水平均高于Con组(P=0.019,P=0.033),Glu+Bup组较Bup组表达增高(P=0.041,P=0.018),差异均具有统计学意义。
     结论高糖预处理可增强布比卡因引起的细胞内ROS水平的升高,伴随着线粒体特异性产生的ROS产生增多,此种增高可能由于由线粒体复合物Ⅰ和Ⅲ活性减低产生,增多的ROS引起线粒体膜电位去极化,导致凋亡蛋白表达,最终激活线粒体依赖的凋亡通路。
     第四部分高糖培养的SH-SY5Y细胞在布比卡因作用下产生内质网应激
     目的通过研究高糖培养的SH-SY5Y细胞在布比卡因作用下,细胞内Grp78和Caspase-12mRNA及蛋白水平的变化,以探讨高糖环境导致的布比卡因神经毒性增加是否与内质网应激(endoplasmic reticulum stress, ERS)有关。
     方法SH-SY5Y细胞离体培养,分为4组,即:对照组(Con组,无血清培养基培养细胞48h),布比卡因组(Bup组,无血清培养基培养24h+含有1mmol/L布比卡因的无血清培养基培养24h),高糖组(Glu组,含有100mmol/L葡萄糖培养24h+无血清培养基培养24h),高糖+布比卡因组(Glu+Bup组,含有含有100mmol/L葡萄糖培养24h+1mmol/L布比卡因的无血清培养基培养24h)。定量逆转录聚合酶链反应(quantitative reverse transcription polymerase chain reaction, qRT-PCR)检测细胞内Grp78和Caspase-12mRNA水平。Western blot检测Grp78和Caspase-12蛋白表达。
     计量资料均以均数±标准差(x±s)表示,采用SPSS17.0统计软件分析。Grp78和Caspase-12mRNA及蛋白水平采用单因素方差分析,多重比较采用LSD法,方差不齐时采用Welch法和Dunnett's T3法,P<0.05为差异有统计学意义。
     结果不同处理组间Grp78和caspase-12mRNA及蛋白表达水平(F=15.503,F=11.525;F=8.864,F=29.639,P均小于0.05)的差异均具有统计学意义。与Con组相比,布比卡因及高糖环境均可引起Grp78的mRNA(P=0.010, P=0.006)及蛋白表达增高(P=0.000,P=0.001),高糖环境预处理可加强布比卡因对Grp78转录和翻译程度的影响(P=0.008,P=0.021),差异具有统计学意义。布比卡因及高糖环境对于Caspase-12蛋白表达的影响与对Grp78类似,但只有Glu+Bup组的Caspase-12的mRNA水平较Con组有所升高(P=0.009)。
     结论布比卡因可以导致ERS,反映在Grp78的蛋白及mRNA水平上,对于Caspase-12的mRNA影响不明显,提示只有当ERS进展到一定程度才可能激活内质网依赖的细胞凋亡通路。高糖环境可增强布比卡因激活ERS的作用,并激活内质网依赖的凋亡通路。这可能是高糖培养的神经细胞对于布比卡因神经毒性更加敏感的作用机制之一。
     第五部分银杏内酯B对布比卡因神经毒性的影响
     目的探讨抗氧化剂银杏内酯B (Ginkgolide B, GB)对布比卡因神经毒性的影响,研究线粒体功能障碍,内质网应激是否与ROS有关,寻找ROS的下游作用靶点。
     方法SH-SY5Y细胞离体培养,用不同浓度的GB(5,10,20,40μ mol/L)预处理6h后,予以1mmol/L布比卡因作用细胞24h,FCM检测细胞凋亡情况。分为4组,即:对照组(Con组,无血清培养基培养细胞30h),布比卡因组(Bup组,无血清培养基培养6h+含有1mmol/L布比卡因的无血清培养基培养24h),银杏内酯B组(GB组,含有有40μ mol/LGB的无血清培养基培养6h+无血清培养基培养24h),银杏内酯B+布比卡因组(GB+Bup组,含有有40μ mol/LGB的无血清培养基培养6h+含有1mmol/L布比卡因的无血清培养基培养24h)。FCM检测细胞内ROS水平,JC-1检测线粒体膜电位。分光光度计检测线粒体复合物Ⅰ和Ⅲ的活性。Western blot法检测cleaved Caspase-3, HtrA2, Grp78和Caspase-12蛋白表达水平。
     计量资料均以均数±标准差(x±s)表示,采用SPSS17.0统计软件分析。细胞凋亡情况,细胞ROS水平,线粒体呼吸链复合物Ⅰ和Ⅲ,线粒体膜电位变化,cleaved caspase-3, HtrA2, caspase-12和Grp78蛋白表达量组间比较采用单因素方差分析,多重比较采用LSD法,方差不齐时采用Welch法和Dunnett's T3法,P<0.05为差异有统计学意义。
     结果不同处理组间细胞凋亡率的差异具有统计学意义(F=167.786,P=0.000)。FCM检测细胞凋亡,发现10,20,40μ mol/L GB均可减少由布比卡因引起的细胞凋亡(P=0.000,P=0.000,P=0.000),且GB浓度越高,这种保护作用越明显。选用40μ mol/L GB进行后续实验。ROS阳性率、线粒体呼吸链复合物Ⅰ和Ⅲ活性、红荧光与绿荧光的比值以及Caspase-3, HtrA2, Grp78和Caspase-12蛋白表达水平在不同处理组间的差异具有统计学意义(F=226.503;F=118.253,F=50.191;F=50.154;F=4.510,F=81.502;F=8.137,F=9.277;P均小于0.05)。GB+Bup组细胞内的ROS水平低于Bup组(P=0.000),而单纯GB处理对细胞内ROS水平无影响(P=0.101)。FCM检测线粒体膜JC-1聚合体/单体比值显示,Bup组为1.12±0.43,低于Con组(8.41±1.41)(P=0.000),而GB+Bup组的比值(3.55+0.71)较Bup组升高(P=0.004),差异均具有统计学意义。与Bup组比较,经GB预处理后的线粒体复合物Ⅰ和Ⅲ活性增强(P=0.004,P=0.004)。Western blot检测cleaved Caspase-3, HtrA2, Grp78和Caspase-12蛋白表达水平,Bup组均较Con组表达增加(P=0.012,P=0.000,P=0.001,P=0.001),GB预处理后,蛋白水平表达下降(P=0.032,P=0.001,P=0.038,P=0.016),差异具有显著性。
     结论抗氧化剂GB减少细胞内的ROS水平,减少布比卡因引起的细胞凋亡,对线粒体膜复合物Ⅰ和Ⅲ活性有有一定的保护作用,同时可防止因布比卡因引起的线粒体膜电位去极化。GB预处理减少了内质网应激特异性蛋白及线粒体凋亡通路特异蛋白的表达。提示降低胞内的ROS水平,可抑制布比卡因对于线粒体功能的破坏及对内质网应激的激活,最终导致细胞凋亡数减少,推测线粒体功能及内质网应激可能是增高细胞内ROS的作用靶点,且与布比卡因神经毒性有关。
Diabetic peripheral neuropathy (DPN) is a life-threatening condition and the most common complication of diabetes, which affects at least50%of all diabetic patients in their lifetimes. Diabetic foot ulcers, frequently leading to the need for amputation, are common. Longstanding hyperglycemia results in such complications, and may result in functional and structural deficits in both the central and peripheral nervous systems. The precise pathogenesis of DPN remains unclear. The increasing incidence of diabetes has led to an increase in the number of patients presenting with DPN; and these patients frequently require regional anesthesia to manage end-organ complications.
     Although local anesthetics have traditionally been accepted as safe, they have also been shown to be neurotoxic. Recent studies have demonstrated that anesthetic related neurotoxicity occurs through the apoptotic pathway. The underlying molecular mechanisms for this observation are not clearly understood. The pre-existing or potential nerve cell injury induced by hyperglycemia may magnify the neurotoxicity of local anesthetics. To study whether patients with DPN is more sensitive to local anesthetics will prevent the neuro toxicity of local and regulate dose of local anesthetics.
     Apoptosis has been proposed as a possible mechanism for hyperglycemia or local anesthetic-induced neural dysfunction and cell death in both the in vitro and in vivo setting. The mitochondria dysfunction and endoplasmic reticulum (ER) stress may be the underlying mechanism of neurotoxicity induced by high glucose and bupivacaine associating with overproduction of ROS.
     In this study, model of hyperglycemia in vitro was established in order to examine the impact of high glucose on the neurotoxicity induced by bupivacaine and how high glucose modulates the bupivacaine toxicity in vitro. On the other hand, to research the effect of antioxidant, GB, on the neurotoxicity induced by bupivacaine, and the relationship between ROS and Mitochondria Dysfunction and ER stress.
     Section Ⅰ To establish model of hyperglycemia in vitro
     Objective To construct model of hyperglycemia in vitro in SH-SY5Ycell lines and observe the impact of hyperglycemia on cell viability and apoptosis.
     Methods Cells were divided into the C group:cells were incubated with serum-starved medium for24h; M1-5group:cells were with serum-free medium of increasing mannitol concentrations(5,25,50,100,200mmol/L) for24h; G1-5group cells were with serum-free medium of increasing glucose concentrations(5,25,50,100,200mmol/L) for24h (in addition to the glucose included in DMEM/F12medium). Cell viability and apoptosis were investigated with a CCK-8assay and flowcytometry, respectively.
     Values were expressed as the mean±standard deviation (SD), using SPSS17.0statistical software for statistical analysis. The apoptosis and cell viability assays were analyzed by Factorial design ANOVA. Multiple comparisons tests were performed by LSD. A p-value of less than0.05was considered to be statistically significant.
     Results There was significant differemce among M1-5groups (F=60.064, P=0.000; F=241.828,P=0.000) and G1-5groups (F=24.661, P=0.000; F=88.191, P=0.000) on cell viability and apoptotic rate. Apoptosis increased and cell viability decreased with higher concentrations of glucose or mannitol. There was significantly difference between100mmol/L glucose and mannotol on cell viability (t=-3.052, P=0.012). However, at each concentration, glucose had a significantly higher apoptotic effect than glucose, except5mM (t=5.531, P=0.001;t=4.231, P=0.003; t=15.267, P=0.000,t=6.284, P=0.000). This difference was apparent at a glucose concentration of100mM.
     Conclusions High glucose has toxicity effect on SH-SY5Y cells. This difference between glucose and mannitol group was apparent at a glucose concentration of100mM, suggesting that glucose toxicity is mainly determined by the metabolite effect. In a separate experiment, and after establishing the optimal glucose concentration to induce apoptosis, we tested bupivacaine's apoptotic effect onSH-SY5Y cells that were exposed to100mM of glucose for24hours.
     Section II Cells incubated in hyperglycemia condition are more sensitive to bupivacaine
     Objective SH-SY5Y cells were observed with a transmission electron microscope, examed cell viability and apoptosis in order to find whether cells in hyperglycemia condition are more sensitive to bubivacaine.
     Methods SH-SY5Y cells were pre-treated with100mmol/L of glucose in vitro, to imitate DPN prior to administration of different concentrations bupivacaine(0.25,0.5,1.0,2.0mmol/L) or placebo. Cell viability and apoptosis were investigated with a CCK-8assay and flowcytometry, respectively. After establishing the optimal bupivacaine concentration to induce apoptosis, cells were assigned to four groups:(i) Control (Con):untreated;(ii) Bup:cells treated with1mM bupivacaine for24hours;(iii) Glu:cells treated with100mM glucose for24hours;(iv) Glu+Bup:cells treated with100mM glucose for24hours prior to bupivacaine administration for24hours. Cell was observed with a transmission electron microscope to find morphological changes of cells.
     Values were expressed as the mean±standard deviation (SD), using SPSS17.0statistical software for statistical analysis. The apoptosis and cell viability assays were analyzed by Factorial design ANOVA. Multiple comparisons tests were performed by LSD. A p-value of less than0.05was considered to be statistically significant.
     Results There was significant differemce among bupivacaine groups (F=72.039, P=0.000; F=33.522, P=0.000) and bupivacaine with glucose pretreatment groups (F=72.039, P=0.004; F=72.039, P=60.832) on cell viability and apoptotic rate.Apoptosis increased and cell viability decreased with higher concentrations of bupivacaine. Bupivacaine induced cell growth inhibition in a concentration-dependent manner. Hyperglycemic conditions enhanced cytotoxicity at each concentration except2mM(t=10.450,P=0.000;t=11.283,P=4.302;t=15.267, P=0.002). Hyperglycemic conditions increased bupivacaine-induced apoptosis (t-2.413, P=0.036;t=-3.647, P=0.004; t=-3.761, P=0.004). By utilizing the transmission electron microscope, normal SH-SY5Y cells were round and regular, with normal morphology of rough endoplasmic reticulum(rER) and mitochondria(Mt). After exposure to bupivacainefor24hours without glucose pretreatment, rER demonstrated degranulation and expansion related to diminished protein synthesis, and mitochondrial swelling. After treatment with glucose for24hours, rER demonstrated degranulation and expansion, and mild mitochondrial swelling. Cells in the bupivacaine with glucose pretreatment group showed a disintegrated structure.
     Conclusions Hyperglycemic conditions are synergistic with bupivacaine-induced apoptosis and cell injury in SH-SY5Y cells, suggesting cells incubated with high glucose may be more sensitive to local anesthetics accociating with apoptosis and organelle altered.
     Section Ⅲ The effect of bupivacaine on SH-SY5Y cells mitochondrial in hyperglycemic conditions
     Objective To investigate whether the enhanced neurotoxicity of bupivacaine mediates the considerable increase of ROS and mitochondrial dysfunction.
     Methods Cells were assigned to four groups:(i) Control (Con):untreated;(ii) Bup:cells treated with1mM bupivacaine for24hours;(iii) Glu:cells treated with100mM glucose for24hours;(iv) Glu+Bup:cells treated with100mMglucose for24hours prior to bupivacaine administration for24hours. Intracellular ROS level and mitochondrially generated ROS were measured by FCM.5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazole-carbocyanide iodine(JC-1) was employed to measure mitochondrial depolarization inSH-SY5Y cells. Mitochondrial complexes I and III activity were also studied. cleaved Caspase-3and HtrA2 expression were measured by Western blot.
     Values were expressed as the mean±standard deviation (SD), using SPSS17.0statistical software for statistical analysis. Data was analyzed by one-way ANOVA. Multiple comparisons tests were performed by LSD. A p-value of less than0.05was considered to be statistically significant.
     Results There was significant difference among groups on ROS levels, activities of complex I and III, ratios of mitochondrial membrane JC-1polymer/monomer and cleaved capsase-3and HtrA2protein levels (F=121.071; F=78.122; F=481.327, F-78.561; F=30.997; F=10.241, F=9.603; all P values<0.05). After treatment with100mM glucose or/and1mM bupivacaine, intracellular ROS increased(P=0.000, P=0.000), and the ROS levels of group pretreated with glucose significantly higher than that of non-pretreated group (P=0.000). The results of fluorescence intensity measured by FCM showed that the ratios of mitochondrial membrane JC-1polymer/monomer in Bup group and Glu group were1.96±0.29and3.16±0.78, respectively, which were lower than that of Con group (6.58±2.07)(P=0.000, P=0.002). And that in Glu+Bup group (0.59+0.30)was lower than that in Bup group, significantly (P=0.047). The decreased activities of complex I and III induced by bupivacaine were enhanced by high glucose pretreatment(P=0.000, P=0.002). Bupivacaine without glucose pretreatment resulted in significant increases both cleaved capsase-3and HtrA2protein levels (P=0.019, P=0.033). These levels were significantly higher in the pretreated group, as compared to untreated controls (P=0.041, P=0.018)
     Conclusions High glucose increased the intracellular ROS production induced by bupivacaine which may be associated with decrease in mitochondrial complex I and III activity. The increase of ROS production resulted in dissipation of the mitochondrial membrane potential, which activated mitochondrial-dependent apoptotic pathway.
     Section IVThe effect of bupivacaine on endoplasmic reticulum stress in hyperglycemic conditions
     Objective To investigate whether the enhanced neurotoxicity of bupivacaine mediates endoplasmic reticulum stress.
     Methods Cells were assigned to four groups:(i) Control (Con):untreated;(ii) Bup:cells treated with1mM bupivacaine for24hours;(iii) Glu:cells treated with100mM glucose for24hours;(iv) Glu+Bup:cells treated with100mMglucose for24hours prior to bupivacaine administration for24hours. Grp78and caspase-12expression were measured by qRT-PCR and Western blot, representing ER stress.
     Values were expressed as the mean±standard deviation (SD), using SPSS17.0statistical software for statistical analysis. Data was analyzed by one-way ANOVA. Multiple comparisons tests were performed by LSD. A p-value of less than0.05was considered to be statistically significant.
     Results There was significant difference among groups on the level of Grp78and caspse-12mRNA and protein (F=15.503, F=11.525; F=8.864, F=29.639, all P values<0.05). Bubivacaine and high glucose increased the level of Grp78mRNA (P=0.010, P=0.006) and protein (P=0.000, P=0.001) compared with control group. Glucose pretreatment enhanced the influence on Grp78mRNA and protein (P=0.008, P=0.021). The effect of bupivacine and high glucose on caspase-12protein is like that of Grp78,but only glucose pretreatment with bupivaine increased caspase-12mRNA compared with that in control group (P=0.009)
     Conclusion Bupivacaine may result in ER stress, which could be enhanced by hyperglycemia. ER stress accociating with apoptosis may be the underlying mechanism of bupivacaine neurotoxicity.
     Section V The effect of Ginkgolide B on bupivacaine neurotoxicity
     Objective To explore the protective effect of ginkgolide B on bupivacaine induced apoptosis by examing intracellular ROS level, mitochondrial function and ER stress.
     Methods SH-SY5Y cells were pre-treated with different concentrations(5,10,20,40μmol/L) of GB in vitro, prior to administration of1mmol/L bupivacaine. Cell apoptosis were investigated with flowcytometry. In addition, mitochondrial membrane potential, reactive oxygen species(ROS), mitochondrially generated ROS, mitochondrial complexes I and III activity were studied, in order to explore the molecular mechanism of bupivacaine-induced mitochondrial injury。 Grp78and caspase-12expression Western blot, representing endoplasmic ER stress.
     Values were expressed as the mean±standard deviation (SD), using SPSS17.0statistical software for statistical analysis. Data was analyzed by one-way ANOVA. Multiple comparisons tests were performed by LSD.A p-value of less than0.05was considered to be statistically significant.
     Results There was significant difference among groups on apoptotic rate (F=167.786, P=0.000).10,20,40μ mol/L GB decreased the apoptotic cells induced by bupivacaine (P=0.000, P=0.000, P=0.000) in a dose-dependent manner.40μ mol/L GB was chosed for follow-up study. There were significant difference among groups (F=226.503; F=118.253, F=50.191; F=50.154; F=4.510,F=81.502; F=8.137, F=9.277; all P values<0.05) in level of ROS, mitochondrial complex I and III activity, JC-1polymer/monomer and Cleaved Caspase-3, HtrA2, Grp78and Caspase-12protein. The level of ROS in GB+Bup group was lower than that in Bup group (P=0.000). Mitochondrial membrane potential expressed as JC-1polymer/monomer, that in Bup group (1.12±0.43) was lower than that in Con group (8.41±1.41)(P=0.000), the ratio(3.55+0.71) in GB+Bup group much higher than Bup group (P=0.004). Compared with Bup group, GB pretreatment attenuated the decreased in mitochondrial complex I and III activity induced by bupivacaine (P=0.004, P=0.004). Cleaved Caspase-3, HtrA2, Grp78and Caspase-12protein were measured by Western blot, Bupivacaine increased the level of these proteins (P=0.012, P=0.000, P=0.001, P=0.001), which could be relieved by GB(P=0.032, P=0.001, P=0.038, P=0.016)
     Conclusion Antioxidant, GB, decreased ROS production induced by bupivacaine. Decrease in ROS production may be resulted from incease of aomplex I and III activity, and inhibit mitochondrial potential depolarization and ER stress, associating with reduction of apoptosis. That is suggesting ROS overproduction induced by bupivacaine may be responsible for mitochondrial dysfunctiong and ER stress.
引文
[1]Briffa T HS, Knuiman M, Hobbs M,et al. Long term survival after evidence based treatment of acute myocardial infarction and revascularisation:follow-up of population based Perth MONICA cohort,1984-2005. [J] BMJ 2009; 34(4):b36.
    [2]Boulton AJ, Vinik AI, Arezzo JC, et al. Diabetic neuropathies:a statement by the American Diabetes Association. [J] Diabetes Care 2005,28(4):956-962.
    [3]Yang W, Lu J, Weng J, et a.:Prevalence of diabetes among men and women in China. [J] N Engl J Med2010,362(12):1090-1101.
    [4]Ozturk G, Erdogan E, Ozturk M, et al. Differential analysis of effect of high glucose level in the development of neuropathy in a tissue culture model of diabetes mellitus:role of hyperosmolality.[J] Exp Clin Endocrinol Diabetes 2008, 116(10):582-591.
    [5]Little AA, Edwards JL, Feldman EL. Diabetic neuropathies. [J]Pract Neurol 2007, 7(2):82-92.
    [6]Auroy Y, Narchi P, Messiah A,et al. Serious complications related to regional anesthesia:results of a prospective survey in France. [J] Anesthesiology 1997, 87(3):479-486.
    [7]Rorarius M, Suominen P, Haanpaa M, et al. Neurologic sequelae after caesarean section.[J]Acta Anaesthesiol Scand 2001,45(1):34-41.
    [8]Arai Y, Kondo T, Tanabe K, et al. Enhancement of hyperthermia-induced apoptosis by local anesthetics on human histiocytic lymphoma U937 cells. [J] J Biol Chem 2002,277(21):18986-18993.
    [9]Cela O, Piccoli C, Scrima R, et al. Bupivacaine uncouples the mitochondrial oxidative phosphorylation, inhibits respiratory chain complexes I and III and enhances ROS production:results of a study on cell cultures.[J] Mitochondrion 2010, 10(5):487-496.
    [10]Perez-Castro R, Patel S, Garavito-Aguilar ZV, et al. Cytotoxicity of local anesthetics in human neuronal cells. [J]Anesth Analg 2009,108(3):997-1007.
    [11]Russell JW, Sullivan KA, Windebank AJ,et al. Neurons undergo apoptosis in animal and cell culture models of diabetes.[J] Neurobiol Dis 1999,6(5):347-363.
    [12]Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. [J]Ann N Y Acad Sci 2002,959:368-383.
    [13]Takahashi S, Izawa Y, Suzuki N. Astroglial pentose phosphate pathway rates in response to high-glucose environments. [J]ASN Neuro 2012,4(2).
    [14]Brownlee M. Biochemistry and molecular cell biology of diabetic complications. [J]Nature 2001,414(6865):813-820.
    [15]Nonaka I, Takagi A, Ishiura S, et al. Pathophysiology of muscle fiber necrosis induced by bupivacaine hydrochloride (Marcaine). [J]Acta Neuropathol 1983, 60(3-4):167-174.
    [16]Devarajan A, Grijalva VR, Bourquard N, et al. Macrophage paraoxonase 2 regulates calcium homeostasis and cell survival under endoplasmic reticulum stress conditions and is sufficient to prevent the development of aggravated atherosclerosis in paraoxonase 2 deficiency/apoE(-/-) mice on a Western diet. [J]Mol Genet Metab 2012.107(3):416-27
    [17]Abbas W, Khan KA, Tripathy MK, et al. Inhibition of ER stress-mediated apoptosis in macrophages by nuclear-cytoplasmic relocalization of eEFIA by the HIV-1 Nef protein. [J]Cell Death Dis 2012,3:e368.
    [18]Al-Nasser B. Toxic effects of epidural analgesia with ropivacaine 0.2% in a diabetic patient. [J]J Clin Anesth 2004,16(3):220-223.
    [19]Kroin JS, Buvanendran A, Tuman KJ, et al. Safety of local anesthetics administered intrathecally in diabetic rats. [J]Pain Med 2012,13(6):802-807.
    [20]Feldman EL, Stevens MJ, Greene DA. Pathogenesis of diabetic neuropathy. [J]Clin Neurosci 1997,4(6):365-370
    [21]薛庆善.体外培养的原理与技术[M].北京:科学出版社.2001.
    [22]董石春.中医药治疗糖尿病周围神经病变近况[J].中医药信息2005,22(4):22-23.
    [23]朱禧星.现代糖尿病学[M].上海医科大学出版社2000.
    [24]Towns R, Kabeya Y, Yoshimori T, et al. Sera from patients with type 2 diabetes and neuropathy induce autophagy and colocalization with mitochondria in SY5Y cells[J]. Autophagy 2005,1(3):163-170.
    [25]Guo C, Quobatari A, Shangguan Y, et al. Diabetic autonomic neuropathy: evidence for apoptosis in situ in the rat[J]. Neurogastroenterol Motil 2004, 16(3):335-345.
    [26]Gustafsson H, Soderdahl T, Jonsson G, et al. Insulin-like growth factor type 1 prevents hyperglycemia-induced uncoupling protein 3 down-regulation and oxidative stress[J]. J Neurosci Res 2004,77(2):285-291.
    [27]Sima AA, Zhang W, Li ZQet al. Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide[J]. Diabetes 2004,53(6):1556-1563.
    [28]Cheng HL, Feldman EL. Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I[J]. J Biol Chem 1998, 273(23):14560-14565.
    [29]Di Giulio AM, Lesma E, Germani E,et al. Inhibition of high glucose-induced protein mono-ADP-ribosylation restores neuritogenesis and sodium-pump activity in SY5Y neuroblastoma cells[J]. J Neurosci Res 1999,57(5):663-669.
    [30]Radwan IA, Saito S, Goto F. The neurotoxicity of local anesthetics on growing neurons:a comparative study of lidocaine, bupivacaine, mepivacaine, and ropivacaine [J]. Anesth Analg 2002,94(2):319-324.
    [31]Carvalho B, Clark DJ, Yeomans DC, et al. Continuous subcutaneous instillation of bupivacaine compared to saline reduces interleukin 10 and increases substance P in surgical wounds after cesarean delivery[J]. Anesth Analg 2010,111(6):1452-1459.
    [32]Lirk P, Haller I, Myers RR, et al.Mitigation of direct neurotoxic effects of lidocaine and amitriptyline by inhibition of p38 mitogen-activated protein kinase in vitro and in vivo[J]. Anesthesiology 2006,104(6):1266-1273.
    [33]Lu J, Xu SY, Zhang QG,et al. Bupivacaine induces reactive oxygen species production via activation of the AMP-activated protein kinase-dependent pathway [J]. Pharmacology 2011,87(3-4):121-129
    [34]Hebl JR, Kopp SL, Schroeder DR,et al. Neurologic complications after neuraxial anesthesia or analgesia in patients with preexisting peripheral sensorimotor neuropathy or diabetic polyneuropathy[J]. Anesth Analg 2006,103(5):1294-1299.
    [35]Abdel Nazeer A, Saito S, Sayed S,et al. Normal glucose enhances neuronal regeneration after lidocaine-induced injury[J]. Br J Anaesth 2010,104(4):482-486.
    [36]Attal N. Neuropathic pain:mechanisms, therapeutic approach, and interpretation of clinical trials[J]. Continuum (Minneap Minn) 2012,18(1):161-175.
    [37]Auroy Y, Benhamou D, Bargues L,et al. Major complications of regional anesthesia in France:The SOS Regional Anesthesia Hotline Service[J]. Anesthesiology 2002,97(5):1274-1280.
    [38]Capdevila X, Pirat P, Bringuier S,et al.Continuous peripheral nerve blocks in hospital wards after orthopedic surgery:a multicenter prospective analysis of the quality of postoperative analgesia and complications in 1,416 patients [J]. Anesthesiology 2005,103(5):1035-1045.
    [39]Neal JM. Effects of epinephrine in local anesthetics on the central and peripheral nervous systems:Neurotoxicity and neural blood flow[J]. Reg Anesth Pain Med 2003, 28(2):124-134.
    [40]Yamashita A, Matsumoto M, Matsumoto S,et al. A comparison of the neurotoxic effects on the spinal cord of tetracaine, lidocaine, bupivacaine, and ropivacaine administered intrathecally in rabbits[J]. Anesth Analg 2003,97(2):512-519.
    [41]Park CJ, Park SA, Yoon TG,et al. Bupivacaine induces apoptosis via ROS in the Schwann cell line[J]. J Dent Res 2005,84(9):852-857.
    [42]Unami A, Shinohara Y, Ichikawa T,et al.Biochemical and microarray analyses of bupivacaine-induced apoptosis[J]. J Toxicol Sci 2003,28(2):77-94.
    [43]Lin CY, Lin TY, Lee MC, et al. Hyperglycemia:GDNF-EGR1 Pathway Target Renal Epithelial Cell Migration and Apoptosis in Diabetic Renal Embryopathy[J]. PLoS One 2013,8(2):e56731.
    [44]Lirk P, Berger R, Hollmann MW,et al. Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro[J]. Br J Anaesth 2012,109(2):200-207.
    [45]Hengartner MO. The biochemistry of apoptosis[J]. Nature 2000,407(6805): 770-776.
    [46]Nakamura K, Bossy-Wetzel E, Burns K, et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis[J]. J Cell Biol 2000, 150(4):731-740.
    [47]Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation[J]. J Biol Chem 2001,276(36):33869-33874.
    [48]Haller I, Hausott B, Tomaselli B,et al. Neurotoxicity of lidocaine involves specific activation of the p38 mitogen-activated protein kinase, but not extracellular signal-regulated or c-jun N-terminal kinases, and is mediated by arachidonic acid metabolites[J]. Anesthesiology 2006,105(5):1024-1033.
    [49]Johnson ME, Uhl CB, Spittler KH,et al. Mitochondrial injury and caspase activation by the local anesthetic lidocaine[J]. Anesthesiology 2004, 101(5):1184-1194.
    [50]Werdehausen R, Braun S, Essmann F,et al. Lidocaine induces apoptosis via the mitochondrial pathway independently of death receptor signaling[J]. Anesthesiology 2007,107(1):136-143.
    [51]刘荣国,陈彦青,崔翔.二氮嗪预处理联合低温对大鼠海马神经元缺氧复氧时Bcl-2和Bax表达的影响[J].中华麻醉学杂志2009,29(6).543-546.
    [52]Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy:evidence for apoptosis and associated mitochondrial dysfunction[J]. Diabetes 2000, 49(11):1932-1938.
    [53]Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy [J]. Diabetes 2003,52(1):165-171.
    [54]Zamzami N, Marchetti P, Castedo M,et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death[J]. J Exp Med 1995,182(2):367-377.
    [55]Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs[J]. Physiol Rev 1979,59(3):527-605.
    [56]Young TA, Cunningham CC, Bailey SM. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol[J]. Arch Biochem Biophys 2002,405(1):65-72.
    [57]Riezzo I, Cerretani D, Fiore C,et al. Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity[J]. J Neurosci Res 2010,88(4):905-916.
    [58]Zorov DB, Filburn CR, Klotz LO,et al. Reactive oxygen species (ROS)-induced ROS release:a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes[J]. J Exp Med 2000,192(7):1001-1014.
    [59]Barateiro A, Vaz AR, Silva SL,ET AL. ER Stress, Mitochondrial Dysfunction and Calpain/JNK Activation are Involved in Oligodendrocyte Precursor Cell Death by Unconjugated Bilirubin[J]. Neuromolecular Med 2012.14(4):285-302
    [60]Vincent AM, Russell JW, Low P,et al. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004[J],25(4):612-628.
    [61]Nagy G, Koncz A, Fernandez D, et al. Nitric oxide, mitochondrial hyperpolarization, and T cell activation[J]. Free Radic Biol Med 2007, 42(11):1625-1631
    [62]Lu J, Xu SY, Zhang QG, et al. Bupivacaine induces apoptosis via mitochondria and p38 MAPK dependent pathways[J]. Eur J Pharmacol 2011,657(1-3):51-58.
    [63]Bernardi P, Krauskopf A, Basso E,et al. The mitochondrial permeability transition from in vitro artifact to disease target[J]. FEBS J 2006,273(10):2077-2099.
    [64]Arnoult D, Gaume B, Karbowski M,et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization[J]. EMBO J 2003,22(17):4385-4399.
    [65]Zoratti M, Szabo I, De Marchi U. Mitochondrial permeability transitions:how many doors to the house?[J] Biochim Biophys Acta 2005,1706(1-2):40-52.
    [66]Waterhouse NJ, Sedelies KA, Sutton VR,et al. Functional dissociation of DeltaPsim and cytochrome c release defines the contribution of mitochondria upstream of caspase activation during granzyme B-induced apoptosis[J]. Cell Death Differ 2006,13(4):607-618.
    [67]朱永仁,刘志明.细胞凋亡的研究进展[J].贵州畜牧兽医2008,32(1):25-26.
    [68]Harding HP, Ron D. Endoplasmic reticulum stress and the development of diabetes:a review[J]. Diabetes 2002,51(3)::S455-61.
    [69]Mouw G, Zechel JL, Gamboa J, et al. Activation of caspase-12, an endoplasmic reticulum resident caspase, after permanent focal ischemia in rat[J]. Neuroreport 2003, 14(2):183-186.
    [70]Watanabe Y, Suzuki O, Haruyama T,et al. Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis[J]. J Cell Biochem 2003,89(2):244-253.
    [71]Ullman E, Fan Y, Stawowczyk M,et al. Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress [J]. Cell Death Differ 2008, 15(2):422-425.
    [72]Schroder M, Kaufman RJ. The mammalian unfolded protein response [J]. Annu Rev Biochem 2005,74:739-789.
    [73]Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response[J]. Cell 2001,107(7):827-830.
    [74]Drummond IA, Lee AS, Resendez E, et al. Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts[J]. J Biol Chem 1987,262(26):12801-12805.
    [75]Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress:a matter of life or death[J]. Cell Death Differ 2006,13(3):363-373.
    [76]Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta[J]. Nature 2000,403(6765):98-103
    [77]Takada A, Miki T, Kuno A, et al. Role of ER Stress in Ventricular Contractile Dysfunction in Type 2 Diabetes[J]. PLoS One 2012,7(6):e39893.
    [78]Araki E, Oyadomari S, Mori M. Endoplasmic reticulum stress and diabetes mellitus[J]. Intern Med 2003,42(1):7-14.
    [79]Zhang C, Tian X, Luo Y,et al. Ginkgolide B attenuates ethanol-induced neurotoxicity through regulating NADPH oxidases[J]. Toxicology 2011, 287(1-3):124-130.
    [80]Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B[J]. Prog Neurobiol 2002,67(3):235-257.
    [81]Huang M, Qian Y, Guan T, et al. Different neuroprotective responses of Ginkgolide B and bilobalide, the two Ginkgo components, in ischemic rats with hyperglycemia[J]. Eur J Pharmacol 2012,677(1-3):71-76.
    [82]Shi C, Zhao L, Zhu B,et al. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against beta-amyloid peptide-induced toxicity in SH-SY5Y cells[J]. Chem Biol Interact 2009,181(1):115-123.
    [83]Chan WH, Hsuuw YD. Dosage effects of ginkgolide B on ethanol-induced cell death in human hepatoma G2 cells[J]. Ann N Y Acad Sci 2007,1095:388-398.
    [84]Slee EA, Adrain C, Martin SJ. Executioner caspase-3,-6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis[J]. J Biol Chem,2001,276(10):7320-7326.
    [85]Wang CC, Liu TY, Cheng CH et al. Involvement of the mitochondrion-dependent pathway and oxidative stress in the apoptosis of murine splenocytes induced by areca nut extract [J]. Toxicol In Vitro,2009,23(5):840-847.
    [86]Xu C, Bailly -Maitre B, Reed JC. Endoplasmic reticulum stress:cell life and death decisions[J]. J Clin Invest,2005; 115(10) B 2656-2664
    [1]Passariello F, Farina E, Neuhardt DL. A severe neurological event during a local anaesthesia phlebectomy[J]. Phlebology,2011;26(1):40-43.
    [2]Shih YH, Chen CH, Wang YM, et al. Successful reversal of bupivacaine and lidocaine-induced severe junctional bradycardia by lipid emulsion following infraclavicular brachial plexus block in a uremic patient[J]. Acta Anaesthesiol Taiwan, 2011;49(2):72-74.
    [3]Kawasaki Y, Kohno T, Zhuang ZY, et al. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization[J]. J Neurosci,2004;24(38):8310-8321.
    [4]Krishna M, Narang H. The complexity of mitogen-activated protein kinases (MAPKs) made simple[J]. Cell Mol Life Sci,2008;65(22):3525-3544.
    [5]Tan Z, Dohi S, Chen J, et al. Involvement of the mitogen-activated protein kinase family in tetracaine-induced PC 12 cell death[J]. Anesthesiology, 2002;96(5):1191-1201.
    [6]Maurice JM, Gan Y, Ma FX,et al. Bupivacaine causes cytotoxicity in mouse C2C12 myoblast cells:involvement of ERK and Akt signaling pathways[J]. Acta Pharmacol Sin,2010;31(4):493-500.
    [7]Joo JD, Choi JW, In JH, et al. Lidocaine suppresses the increased extracellular signal-regulated kinase/cyclic AMP response element-binding protein pathway and pro-inflammatory cytokines in a neuropathic pain model of rats[J]. Eur J Anaesthesiol, 2011;28(2):106-111.
    [8]Yanagidate F, Strichartz GR. Bupivacaine inhibits activation of neuronal spinal extracellular receptor-activated kinase through selective effects on ionotropic receptors[J]. Anesthesiology,2006; 104(4):805-814.
    [9]Lin A. Activation of the JNK signaling pathway:breaking the brake on apoptosis[J]. Bioessay,s 2003;25(1):17-24.
    [10]Vallerie SN, Hotamisligil GS. The role of JNK proteins in metabolism[J]. Sci Transl Med,2010;2(60):60-65.
    [11]Pan J, Zhao YX, Wang ZQ, et al. Expression of FasL and its interaction with Fas are mediated by c-Jun N-terminal kinase (JNK) pathway in 6-OHDA-induced rat model of Parkinson disease[J]. Neurosci Lett,2007;428(2-3):82-87.
    [12]Guan QH, Pei DS, Xu TL, et al. Brain ischemia/reperfusion-induced expression of DP5 and its interaction with Bcl-2, thus freeing Bax from Bcl-2/Bax dimmers are mediated by c-Jun N-terminal kinase (JNK) pathway[J]. Neurosci Lett, 2006;393(2-3):226-230.
    [13]Lirk P, Haller I, Colvin HP, et al. In vitro, inhibition of mitogen-activated protein kinase pathways protects against bupivacaine- and ropivacaine-induced neurotoxicity[J]. Anesth Analg,2008; 106(5):1456-1464.
    [14]Haller I, Hausott B, Tomaselli B, et al. Neurotoxicity of lidocaine involves specific activation of the p38 mitogen-activated protein kinase, but not extracellular signal-regulated or c-jun N-terminal kinases, and is mediated by arachidonic acid metabolites[J]. Anesthesiology,2006;105(5):1024-1033.
    [15]Unami A, Shinohara Y, Ichikawa T, et al. Biochemical and microarray analyses of bupivacaine-induced apoptosis[J]. J Toxicol Sci,2003;28(2):77-94.
    [16]Arai Y, Kondo T, Tanabe K, et al. Enhancement of hyperthermia-induced apoptosis by local anesthetics on human histiocytic lymphoma U937 cells[J]. J Biol Chem,2002;277(21):18986-18993.
    [17]Meng X M. Huang Y. Li J. The role of p38 MAPK transduction system in chronic bronchitis[J]. Chin Pharmacol Bull,2008;24(7):849-852.
    [18]Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway[J]. Cell Res,2005; 15(1):11-18.
    [19]Navas T, Zhou L, Estes M, et al. Inhibition of p38alpha MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone marrow microenvironment[J]. Leuk Lymphoma,2008;49 (10):1963-1975.
    [20]Lirk P, Haller I, Colvin HP, et al. In vitro, lidocaine-induced axonal injury is prevented by peripheral inhibition of the p38 mitogen-activated protein kinase, but not by inhibiting caspase activity[J]. Anesth Analg,2007;105(6):1657-1664.
    [21]Lu J, Xu SY, Zhang QG,et al. Bupivacaine induces apoptosis via mitochondria and p38 MAPK dependent pathways[J]. Eur J Pharmacol,2011;657(1-3):51-58.
    [22]Gu YW, Su DS, Tian J, et al. Attenuating phosphorylation of p38 MAPK in the activated microglia:a new mechanism for intrathecal lidocaine reversing tactile allodynia following chronic constriction injury in rats[J]. Neurosci Lett, 2008;431(2):129-134.
    [23]Su D, Gu Y, Wang Z, et al Lidocaine attenuates proinflammatory cytokine production induced by extracellular adenosine triphosphate in cultured rat microglia[J]. Anesth Analg,2010;111(3):768-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700