聚丙烯原位微纤化共混物流场—形态—流变性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原位微纤化作为一种重要的提高聚合物共混物力学性能的方法而受到广泛的关注。本文通过在单螺杆挤出机中引入不同的加工流场,挤出制备聚丁二酸丁二醇酯(PBS)/聚丙烯(PP)和低密度聚乙烯(LDPE)/PP两种原位微纤化共混物,研究流场-分散相形态-动态流变性能三者之间的关系。
     采用单螺杆挤出机配备狭缝机头(主要施加剪切流场)制备PBS/PP(85/15)原位微纤化共混物。研究发现,随加工温度的降低,分散相液滴的平均直径和数量减小,分散相纤维的平均直径减小、数量增多;随螺杆转速的提高,分散相纤维的平均直径减小、数量增多。当机头温度170℃和螺杆转速80rpm时,形成的PP纤维的平均直径最小,为2.98μm。
     采用普通和交替螺杆挤出机(分别主要施加剪切和混沌混炼流场),以沿程取样的方式制备PBS/PP(85/15)共混物。研究发现,后者制备的PBS/PP共混物中分散相纤维的平均直径较小,分散相液滴的分散指数较高、分维数较低。螺杆转速的提高可以明显地降低分散相液滴和纤维的平均直径。随分散相纤维含量的增加,PBS/PP共混物的复数黏度、储能模量和损耗模量增加。螺杆转速50rpm时,靠近交替螺杆挤出机出口处制备的PBS/PP共混物的储能模量-频率和损耗模量-频率关系曲线在低频区表现出“类固”响应,表明分散相PP形成了网状结构。
     采用多边螺槽对流式单螺杆挤出机(主要施加混沌混炼流场)与单螺杆挤出机串联的方法,制备LDPE/PP(90/10、80/20和70/30)共混物。研究发现,PP含量为10wt%时,分散相主要呈液滴状,没有形成纤维;PP含量为20wt%时,形成的分散相纤维平均直径为1.98μm;PP含量为30wt%时,分散相纤维的平均直径最小,为0.69μm。时-温叠加曲线表明,LDPE/PP共混物中没有发生相分离;Han曲线表明,随PP含量的增加,LDPE/PP共混物中分散相PP的尺寸均匀性变差。
As one of the most important methods to increase the mechanical properties of polymer, in-situ fibrillation has attracted a great deal of interests. In this study, poly(butylene succinate)/polypropylene (PBS/PP) and low density polyethylene/polypropylene (LDPE/PP) in-situ microfibrillar blends are prepared in different fluid fields using a single screw extruder, and the relationship among the fluid field, morphology, and rheological properties is studied.
     PBS/PP (85/15 w/w) in-situ microfibrillar blends are prepared using a single screw extruder equipped with a slit die, which provides a shear mixing field. The results show that the average diameter and amount of PP droplets decrease, the average diameter of PP fibres decreases and their amount increases as the processing temperature decreases. The average diameter of PP fibres decreases and their amount increases as the screw speed increases. The PP droplets in the blend prepared at die temperature of 170℃and screw speed of 80rpm have a minimal average diameter, which is 2.98μm.
     PBS/PP (85/15 w/w) blends are prepared along a single screw extruder with a shear mixing field and chaotic mixing field, respectively. The results show that it can form smaller average diameter of PP fibres, higher dispersion parameter of PP particles, and lower fractal dimension of PBS/PP blends using the later extruder. Complex viscosity, storage modulus, and loss modulus are increased as PP concentration increases. The storage modulus and loss modulus of PBS/PP blends near the die exit prepared by the extruder with the chaotic mixing field at screw speed of 50rpm present a solid-like response at lower frequencies. It means that PP forms network structure.
     LDPE/PP (90/10, 80/20, and 70/30 w/w) blends are prepared using a single screw extruder plus HP extruder. The results show that PP can not form fibres with the PP concentration of 10wt%, form fibres of 1.98μm with the PP concentration of 20wt%, and form fibres of 0.69μm with the PP concentration of 30wt%. Time-temperature superposition (TTS) curve show that no phase separation appears in LDPE/PP blends. Han plots show that the size of PP becomes less homogeneous as the increaseing of PP concentration in LDPE/PP blends.
引文
[1] Na B., Li R. H., Zhao Z. X. Dispersed microfibril-dominated deformation and fracture behaviors of linear low density Polyethylene/Isotactic Polypropylene blends [J]. Journal of Applied Polymer Science, 2007, 104: 1291-1298
    [2] Gcwabaza T., Ray S. S., Focke W. W., et al. Morphology and properties of nanostructured materials based on polypropylene/poly(butylene succinate) blend and organoclay [J]. European Polymer Journal, 2009, 45: 353-367
    [3]陈英姿.超声作用对聚苯乙烯和聚丙烯以及聚丙烯共混填充体系结构与性能影响的研究[D].成都:四川大学, 2004: 101-110
    [4]陈绪煌,马桂秋,盛京.聚合物共混相态形成过程及其理论研究进展[J].高分子通报, 2009, 1: 31-36
    [5] Plochcki A. P., Dagli S. S., Andrews R. D. The interface in binary mixtures of polymers containing a corresponding block copolymer: Effects of industrial mixing processes and of coalescence [J]. Polymer Engineering and Science, 1990, 30: 741-745
    [6] Schreiber H. P., Olguin A. Aspects of dispersion and flow in thermoplastic-elastomer blends [J]. Polymer Engineering and Science, 1983, 23: 129
    [7] Scott C. E., Macosko C. W. Model experiments concerning morphology development during the initial stages of polymer blending [J]. Polymer BuIletin, 1991, 26: 341-348
    [8] Scott C. E., Ratnagin R. Visualization and microscopic modeling of phase inversion during compounding [J]. Polymer Engineering and Science, 2001, 41(8): 1310-1321
    [9] Scott C. E., Ratnagin R. The Effect of scaleup on the processing behavior of a blend exhibiting phase inversion during compounding [J]. Polymer Engineering and Science, 2001, 41(6): 1019-1037
    [10] Taylor G. I. The viscosity of a fluid containing small drops of another fluid [J]. Proceedings of the Royal Society A, 1932, 138: 41-48
    [11] Taylor G. I. The formation emulsions in definable fields of flow [J]. Proceedings of the Royal Society A, 1934, 146: 501-523
    [12] Huneault M. A., Shi Z. H., Utracki L. A. Development of polymer blend morphology during compounding in a twin-screw extruder. Part IV: A new computational model with coalescence [J]. Polymer Engineering and Science, 1995, 35(1): 115-127
    [13] Fortelny I., Zivny A. Coalescence in molten quiescent polymer blends [J]. Polymer, 1995, 36(21): 4113-4118
    [14] Fortelny I., Kovar J. Theory of coalescence in immiscible polymer blends [J]. Polymer composites, 1988, 9(2): 119-124
    [15] Fortelny I., Cerna Z., Binko J. Anomalous dependence of the size of droplets of disperse phase on intensity of mixing [J]. Journal of Applied Polymer Science, 1993, 48(10): 1731-1737
    [16] Tokita N. Analysis of morphology formation in elastomer blends [J]. Rubber Chemistry and Technology, 1977, 50(2): 292-300
    [17]邹建龙,沈宁祥,盛京.非相容聚合物体系熔融共混过程中分散相粒径变化的预测[J].高分子学报, 2002, 1: 53-57
    [18] Kiss G. In situ composites: Blends of isotropic polymers and thermotropic liquid crystalline polymers [J]. Polymer Engineering and Science, 1987, 27(6): 410-423
    [19] Weiss R. A., Huh W., Nicolais L. Novel reinforced polymers based on blends of polystyrene and a thermotropic liquid crystalline polymer [J]. Polymer Engineering and Science, 1987, 27(9): 684-691
    [20] Jayanarayanan K., Bhagawan S. S., Thomas S., et al. Morphology development and non isothermal crystallization behaviour of drawn blends and microfibrillar composites from PP and PET [J]. Polymer Bulletin, 2008, 60(4): 525-532
    [21]陈妍慧,徐家壮,张贻川等.利用原位微纤化技术控制聚合物形态的研究进展[J].高分子通报, 2009, 2: 1-11
    [22] Kyonsuku M., James L. W., John F. F. Development of phase morphology in incompatible polymer blendsduring mixing and its variation in extrusion [J].Polymer Engineering and Science, 1984, 24(17): 1327-1335
    [23] Favis B. D., Chalifoux J. P. The effect of viscosity ratio on the morphology of polypropylene polycarbonate blends during processing [J]. Polymer Engineering and Science, 1987, 27(21): 1591-1600
    [24] Wang D., Sun G. Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends [J]. European Polymer Journal, 2007, 43(8): 3587-3596
    [25] Jana S. C., Sau M. Effects of viscosity ratio and composition on development of morphology in chaotic mixing of polymers [J]. Polymer, 2004, 45(5): 1665-1678
    [26] Li Z. M., Yang M. B., Feng J. M., et al. Morphology of in situ poly(ethylene terephthalate)/polyethylene microfiber reinforced composite formed via slit-die extrusion and hot-stretching [J]. Materials Research Bulletin, 2002, 37(13): 2185-2197
    [27] Wang D., Sun G., Chiou B. S. A High-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers [J]. Macromolecular Materials and Engineering, 2007, 292(4): 407-414
    [28] Boyaud M. F., Kadi A. A., Bousmina M., et al. Organic short fibre /thermoplastic composites: morphology and thermorheological analysis [J]. Polymer, 2001, 42(15): 6515-6526
    [29] Li Z. M., Yang W., Xie B. H., et al. Morphology and tensile strength prediction of in situ microfibrillar Poly ethylene terephthalate Polyethylene blends fabricated via slit-die extrusion-hot stretching-quenching [J]. Macromolecular Materials and Engineering, 2004, 289(4): 349-354
    [30] Monticciolo A., Cassagnau P., Michel A. Fibrillar morphology development of PE/PBT blends: Rheology and solvent permeability [J]. Polymer Engineering and Science, 1998, 38(11): 1882-1889
    [31] Naficy S., Garmabi H. Study of the effective parameters on mechanical and electrical properties of carbon black filled PPPA6 microfibrillar composites [J]. Composites Science and Technology, 2007, 67(15): 3233-3241
    [32]黎学东,陈呜才,黄玉惠等.拉伸作用对PP/PA6原位成纤复合体系的影响[J].高分子材料科学与工程, 1999, 15(4): 78-83
    [33] Gonzalez N. R., Favis B. D., Carreau P. J., et al. Factors influencing the formation of elongated morphologies in immiscible polymer blends during melt processing [J]. Polymer Engineering and Science, 1993, 33(13): 851-859
    [34] Gonzalez N. R., Favis B. D., Kee D. D. Deformation of drops in extensional viscoelastic flow [J]. Journal of Applied Polymer Science, 1996, 62(10): 1627-1634
    [35] Li Z. M., Yang M. B., Xie B. H., et al. In-situ microfiber reinforced composite based on PET and PE via slit die extrusion and hot stretching: Influences of hot stretching ratio on morphology and tensile properties at a fixed composition [J]. Polymer Engineering and Science, 2003, 43(3): 615-628
    [36] Chapleau N., Favis B. D. Droplet fibre transitions in immiscible polymer blends generated during melt processing [J]. Journal of Materials Science, 1995, 30(1): 142-150
    [37]黎学东,陈鸣才,黄玉惠等. PP/PA6原位成纤复合材料Ⅱ:加工条件对性能、形态的影响[J].复合材料学报, 1998, 15(2): 62-67
    [38]张昌辉,寇莹,翟文举. PBS及其共聚酯生物降解性能的研究进展[J].塑料, 2009, 38(1): 38-40
    [39]陈希荣. PBS生物降解塑料在中国[J].中国包装, 2007, 3: 71
    [40]王军,刘素侠,欧阳平凯.聚丁二酸丁二醇酯的研究进展[J].化工新型材料, 2007, 35(10): 25-27
    [41]黄汉雄,彭玉成.多边螺槽对流式螺杆[P].中国: 92114886, 1993.10
    [42]黎学东,陈鸣才,黄玉惠等. PP/PA6原位成纤复合材料[J].复合材料学报, 1998, 15(2): 57-67
    [43]李忠明. GEP/PO共混物的原位成纤及其形态、结构与性能[D].成都:四川大学, 2003: 223-236
    [44] Wang D., Sun G. Formation and morphology of cellulose acetate butyrate (CAB) /polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends [J]. European Polymer Journal, 2007, 43(8): 3587-3596
    [45] Dreval V. E., Vinogradov G. V., Plotnikova E.P., et al. Deformation of melts of mixtures of incompatible polymers in a uniform shearfield and the process of their fibrillation [J]. Rheologica Acta, 1983, 22(1): 102-107
    [46] Becraft M. L., Metzner A. B. The rheology, Fiber orientation, and processing behavior of fiber-filled fluids [J]. Journal of Rheology. 1992, 36(3): 143-174
    [47]史铁钧. SGF增强HDPE复合材料流变性能及其形态研究[J].高分子材料科学与工程, 1995, 11(5): 103-107
    [48]黄润生.混沌及其应用[M].武昌:武汉大学出版社, 2000
    [49] Sang Y. L., Sung C. K. Laminar morphology development and oxygen permeability of LDPE/EVOH blends [J]. Polymer Engineering and Science, 1997, 37(2): 463-475
    [50] Zumbrunnen D. A., Chhibber C. Morphology development in polymer blends produced by chaotic mixing at various compositions [J]. Polymer, 2002, 43(11): 3267-3277
    [51] Li K., Huang H. X., Jiang G. Comparing the continuous chaotic and shear mixing-Induced morphology development of Polyblend and its nanocomposites [J]. Polymer-Plastics Technology and Engineering, 2009, 48(9): 989-995
    [52] Huang H. X., Li X. J. Effect of screw type on development of polymer blend morphology along an extruder during compounding [C]. ANTEC. 2007, 1: 337-341
    [53] Zhang D. F., Zumbrunnen D. A., Liu Y. H. Morphology development in shear flows of straight and folded molten fibers [C]. AICHE. 1998, 44(2): 442-451
    [54] Kim S. J., Kwon T. H. Enhancement of mixing performance of single-screw extrusion processes via chaotic flows: Part I. Basic concepts and experimental study [J]. Advances in Polymer Technology, 1996, 15(1): 41-54
    [55] Dharaiya D. P., Jana S. C. Nanoclay-induced morphology development in chaotic mixing of immiscible polymers [J]. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(24): 3638-3651
    [56] Z.塔莫尔, I.克莱因编著.塑化挤出工程原理[M].夏廷文,朱复华等译.北京:轻工业出版社, 1984
    [57] Martin G. Compounding with Single-Screw Extruders [J]. Advances in Polymer Technology, 1997, 16(4): 251-262
    [58] Bhattacharyya A. R., Ghosh A. K., Misra A. Reactively compatibilised polymer blends: a case study on PA6/EVA blend system [J]. Polymer, 2001, 42(21): 9143-9154
    [59] Dedecher K., Groeninckx G. Interfacial graft copolymer formation during reactive melt blending of Polyamide 6 and Styrene-Maleic Anhydride copolymers [J]. Macromolecules, 1999, 32(8): 2472
    [60]陈云,王洪艳.分形理论及其在高分子科学中的应用[J].高分子通报, 2002, 4(8): 41-46
    [61]郭从容,王雪松,杨桂琴等.分形理论及其在材料科学中的应用[J].半导体杂志, 1999, 24(1): 38-42
    [62]李姜.聚合物共混物熔体在超声作用下的物理化学反应以及在注射过程中的结构演变[D].成都:四川大学, 2005: 71-75
    [63]王文新,董伯儒,颜德岳.分形理论在聚合物共混物界面研究中的应用[J].高分子材料科学与工程, 2000, 16(1): 11-12
    [64]蒋果.基于流变性能的聚丙烯基纳米复合材料混炼类型-形态-力学性能研究[D].广州:华南理工大学, 2006: 16-18
    [65]郑强,赵铁军.多相/多组分聚合物动态流变行为与相分离的关系[J].材料研究学报, 1998, 12(3): 225-232
    [66]郑强. PMMA/α-MSAN共混体系长时弛豫区域的时温叠加失效与相分离的关系[J].高等学校化学学报, 1999, 20(6): 969-973
    [67] Macaubas P. H. P., Demarquette N. R. Time-temperature superposition principle applicability for blends formed of emmiscible polymers [J]. Polymer Engineering and Science, 2002, 42(7): 1509-1519
    [68] Jeon H. S., Nakatani A. I., Han C. C. Melt rheology of lower critical solution temperature Polybutadiene/Polyisoprene blends [J]. Macromolecules, 2000, 33(26): 9732-9739

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700