抗污染、高通量多孔膜的制备及膜过程强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜污染和渗透通量低是制约聚合物多孔膜广泛应用的瓶颈,制备抗污染、高通量膜是膜分离领域的关键科学问题之一。本论文以解决膜分离过程中的膜污染和提高膜通量为主要目标,合理设计成膜材料(两亲性刷状聚合物)、优化成膜工艺(调控凝胶浴温度、构建界面共价键)和创新制膜方法(受限空间聚合),实现抗污染、高通量多孔膜的制备及过程强化。
     从非溶剂诱导相转化成膜机理和分子设计出发,制备抗污染、高通量非对称膜。研究了不同凝胶浴温度下亲水性聚乙二醇(PEG)和两亲性改性剂PluronicF127的表面偏析行为,并系统考察了凝胶浴温度对聚醚砜(PES)非对称膜断面结构、皮层孔径范围、表面亲水性、分离性能和抗污染性能的影响。设计制备了以疏水聚醚砜(PES)为主链、聚甲基丙烯酸聚乙二醇酯(polyPEGMA)为支链的刷状聚合物PES-g-PEGMA,并以其为成膜主体材料,考察了PEGMA接枝率、PEG链段长度等因素对PES-g-PEGMA非对称膜的成膜性能、表面化学组成、表面亲水性和蛋白吸附的影响。PES-g-PEGMA膜在保持PES优异的成膜性能和良好物化稳定性的同时,具有良好的亲水性和低蛋白吸附,分离性能和抗蛋白质污染性能同时提升。
     基于界面聚合反应机理,采用1-乙基-(3-二甲基氨基丙基)碳二亚胺(EDC)/N-羟基琥珀酰亚胺(NHS)活化水解聚丙烯腈(HPAN)基膜表面的羧基,通过活性层与基膜间的界面共价酰胺键干预哌嗪(PIP)与均苯三甲酰氯(TMC)的界面聚合反应,优化聚酰胺活性层结构和电荷特性,实现了高通量聚酰胺(PA)复合纳滤膜的制备。通过共混亲水单体聚乙烯醇(PVA)赋予活性层亲水性,赋予聚酰胺复合膜优异的抗蛋白污染性能。
     创新了受限空间聚合的自支撑膜制备方法,研究成膜过程热力学和动力学因素对膜结构调控、表面性质的影响规律,系统考察了致孔剂对自支撑膜孔径、孔隙率的影响,实现了自支撑膜厚度的调控,制备了亲水性抗污染、高通量聚甲基丙烯酸羟基乙酯(polyHEMA)自支撑膜。通过成膜单体HEMA与含氟单体甲基丙烯酸十二氟庚酯(DFHM)共混,构建了含亲水区和低表面能区的两亲性自支撑膜表面,实现了两亲性抗污染、高通量自支撑膜的制备。通过成膜单体与弱酸性单体甲基丙烯酸(MAA)和温敏性单体N-异丙基丙烯酰胺(NIPAAm)共混,实现抗污染、刺激响应自支撑膜的制备。
Membrane fouling and low permeation flux constitute the bottleneck limiting thewide application of polymeric membranes. Preparation of antifouling and high fluxmembranes has become one of the most important research issues in membraneseparation area. The target of the thesis is to prepare antifouling asymmetric,composite and free-standing membranes. We design the membrane matrix material(amphiphilic brush-like polymer), optimize the membrane formation conditions(adjusting coagulation temperature, generating covalent bonds between active layerand support), invent a new fabrication approach of free-standing membrane(space-confined polymerization) and achieve the preparation and processintensification of the antifouling, high flux membranes.
     Starting from the mechanism of nonsolvent induced phase inversion and moleculardesign protocol, we investigate the surface segregation behavior of hydrophilicpore-forming agent polyethylene glycol (PEG) and amphiphilic Pluronic F127undervarious coagulation bath temperatures. The influence of coagulation bath temperatureon the cross sectional morphology, pore size, surface hydrophilicity, separation andantifouling properties of the poly(ethylene sulfone)(PES) asymmetric membranes issystematically studied. We design and synthesize the brush-like amphiphiliccopolymer PES-g-poly(ethylene oxide) dimethacrylate (PEGMA) with the PES asmain chain and the polyPEGMA as side chains. The asymmetric PES-g-PEGMAmembranes are prepared using PES-g-PEGMA as the membrane matrix material. Theimpacts of graft yield of PEGMA and the length of PEG segment on themembrane-formation properties, surface composition, surface hydrophilicity andprotein adsorption are investigated. The PES-g-PEGMA membranes maintain theexcellent membrane-formation property of the PES membranes. Compared to the PEScontrol membrane, the PES-g-PEGMA membranes are endowed with surfacehydrophilicity and lower protein adsorption. Beside, the separation properties andantifouling properties of the PES-g-PEGMA membrane were enhanced.
     Based on the mechanism of interfacial polymerization, the carboxyl groups onthe hydrolyzed polyacrylonitrile (HPAN) membrane surface are activated byN-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC)/N-Hydroxysuccinimide (NHS), the interfacial polymerization between piperazidine(PIP) and trimesoyl chloride (TMC) is mediated by the generating amide bonds between the active layer and the support. The morphology and zeta potential of activelayer is optimized. The flux of the PA-EDC-HPAN composite membrane is of a highlevel. The PA-EDC-HPAN composite membrane is endowed with anti-protein-foulingproperties via blending hydrophilic polyvinyl alcohol (PVA) with PIP.
     We invent a space-confined approach to the poly(2-hydroxyethyl methacrylate)(polyHEMA) free-standing membranes. The influence of membrane formationthermodynamics and dynamics on membrane morphologies and surface properties isstudied. The impacts of pore-forming agent on the membrane pore size and porosity isinvestigated. The polyHEMA free-standing membrane thickness can be easilyadjusted. The polyHEMA membranes possessed the superhydrophilicity, high fluxand strong antifouling properties. Through blending the fluorine-containing monomerdodecafluoroheptyl methacrylate (DFHM) with the hydrophilic monomer HEMA, themembrane with amphiphilic surface bearing hydrophilic domains and low surfaceenergy domains is constructed. The membranes show high flux and strong antifoulingproperties. Through blending with the weak acid monomer methylacrylic acid (MAA)or the temperature-sensitive monomer N-isopropylacrylamide (NIPAAm), thefree-standing membranes with antifouling, pH/temperature stimuli responsiveproperties are prepared.
引文
[1]时均,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001.
    [2] S. Loeb, S. Sourirajan, Sea water demineralization by means of an osmoticmembrane, ACS Publications,1962
    [3] S. Sourirajan, Characteristics of porous cellulose acetate membranes for separationof some organic substances in aqueous solution, Ind. Eng. Chem. Prod. Res. Dev.,1965,4:201-206
    [4] J. Cadotte, R. King, R. Majerle, R. Petersen, Interfacial synthesis in thepreparation of reverse osmosis membranes, J. Macromol. Sci. Chem.,1981,15:727-755
    [5] J.E. Cadotte, Evolution of composite reverse osmosis membranes, Mater. Sci.Synth. Membr.,1985,273-294
    [6] J.E. Cadotte, R.J. Petersen, Thin-film composite reverse-osmosis membranes:origin, development, and recent advances, Synth. Membr.,1981,1:306-326
    [7] R.F. Boyd, A.L. Zydney, Analysis of protein fouling during ultrafiltration using atwo-layer membrane model, Biotechnol. Bioeng.,2000,59:451-460
    [8] C.C. Ho, A.L. Zydney, Protein fouling of asymmetric and compositemicrofiltration membranes, Ind. Eng. Chem. Res.,2001,40:1412-1421
    [9] R. Chan, V. Chen, Characterization of protein fouling on membranes:opportunities and challenges, J. Membr. Sci.,2004,242:169-188
    [10] A. Caetano, Membrane technology: applications to industrial wastewatertreatment, Springer,1995
    [11] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M.Mayes, Science and technology for water purification in the coming decades, Nature,2008,452:301-310
    [12] C.A. Dyke, C.R. Bartels, Removal of organics from offshore produced watersusing nanofiltration membrane technology, Environ. Prog.,2006,9:183-186
    [13] M. Munoz-Aguado, D. Wiley, A. Fane, Enzymatic and detergent cleaning of apolysulfone ultrafiltration membrane fouled with BSA and whey, J. Membr. Sci.,1996,117:175-187
    [14] A. Lim, R. Bai, Membrane fouling and cleaning in microfiltration of activatedsludge wastewater, J. Membr. Sci.,2003,216:279-290
    [15]水利部,建设部,节水型社会建设“十一五”规划,2006
    [16] F. Tao, S. Curtice, R. Hobbs, J. Sides, J. Wieser, C. Dyke, D. Tuohey, P. Pilger,Reverse osmosis process successfully converts oil field brine into freshwater, Oil andGas J..,1993,88-91
    [17] A. Salahi, M. Abbasi, T. Mohammadi, Permeate flux decline during UF of oilywastewater: Experimental and modeling, Desalination,2010,251:153-160
    [18] M. Hlavacek, Break-up of oil-in-water emulsions induced by permeation througha microfiltration membrane, J. Membr. Sci.,1995,102:1-7
    [19] A. Hong, A. Fane, R. Burford, Factors affecting membrane coalescence of stableoil-in-water emulsions, J. Membr. Sci.,2003,222:19-39
    [20] R.S. Faibish, Y. Cohen, Fouling-resistant ceramic-supported polymer membranesfor ultrafiltration of oil-in-water microemulsions, J. Membr. Sci.,2001,185:129-143
    [21] E. Ostuni, C.S. Chen, D.E. Ingber, G.M. Whitesides, Selective deposition ofproteins and cells in arrays of microwells, Langmuir,2001,17:2828-2834
    [22] E. Ostuni, R.G. Chapman, M.N. Liang, G. Meluleni, G. Pier, D.E. Ingber, G.M.Whitesides, Self-assembled monolayers that resist the adsorption of proteins and theadhesion of bacterial and mammalian cells, Langmuir,2001,17:6336-6343
    [23] E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, Asurvey of structure-property relationships of surfaces that resist the adsorption ofprotein, Langmuir,2001,17:5605-5620
    [24] L. Deng, M. Mrksich, G.M. Whitesides, Self-assembled monolayers ofalkanethiolates presenting tri (propylene sulfoxide) groups resist the adsorption ofprotein, J. Am. Chem. Soc.1996,118:5136-5137
    [25] M. Mrksich, G.M. Whitesides, Using self-assembled monolayers that presentoligo (ethylene glycol) groups to control the interactions of proteins with surfaces, in:ACS Symposium Series, ACS Publications,1997, pp.361-373.
    [26] A. Rahimpour, S. Madaeni, S. Zereshki, Y. Mansourpanah, Preparation andcharacterization of modified nano-porous PVDF membrane with high antifoulingproperty using UV photo-grafting, Appl. Surf. Sci.,2009,255:7455-7461
    [27] A. Rahimpour, S.S. Madaeni, Y. Mansourpanah, Nano-porous polyethersulfone(PES) membranes modified by acrylic acid (AA) and2-hydroxyethylmethacrylate(HEMA) as additives in the gelation media, J. Membr. Sci.,2010,364:380-388
    [28] E. Ostuni, B.A. Grzybowski, M. Mrksich, C.S. Roberts, G.M. Whitesides,Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers,Langmuir,2003,19:1861-1872
    [29] N.P. Desai, J.A. Hubbell, Solution technique to incorporate polyethylene oxideand other water-soluble polymers into surfaces of polymeric biomaterials,Biomaterials,1991,12:144-153
    [30] J.H. Lee, J. Kopecek, J.D. Andrade, Protein-resistant surfaces prepared byPEO-containing block copolymer surfactants, J. Biomed. Mater. Res.,1989,23:351-368
    [31] M. Amiji, K. Park, Prevention of protein adsorption and platelet adhesion onsurfaces by PEO/PPO/PEO triblock copolymers, Biomaterials,1992,13:682-692
    [32] S. Jeon, J. Lee, J. Andrade, P. De Gennes, Protein-surface interactions in thepresence of polyethylene oxide: I. Simplified theory, J. Colloid Interf. Sci,1991,142:149-158
    [33] L. Harris, S. Tosatti, M. Wieland, M. Textor, R. Richards, Staphylococcus aureusadhesion to titanium oxide surfaces coated with non-functionalized andpeptide-functionalized poly (L-lysine)-grafted-poly (ethylene glycol) copolymers,Biomaterials,2004,25:4135
    [34] G.L. Kenausis, J. V r s, D.L. Elbert, N. Huang, R. Hofer, L. Ruiz-Taylor, M.Textor, J.A. Hubbell, N.D. Spencer, Poly (L-lysine)-g-poly (ethylene glycol) layers onmetal oxide surfaces: Attachment mechanism and effects of polymer architecture onresistance to protein adsorption, J. Phys. Chem. B,2000,104:3298-3309
    [35] A. Hucknall, S. Rangarajan, A. Chilkoti, In pursuit of zero: polymer brushes thatresist the adsorption of proteins, Adv. Mater.,2009,21:2441-2446
    [36] P. Kingshott, H. Thissen, H.J. Griesser, Effects of cloud-point grafting, chainlength, and density of PEG layers on competitive adsorption of ocular proteins,Biomaterials,2002,23:2043-2056
    [37] P. Kingshott, S. McArthur, H. Thissen, D.G. Castner, H.J. Griesser, Ultrasensitiveprobing of the protein resistance of PEG surfaces by secondary ion mass spectrometry,Biomaterials,2002,23:4775-4785
    [38] A.R. Denes, E.B. Somers, A.C.L. Wong, F. Denes,12-crown-4-ether and tri(ethylene glycol) dimethyl-ether plasma-coated stainless steel surfaces and theirability to reduce bacterial biofilm deposition, J. Appl. Polym. Sci.,2001,81:3425-3438
    [39] H.Y. Yu, Y.J. Xie, M.X. Hu, J.L. Wang, S.Y. Wang, Z.K. Xu, Surfacemodification of polypropylene microporous membrane to improve its antifoulingproperty in MBR: CO2plasma treatment, J. Membr. Sci.,2005,254:219-227
    [40] B.D. McCloskey, H. Ju, B.D. Freeman, Composite Membranes Based on aSelective Chitosan-Poly (ethylene glycol) Hybrid layer: synthesis, characterization,and performance in oil-water purification, Ind. Eng. Chem. Res.,2009,49:366-373
    [41] J. Wei, G.S. Helm, N. Corner-Walker, X. Hou, Characterization of a non-foulingultrafiltration membrane, Desalination,2006,192:252-261
    [42] L. Brink, D. Romijn, Reducing the protein fouling of polysulfone surfaces andpolysulfone ultrafiltration membranes: Optimization of the type of presorbed layer,Desalination,1990,78:209-233
    [43] P. Wang, K. Tan, E. Kang, K. Neoh, Antifouling poly (vinylidene fluoride)microporous membranes prepared via plasma-induced surface grafting of poly(ethylene glycol), J. Adhes. Sci. Technol.,2002,16:111-127
    [44] H. Susanto, M. Balakrishnan, M. Ulbricht, Via surface functionalization byphotograft copolymerization to low-fouling polyethersulfone-based ultrafiltrationmembranes, J. Membr. Sci.,2007,288:157-167
    [45] Q. Shi, Y.L. Su, W.J. Chen, J.M. Peng, L.Y. Nie, L. Zhang, Z.Y. Jiang, Graftingshort-chain amino acids onto membrane surfaces to resist protein fouling, J. Membr.Sci.,2011,366:398-404
    [46] A. Asatekin, S. Kang, M. Elimelech, A.M. Mayes, Anti-fouling ultrafiltrationmembranes containing polyacrylonitrile-graft-poly (ethylene oxide) comb copolymeradditives, J. Membr. Sci.,2007,298:136-146
    [47] A. Asatekin, E.A. Olivetti, A.M. Mayes, Fouling resistant, high fluxnanofiltration membranes from polyacrylonitrile-graft-poly(ethylene oxide), J. Membr.Sci.,2009,332:6-12
    [48] Y.L. Su, W. Cheng, C. Li, Z.Y. Jiang, Preparation of antifouling ultrafiltrationmembranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers, J. Membr.Sci.,2009,329:246-252
    [49] J.F. Hester, P. Banerjee, A.M. Mayes, Preparation of protein-resistant surfaces onpoly(vinylidene fluoride) membranes via surface segregation, Macromolecules,1999,32:1643-1650
    [50] J.F. Hester, A.M. Mayes, Design and performance of foul-resistantpoly(vinylidene fluoride) membranes prepared in a single-step by surface segregation,J. Membr. Sci.,2002,202:119-135
    [51] D. Rana, T. Matsuura, Surface modifications for antifouling membranes, Chem.Rev.,2010,110:2448
    [52] H. Susanto, M. Ulbricht, Photografted thin polymer hydrogel layers on PESultrafiltration membranes: characterization, stability, and influence on separationperformance, Langmuir,2007,23:7818-7830
    [53] F.Q. Nie, Z.K. Xu, X.J. Huang, P. Ye, J. Wu, Acrylonitrile-based copolymermembranes containing reactive groups: surface modification by the immobilization ofpoly (ethylene glycol) for improving antifouling property and biocompatibility,Langmuir,2003,19:9889-9895
    [54] F.Q. Nie, Z.K. Xu, P. Ye, J. Wu, P. Seta, Acrylonitrile-based copolymermembranes containing reactive groups: effects of surface-immobilized poly (ethyleneglycol) s on anti-fouling properties and blood compatibility, Polymer,2004,45:399-407
    [55] Y.Y. Luk, M. Kato, M. Mrksich, Self-assembled monolayers of alkanethiolatespresenting mannitol groups are inert to protein adsorption and cell attachment,Langmuir,2000,16:9604-9608
    [56] A. Lowe, N. Billingham, S. Armes, Synthesis and characterization of zwitterionicblock copolymers, Macromolecules,1998,31:5991-5998
    [57] T.A. Wielema, J.B.F.N. Engberts, Zwitterionic polymers-I. Synthesis of a novelseries of poly (vinylsulphobetaines). Effect of structure of polymer on solubility inwater, Eur. Polym. J.,1987,23:947-950
    [58] K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi, Whydo phospholipid polymers reduce protein adsorption?, J. Biomed. Mater. Res.,1998,39:323-330
    [59] K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification ofpolysulfone with phospholipid polymer for improvement of the blood compatibility.Part2. Protein adsorption and platelet adhesion, Biomaterials,1999,20:1553-1559
    [60] T. Wang, Y.Q. Wang, Y.L. Su, Z.Y. Jiang, Improved protein-adsorption-resistantproperty of PES/SPC blend membrane by adjustment of coagulation bath composition,Colloids Surf., B,2005,46:233-239
    [61] S. Chen, S. Jiang, An new avenue to nonfouling materials, Adv. Mater.,2008,20:335-338
    [62] S. Jiang, Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzablezwitterionic materials and their derivatives for biological applications, Adv. Mater.,2010,22:920-932
    [63] S. Chen, J. Zheng, L. Li, S. Jiang, Strong resistance of phosphorylcholineself-assembled monolayers to protein adsorption: insights into nonfouling propertiesof zwitterionic materials, J. Am. Chem. Soc.,2005,127:14473-14478
    [64] L. Li, G. Yan, J. Wu, Modification of polysulfone membranes viasurface-initiated atom transfer radical polymerization and their antifouling properties,J. Appl. Polym. Sci.,2008,111:1942-1946
    [65] A. Rahimpour, S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate(CAP) blend ultrafiltration membranes: preparation, morphology, performance andantifouling properties, J. Membr. Sci.,2007,305:299-312
    [66] G.M. Qiu, B.K. Zhu, Y.Y. Xu, K.E. Geckeler, Synthesis of ultrahigh molecularweight poly (styrene-alt-maleic anhydride) in supercritical carbon dioxide,Macromolecules,2006,39:3231-3237
    [67] L.P. Zhu, X.X. Zhang, L. Xu, C.H. Du, B.K. Zhu, Y.Y. Xu, Improvedprotein-adsorption resistance of polyethersulfone membranes via surface segregationof ultrahigh molecular weight poly (styrene-alt-maleic anhydride), Colloids andSurfaces B: Biointerfaces,2007,57:189-197
    [68] J. Genzer, K. Efimenko, Recent developments in superhydrophobic surfaces andtheir relevance to marine fouling: a review, Biofouling,2006,22:339-360
    [69] R.J. Pieper, A. Ekin, D.C. Webster, F. Casse, J.A. Callow, M.E. Callow,Combinatorial approach to study the effect of acrylic polyol composition on theproperties of crosslinked siloxane-polyurethane fouling-release coatings, J. of Coat.Technol. Res.,2007,4:453-461
    [70] S. Sommer, A. Ekin, D.C. Webster, S.J. Stafslien, J. Daniels, L.J. VanderWal,S.E.M. Thompson, M.E. Callow, J.A. Callow, A preliminary study on the propertiesand fouling-release performance of siloxane-polyurethane coatings prepared frompoly (dimethylsiloxane)(PDMS) macromers, Biofouling,2010,26:961-972
    [71] S.A. Sommer, J.R. Byrom, H.D. Fischer, R.B. Bodkhe, S.J. Stafslien, J. Daniels,C. Yehle, D.C. Webster, Effects of pigmentation on siloxane-polyurethane coatingsand their performance as fouling-release marine coatings, J. of Coat. Technol. Res.,2011,8:661-670
    [72] A. Ekin, D.C. Webster, J.W. Daniels, S.J. Stafslien, F. Casse, J.A. Callow, M.E.Callow, Synthesis, formulation, and characterization of siloxane-polyurethanecoatings for underwater marine applications using combinatorial high-throughputexperimentation, J. of Coat. Technol. Res.,2007,4:435-451
    [73] S. Krishnan, N. Wang, C.K. Ober, J.A. Finlay, M.E. Callow, J.A. Callow, A.Hexemer, K.E. Sohn, E.J. Kramer, D.A. Fischer, Comparison of the fouling releaseproperties of hydrophobic fluorinated and hydrophilic PEGylated block copolymersurfaces: attachment strength of the diatom Navicula and the green alga Ulva,Biomacromolecules,2006,7:1449-1462
    [74] R.F. Brady, A fracture mechanical analysis of fouling release from nontoxicantifouling coatings, Prog. org. coat.,2001,43:188-192
    [75] L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Creation of asuperhydrophobic surface from an amphiphilic polymer, Angew. Chem. Int. Ed.,2003,42:800-802
    [76] S. Krishnan, C.J. Weinman, C.K. Ober, Advances in polymers for anti-biofoulingsurfaces, J. Mater. Chem.,2008,18:3405-3413
    [77]汪敬如,袁水娇,材料科学与工程学术交流会论文汇编,1996
    [78] J.C. Yarbrough, J.P. Rolland, J.M. DeSimone, M.E. Callow, J.A. Finlay, J.A.Callow, Contact angle analysis, surface dynamics, and biofouling characteristics ofcross-linkable, random perfluoropolyether-based graft terpolymers, Macromolecules,2006,39:2521-2528
    [79] H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, M. Anpo, Coating of TiO2photocatalysts on super-hydrophobic porous teflon membrane by an ion assisteddeposition method and their self-cleaning performance, Nuclear Instruments andMethods in Physics Research Section B: Beam Interactions with Materials and Atoms,2003,206:898-901
    [80] W.J. Chen, Y.L. Su, J.M. Peng, Y.N. Dong, X.T. Zhao, Z.Y. Jiang, Engineering arobust, versatile amphiphilic membrane surface through forced surface segregation forultralow flux-decline, Adv. Funct. Mater.,2011,21:191-198
    [81] W.J. Chen, Y.L. Su, J.M. Peng, X.T. Zhao, Z.Y. Jiang, Y.A. Dong, Y. Zhang, Y.G.Liang, J.Z. Liu, Efficient wastewater treatment by membranes through constructingtunable antifouling membrane surfaces, Environ. Sci. Technol.,2011,45:6545-6552
    [82] F.A.L. Dullien, New network permeability model of porous media, Aiche J.,1975,21:299-307
    [83] A. Mehta, A.L. Zydney, Permeability and selectivity analysis for ultrafiltrationmembranes, J. Membr. Sci.,2005,249:245-249
    [84] H. Lonsdale, R. Riley, C. Lyons, D. Carosella Jr, Transport in composite reverseosmosis membranes, Membrane Processes in Industry and Biomedicine,1971,101
    [85] R. Riley, H. Lonsdale, C. Lyons, Composite membranes for seawaterdesalination by reverse osmosis, J. Appl. Polym. Sci.,1971,15:1267-1276
    [86] R. Riley, H. Lonsdale, C. Lyons, U. Merten, Preparation of ultrathin reverseosmosis membranes and the attainment of theoretical salt rejection, J. Appl. Polym.Sci.,2003,11:2143-2158
    [87] H. Lonsdale, U. Merten, R. Riley, Transport properties of cellulose acetateosmotic membranes, J. Appl. Polym. Sci.,2003,9:1341-1362
    [88] E. Hoffer, O. Kedem, Hyperfiltration in charged membranes: the fixed chargemodel, Desalination,1967,2:25-39
    [89] E. Hoffer, O. Kedem, Ion Separation by Hyperfiltration through chargedmembrane. I. calculation based on TMS model, Ind. Eng. Chem. Prod. Res. Dev.,1972,11:221-225
    [90] E. Hoffer, O. Kedem, Negative rejection of acids and separation of ions byhyperfiltration, Desalination,1968,5:167-172
    [91] H. Sun, S. Liu, B. Ge, L. Xing, H. Chen, Cellulose nitrate membrane formationvia phase separation induced by penetration of nonsolvent from vapor phase, J.Membr. Sci.,2007,295:2-10
    [92] P. Vandezande, L.E.M. Gevers, J. Vermant, J.A. Martens, P.A. Jacobs, I.F.J.Vankelecom, Solidification of emulsified polymer solutions via phase inversion(SEPPI): A generic way to prepare polymers with controlled porosity, Chem. Mater.,2008,20:3457-3465
    [93] J. Xu, Z.L. Xu, Poly(vinyl chloride)(PVC) hollow fiber ultrafiltrationmembranes prepared from PVC/additives/solvent, J. Membr. Sci.,2002,208:203-212
    [94] B. Chakrabarty, A. Ghoshal, M. Purkait, Effect of molecular weight of PEG onmembrane morphology and transport properties, J. Membr. Sci.,2008,309:209-221
    [95] Q. An, F. Li, Y. Ji, H. Chen, Influence of polyvinyl alcohol on the surfacemorphology, separation and anti-fouling performance of the composite polyamidenanofiltration membranes, J. Membr. Sci.,2011,367:158-165
    [96] B.H. Jeong, E. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh,A. Jawor, Interfacial polymerization of thin film nanocomposites: A new concept forreverse osmosis membranes, J. Membr. Sci.,2007,294:1-7
    [97] A. Ahmad, B. Ooi, Properties-performance of thin film composites membrane:study on trimesoyl chloride content and polymerization time, J. Membr. Sci.,2005,255:67-77
    [98] K. Yoon, B.S. Hsiao, B. Chu, High flux nanofiltration membranes based oninterfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrousscaffolds, J. Membr. Sci.,2009,326:484-492
    [99] W. Won, X. Feng, D. Lawless, Pervaporation with chitosan membranes:separation of dimethyl carbonate/methanol/water mixtures, J. Membr. Sci.,2002,209:493-508
    [100] X. Feng, R.Y.M. Huang, Liquid separation by membrane pervaporation: areview, Ind. Eng. Chem. Res.,1997,36:1048-1066
    [101] Q. Huang, B. Seibig, D. Paul, Polycarbonate hollow fiber membranes by meltextrusion, J. Membr. Sci.,1999,161:287-291
    [102] J.J. Kim, T.S. Jang, Y.D. Kwon, U.Y. Kim, S.S. Kim, Structural study ofmicroporous polypropylene hollow fiber membranes made by the melt-spinning andcold-stretching method, J. Membr. Sci.,1994,93:209-215
    [103] C.R. Martin, Membrane-based synthesis of nanomaterials, Chem. Mater.,1996,8:1739-1746
    [104] E. Ferain, R. Legras, Track-etched membrane: dynamics of pore formation,Nuclear Instruments and Methods in Physics Research Section B: Beam Interactionswith Materials and Atoms,1994,84:331-336
    [105] K. Kurumada, T. Kitamura, N. Fukumoto, M. Oshima, M. Tanigaki, S.Kanazawa, Structure generation in PTFE porous membranes induced by the uniaxialand biaxial stretching operations, J. Membr. Sci.,1998,149:51-57
    [106] T. Kitamura, K.I. Kurumada, M. Tanigaki, M. Ohshima, S.I. Kanazawa,Formation mechanism of porous structure in polytetrafluoroethylene (PTFE) porousmembrane through mechanical operations, Polym. Eng. Sci.,2004,39:2256-2263
    [107] L.T. Huang, P.S. Hsu, C.Y. Kuo, S.C. Chen, J.Y. Lai, Pore size control of PTFEmembranes by stretch operation with asymmetric heating system, Desalination,2008,233:64-72
    [108] C. Friedrich, A. Driancourt, C. Noel, L. Monnerie, Asymmetric reverse osmosisand ultrafiltration membranes prepared from sulfonated polysulfone, Desalination,1981,36:39-62
    [109] J. Nelson, D.P. Morgan Jr, Collodion membranes of high permeability, J. Biol.Chem.,1923,58:305-319
    [110] J. He, T. Kunitake, Are ceramic nanofilms a soft matter?, Soft Matter,2006,2:119-125
    [111] A. Wilson, G. Zank, K. Eguchi, W. Xing, B. Yates, J. Dahn, Pore creation insilicon oxycarbides by rinsing in dilute hydrofluoric acid, Chem. Mater.,1997,9:2139-2144
    [112] I. Ichinose, T. Kawakami, T. Kunitake, Alternate molecular layers of metaloxides and hydroxyl polymers prepared by the surface sol-gel process, Adv. Mater.,1998,10:535-539
    [113] K.J. Hwang, H.C. Hwang, The purification of protein in cross-flowmicrofiltration of microbe/protein mixtures, Sep. Purif. Technol.,2006,51:416-423
    [114] C. Smolders, A. Reuvers, R. Boom, I. Wienk, Microstructures inphase-inversion membranes. Part1. Formation of macrovoids, J. Membr. Sci.,1992,73:259-275
    [115] H. Strathmann, K. Kock, The formation mechanism of phase inversionmembranes, Desalination,1977,21:241-255
    [116] R. Boom, I. Wienk, T. Van den Boomgaard, C. Smolders, Microstructures inphase inversion membranes. Part2. The role of a polymeric additive, J. Membr. Sci.,1992,73:277-292
    [117] L. Broens, F. Altena, C. Smolders, D. Koenhen, Asymmetric membranestructures as a result of phase separation phenomena, Desalination,1980,32:33-45
    [118] D. Koenhen, M. Mulder, C. Smolders, Phase separation phenomena during theformation of asymmetric membranes, J. Appl. Polym. Sci.,2003,21:199-215
    [119] J. Chen, L. Wang, Z. Zhu, Preparation of enzyme immobilized membranes andtheir self-cleaning and anti-fouling abilities in protein separations, Desalination,1992,86:301-315
    [120] P. Houck, D. Nebel, S. Milham Jr, Organic solvent encephalopathy: an oldhazard revisited, Am. J. Ind. Med.,1992,22:109-115
    [121] T.H. Young, L.W. Chen, Pore formation mechanism of membranes from phaseinversion process, Desalination,1995,103:233-247
    [122] J.H. Kim, K.H. Lee, Effect of PEG additive on membrane formation by phaseinversion, J. Membr. Sci.,1998,138:153-163
    [123] D.R. Lloyd, K.E. Kinzer, H. Tseng, Microporous membrane formation viathermally induced phase separation. I. Solid-liquid phase separation, J. Membr. Sci.,1990,52:239-261
    [124] D.R. Lloyd, G. Lim, Microporous membrane formation via thermally-inducedphase separation. VII. Effect of dilution, cooling rate, and nucleating agent additionon morphology, J. Membr. Sci.,1993,79:27-34
    [125] S.S. Kim, D.R. Lloyd, Microporous membrane formation via thermally-inducedphase separation. III. Effect of thermodynamic interactions on the structure ofisotactic polypropylene membranes, J. Membr. Sci.,1991,64:13-29
    [126] H. Matsuyama, S. Berghmans, D.R. Lloyd, Formation of hydrophilicmicroporous membranes via thermally induced phase separation, J. Membr. Sci.,1998,142:213-224
    [127] R.L. Riley, Thin film separation membranes and processes for making same, USPatent,3648845,1972.
    [128] R.Y.M. Huang, R. Pal, G.Y. Moon, Crosslinked chitosan composite membranefor the pervaporation dehydration of alcohol mixtures and enhancement of structuralstability of chitosan/polysulfone composite membranes, J. Membr. Sci.,1999,160:17-30
    [129] S. Feng, Y. Shang, S. Wang, X. Xie, Y. Wang, Y. Wang, J. Xu, Novel method forthe preparation of ionically crosslinked sulfonated poly(arylene ethersulfone)/polybenzimidazole composite membranes via in situ polymerization, J.Membr. Sci.,2010,346:105-112
    [130] S.-W. Chun, J.-D. Kim, A novel hydrogel-dispersed composite membrane ofpoly(N-isopropylacrylamide) in a gelatin matrix and its thermally actuated permeationof4-acetamidophen, J. Control Release,1996,38:39-47
    [131] H. Yasuda, Plasma polymerization for protective coatings and compositemembranes, J. Membr. Sci.,1984,18:273-284
    [132] A.T. Bell, T. Wydeven, C.C. Johnson, A study of the performance and chemicalcharacteristics of composite reverse osmosis membranes prepared by plasmapolymerization of allylamine, J. Appl. Polym. Sci.,1975,19:1911-1930
    [133] D. Peric, A. Bell, M. Shen, Reverse osmosis characteristics of compositemembranes prepared by plasma polymerization of allylamine. Effects of depositionconditions, J. Appl. Polym. Sci.,2003,21:2661-2673
    [134] H. Yasuda, C. Lamaze, Preparation of reverse osmosis membranes by plasmapolymerization of organic compounds, J. Appl. Polym. Sci.,1973,17:201-222
    [135] Y. Song, P. Sun, L.L. Henry, B. Sun, Mechanisms of structure and performancecontrolled thin film composite membrane formation via interfacial polymerizationprocess, J. Membr. Sci.,2005,251:67-79
    [136] J. Wei, X. Jian, C. Wu, S. Zhang, C. Yan, Influence of polymer structure onthermal stability of composite membranes, J. Membr. Sci.,2005,256:116-121
    [137]魏菊,张守海,武春瑞,蹇锡高,单体结构对聚酰胺类复合膜分离性能的影响,高分子学报,2006,298-302
    [138]梁雪梅,王彬芳,界面缩聚法制备聚芳酯复合纳滤膜的研究:Ⅱ界面缩聚对复合膜的影响,华东理工大学学报:自然科学版,1999,25:394-397
    [139] W. Cheng, M.J. Campolongo, S.J. Tan, D. Luo, Free-standing ultrathinnano-membranes via self-assembly, Nano Today,2009,4:482-493
    [140] S. Markutsya, C. Jiang, Y. Pikus, V.V. Tsukruk, Freely suspended layer-by-layernanomembranes: testing micromechanical properties, Adv. Funct. Mater.,2005,15:771-780
    [141] A. Fery, F. Dubreuil, H. M hwald, Mechanics of artificial microcapsules, New J.Phys.,2004,6:18
    [142] O.I. Vinogradova, Mechanical properties of polyelectrolyte multilayermicrocapsules, J. Phys.: Condens. Matter,2004,16: R1105
    [143] H.G. Craighead, Nanoelectromechanical systems, Science,2000,290:1532-1535
    [144] C.C. Striemer, T.R. Gaborski, J.L. McGrath, P.M. Fauchet, Charge-andsize-based separation of macromolecules using ultrathin silicon membranes, Nature,2007,445:749-753
    [145] C.S. Toh, B.M. Kayes, E.J. Nemanick, N.S. Lewis, Fabrication of free-standingnanoscale alumina membranes with controllable pore aspect ratios, Nano Letters,2004,4:767-770
    [146] J. ANZAI, J. HASHIM0T0, T. OsA, T. MATsuo, Penicillin Sensors Based on anIon-Sensitive Field Effect Coated with Stearic Acid Langmuir-Blodgett Membrane,Anal. Sci.,1988,4:247
    [147] G. Roberts, An applied science perspective of Langmuir-Blodgett films, Adv.Phys.,1985,34:475-512
    [148] M. Shimomura, T. Kunitake, Preparation of Langmuir-Blodgett films ofazobenzene amphiphiles as polyion complexes, Thin Solid Films,1985,132:243-248
    [149] W.A. Goedel, R. Heger, Elastomeric suspended membranes generated viaLangmuir-Blodgett transfer, Langmuir,1998,14:3470-3474
    [150] H. Xu, W.A. Goedel, Polymer-silica hybrid monolayers as precursors forultrathin free-standing porous membranes, Langmuir,2002,18:2363-2367
    [151] F. Yan, W.A. Goedel, Polymer membranes with two-dimensionally arrangedpores derived from monolayers of silica particles, Chem. Mater.,2004,16:1622-1626
    [152] F. Yan, W.A. Goedel, A simple and effective method for the preparation ofporous membranes with three-dimensionally arranged pores, Adv. Mater.,2004,16:911-915
    [153] R. Vendamme, S.Y. Onoue, A. Nakao, T. Kunitake, Robust free-standingnanomembranes of organic/inorganic interpenetrating networks, Nat. Mater.,2006,5:494-501
    [154] H. Watanabe, T. Kunitake, A Large, free-standing,20nm thick nanomembranebased on an epoxy resin, Adv. Mater.,2007,19:909-912
    [155] R. Vendamme, T. Ohzono, A. Nakao, M. Shimomura, T. Kunitake, Synthesisand micromechanical properties of flexible, self-supporting polymer-SiO2nanofilms,Langmuir,2007,23:2792-2799
    [156] M. Hashizume, T. Kunitake, Preparation of self-supporting ultrathin films oftitania by spin coating, Langmuir,2003,19:10172-10178
    [157] A.D. Stroock, R.S. Kane, M. Weck, J. Steven, G.M. Whitesides, Synthesis offree-standing quasi-two-dimensional polymers, Langmuir,2003,19:2466-2472
    [158] A.A. Mamedov, N.A. Kotov, Free-standing layer-by-layer assembled films ofmagnetite nanoparticles, Langmuir,2000,16:5530-5533
    [159] G. Decher, B. Lehr, K. Lowack, Y. Lvov, J. Schmitt, New nanocomposite filmsfor biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA,Biosens. Bioelectron.,1994,9:677-684
    [160] X. Zhang, J. Shen, Self-assembled ultrathin films: from layerednanoarchitectures to functional assemblies, Adv. Mater.,1999,11:1139-1143
    [161] A.A. Mamedov, N.A. Kotov, M. Prato, D.M. Guldi, J.P. Wicksted, A. Hirsch,Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayercomposites, Nat. Mater.,2002,1:190-194
    [162] Z.Y. Tang, N.A. Kotov, S. Magonov, B. Ozturk, Nanostructured artificial nacre,Nat. Mater.,2003,2:413-418
    [163] P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim, J. Xu, H.Nandivada, B.G. Pumplin, J. Lahann, A. Ramamoorthy, Ultrastrong and stiff layeredpolymer nanocomposites, Science,2007,318:80-83
    [164] X. Peng, J. Jin, E.M. Ericsson, I. Ichinose, General method for ultrathinfree-standing films of nanofibrous composite materials, J. Am. Chem. Soc.,2007,129:8625-8633
    [165] Q. Zhang, S. Ghosh, S. Samitsu, X. Peng, I. Ichinose, Ultrathin free-standingnanoporous membranes prepared from polystyrene nanoparticles, J. Mater. Chem.,2011,21:1684-1688
    [166] X. Peng, J. Jin, Y. Nakamura, T. Ohno, I. Ichinose, Ultrafast permeation ofwater through protein-based membranes, Nat. nanotech.,2009,4:353-357
    [167] A. Boker, J. He, T. Emrick, T.P. Russell, Self-assembly of nanoparticles atinterfaces, Soft Matter,2007,3:1231-1248
    [168] S. Gadam, M. Phillips, S. Orlando, R. Kuriyel, S. Pearl, A. Zydney, A liquidporosimetry technique for correlating intrinsic protein sieving: Applications inultrafiltration processes, J. Membr. Sci.,1997,133:111-125
    [169] T.N. Shah, H.C. Foley, A.L. Zydney, Development and characterization ofnanoporous carbon membranes for protein ultrafiltration, J. Membr. Sci.,2007,295:40-49
    [170] Q. Shi, Y. Su, S. Zhu, C. Li, Y. Zhao, Z. Jiang, A facile method for synthesis ofpegylated polyethersulfone and its application in fabrication of antifoulingultrafiltration membrane, J. Membr. Sci.,2007,303:204-212
    [171] D. M ckel, E. Staude, M. Dal-Cin, K. Darcovich, M. Guiver, Tangential flowstreaming potential measurements: hydrodynamic cell characterization and zetapotentials of carboxylated polysulfone membranes, J. Membr. Sci.,1998,145:211-222
    [172] J. Benavente, G. Jonsson, Electrokinetic characterization of compositemembranes: estimation of different electrical contributions in pressure inducedpotential measured across reverse osmosis membranes, J. Membr. Sci.,2000,172:189-197
    [173] Q. Shi, Y. Su, W. Chen, J. Peng, L. Nie, L. Zhang, Z. Jiang, Grafting short-chainamino acids onto membrane surfaces to resist protein fouling, J. Membr. Sci.,2011,366:398-404
    [174] P.J. Schultz, K.G. Lynn, Interaction of positron beams with surfaces, thin films,and interfaces, Rev. Mod. Phys.,1988,60:701
    [175] H. Susanto, M. Balakrishnan, M. Ulbricht, Via surface functionalization byphotograft copolymerization to low-fouling polyethersulfone-based ultrafiltrationmembranes, J. Membr. Sci.,2007,288:157-167
    [176] H. Susanto, M. Ulbricht, Characteristics, performance and stability ofpolyethersulfone ultrafiltration membranes prepared by phase separation methodusing different macromolecular additives, J. Membr. Sci.,2009,327:125-135
    [177] Y.Q. Wang, T. Wang, Y.L. Su, F.B. Peng, H. Wu, Z.Y. Jiang, Remarkablereduction of irreversible fouling and improvement of the permeation properties ofpoly(ether sulfone) ultrafiltration membranes by blending with pluronic F127,Langmuir,2005,21:11856-11862
    [178] T. Wang, Y.Q. Wang, Y.L. Su, Z.Y. Jiang, Antifouling ultrafiltration membranecomposed of polyethersulfone and sulfobetaine copolymer, J. Membr. Sci.,2006,280:343-350
    [179] Y.Q. Wang, Y.L. Su, X.L. Ma, Q. Sun, Z.Y. Jiang, Pluronic polymers andpolyethersulfone blend membranes with improved fouling-resistant ability andultrafiltration performance, J. Membr. Sci.,2006,283:440-447
    [180] W. Zhao, Y.L. Su, C. Li, Q. Shi, X. Ning, Z.Y. Jiang, Fabrication of antifoulingpolyethersulfone ultrafiltration membranes using Pluronic F127as both surfacemodifier and pore-forming agent, J. Membr. Sci.,2008,318:405-412
    [181] J. Blanco, Q. Nguyen, P. Schaetzel, Novel hydrophilic membrane materials:sulfonated polyethersulfone Cardo, J. Membr. Sci.,2001,186:267-279
    [182] J. Blanco, Q. Nguyen, P. Schaetzel, Sulfonation of polysulfones: Suitability ofthe sulfonated materials for asymmetric membrane preparation, J. Appl. Polym. Sci.,2002,84:2461-2473
    [183] H. Chen, G. Belfort, Surface modification of poly (ether sulfone) ultrafiltrationmembranes by low-temperature plasma-induced graft polymerization, J. Appl. Polym.Sci.,1999,72:1699-1711
    [184] M. Taniguchi, G. Belfort, Low protein fouling synthetic membranes byUV-assisted surface grafting modification: varying monomer type, J. Membr. Sci.,2004,231:147-157
    [185] H. Ahmad, D. Dupin, S.P. Armes, A.L. Lewis, Synthesis of biocompatiblesterically-stabilized poly (2-(methacryloyloxy) ethyl phosphorylcholine) latexes viadispersion polymerization in alcohol/water mixtures, Langmuir,2009,25:11442-11449
    [186] S. Jon, J. Seong, A. Khademhosseini, T.N.T. Tran, P.E. Laibinis, R. Langer,Construction of nonbiofouling surfaces by polymeric self-assembled monolayers,Langmuir,2003,19:9989-9993
    [187] F.M. Wang, C.C. Wan, Y.Y. Wang, Synthesis of functionalized copolymerelectrolytes based on polysiloxane and analysis of their conductivity, J. Appl.Electrochem.,2009,39:253-260
    [188] V.T. Kuberkar, R.H. Davis, Microfiltration of protein-cell mixtures withcrossflushing or backflushing, J. Membr. Sci.,2001,183:1-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700