热塑性淀粉材料的改性及生物医用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉是一种来源丰富的可降解型天然多糖类高分子化合物。由于其具有原料来源丰富,无毒,可降解且降解产物无毒等诸多优点,在生物材料领域具有良好的应用前景。本论文以热塑性淀粉作为主要原材料,以临床医用为目的,在特定条件下研究了高甘油含量的热塑性淀粉弹性体的老化机理及在相关体液模拟液中的降解机理,针对传统的甘油增塑的热塑型淀粉易老化,吸水性强及在体液模拟液中易崩裂,难于维持力学性能等缺陷,对其进行一系列改性(新型增塑剂共增塑、共混、酯化、交联)。此外,还针对一些特定的应用目标(诱导组织再生膜,骨修复用注射型水凝胶)制备出相关的热塑性淀粉复合材料,研究了复合材料本身的结构与性能,体外降解性能及生物相容性。此外,还对制备的可注射型骨修复用水凝胶进行了系统的体内外生物相容性评价,并通过动物实验考察了它对于颌骨修复的效果。
     本论文主要有以下几个方面的贡献:
     (1)通过高甘油含量增塑的方法制备了具备一定弹性的热塑性淀粉,首次提出该热塑性淀粉弹性体可潜在应用于软组织工程支架及治疗口腔溃疡用贴膜材料。在保存过程中发现甘油增塑热塑性淀粉(GTPS)容易发生老化,老化是影响GTPS应用的主要因素。本论文针对潜在的应用目标,研究了在人体正常体温(37℃)以及人体感觉比较舒适的相对湿度(RH,50%)条件下,高甘油含量GTPS这个复杂的三元材料体系的老化机理。首次对GTPS弹性体在血浆及唾液模拟液中的降解行为及降解机理进行了研究。研究结果表明当甘油含量高于40%(占总重)时,材料表现出弹性体性征,高甘油含量有助于抑制双螺旋结构的B-型结晶产生但有利于直链淀粉单螺旋V-型结晶结构的生成,以往有关老化机理的研究都未涉及甘油含量对单螺旋结晶生成的影响。当甘油含量高于40%(占总重)时,材料在54天内力学性能变化不大,不同测试结果均证明了高甘油含量有明显的抑制老化作用。首次提出GTPS弹性体在血浆及唾液模拟液中的降解机理。在血浆模拟液中的降解机理是典型的本体降解机理,先溶胀后降解。唾液模拟液中的降解机理是先从酶对于材料表面的侵蚀开始,由表及里逐步发生降解,降解的过程中同时伴随溶胀,前2h主要以表面降解为主,之后表面降解与本体降解同时进行。唾液模拟液中的降解速度远大于血浆模拟液中的降解速度。细胞毒性试验证明GTPS在血液模拟液中的短期浸提物及长期降解产物对L929小鼠成纤细胞的生长都无不利影响,且降解产物有促进细胞分裂的作用。该结论对于GTPS作为体内埋植材料的具有十分重要的价值。通过对GTPS在唾液模拟液中降解行为的研究,发现其表面快速降解性征非常适合作为潜在的短期伤口敷料应用于口腔溃疡的治疗中。
     (2)基于第一部分的研究,GTPS存在的易老化,难以在体液中维持力学和尺寸稳定性等缺陷,采用柠檬酸与甘油共同增塑淀粉(CGTPS),深入研究了CGTPS的结构与性能。研究结果表明与传统甘油增塑的TPS相比,CGTPS具有以下特殊的结构和性质:部分酯化,低分子量以及较强的淀粉/增塑剂间相互作用。部分酯化可以防止材料的老化,在淀粉分子链上引入新的基团,从而为潜在改性提供反应位点及提高与可降解聚酯的相容性。分子量的降低可以提高材料的加工性能,调节降解速度,提高CGTPS在聚酯材料中的分散性。此外,该CGTPS材料可以通过熔融共混在短时间内方便制备。CGTPS所具有的这些特殊性质将会使其在环保材料和生物材料领域得到广泛的应用。
     (3)制备了厚度在0.05-0.1mm的淀粉/PVA薄膜(SP)膜,首次提出将SP膜用于诱导组织再生(GTR)技术,并针对GTR膜的要求对SP膜的力学性能、溶胀性能、血浆及唾液模拟液中的降解行为及相关生物相容性进行了研究。结果表明SP膜具备很好的亲水性和柔韧性,力学及降解速度可调性和良好的生物相容性,能够在30天内保持其完整性和力学性能稳定性,具备GTR应用要求的潜质,但仍然存在吸水率高溶胀快的缺陷,且吸水后力学性能下降迅速。因此,我们选择了柠檬酸(CA)交联法对SP膜进行了进一步改性,在140℃高温成型条件下制备出一系列不同CA(5-30wt%)含量的SP薄膜,并对其结构进行了细致的研究。发现在高温成型条件下,一部分CA能够与淀粉和PVA之间发生了酯化反应,酯化反应的发生和CA的多羧基结构又导致了体系的化学交联;此外,体系中残留的CA能起到淀粉与PVA的增塑剂作用,且与甘油相比,CA上的羧基能够与淀粉和PVA形成更稳定的氢键作用,从而有效抑制材料老化;酯化和交联还使得SP膜吸水率的下降热稳定性升高。细胞毒性试验证明CA含量在20%以内对细胞毒试验评级结果为0-1级,仍然具有良好的细胞相容性。
     (4)对淀粉/海藻酸钠可注射型物理水凝胶进行了6种体外及体内生物相容性评价(溶血实验、细胞毒性实验、经静脉和经口途径全身急性毒性实验、皮下埋植及骨埋植实验)。评价结果为细胞毒性分级为0-1级,不会导致急性溶血反应,无急性毒反应,有轻微皮下组织反应,无骨吸收和骨破坏现象,是一种生物相容性良好的水凝胶材料。通过添加纳米羟基磷灰石制备了淀粉/海藻酸钠/纳米羟基磷灰石复合材料,并通过动物实验观察了其在兔颌骨缺损中的修复效果,实验表明复合纳米羟基磷灰石的淀粉/海藻酸钠注射型水凝胶的修复速度、修复区骨密度、下颌骨体边缘的光滑度均优于空白或单纯使用淀粉/SA材料的修复效果,组织学显示试验侧成骨的方式是周围和中心成骨两种并存,总体来说该水凝胶具有良好的生物安全性和较好的成骨效果。
Starch is a kind of high-yield biodegradable natrual polysaccharid. Because of its nontoxicity, biodegradability and nontoxicity of the degradation products, starch is a good candidate in biomedical field. In this paper, based on the the aim of biomedical application, thermoplastic starch was chosen as the main raw material. The ageing and degradation mechanisms of glycerol plasticed thermolplastic starch (GTPS) with high glycerol content were investigated.It seems like that the GTPS dissolve in water easily. Furthermore, the mechanical properties can not maintain when immerged in body fluid. In order to improve the ageing resistent ability, water resistent ability and mechanical properties, a series of modifications methods (co-plasticization, esterification, crosslinking and and blending with other polymers) were carried out.Moreover,in order to satisfy some special clinical application (guide tissue regeneration membrane , injected hydrogel for bone repair), the starch/PVA(SP) film and starch/sodium alginate/nano-hydroxylapatite(SSH) composites were prapared.The structure and properties,in vitro degradation behaviour and biocompatibility of SP films and SSH were investigated.In addition, the biocompatibility of the SSH was evaluated by six in vitro and in vivo biological experiments. The repairing effects on rabbit mandibular bone defect were also researched.
     The main research content and achievements are shown as follows:
     (1) The thermoplastic starch with the elastomeric properties was prepared by plasticizing with high glycerol content. The elastomeric property was exhibited when the glycerol content was more than 40% (based on the total weight). The ageing mechanism of the complicated tertiary mixture was investigated under the normal human body temperature (37℃) and a comfortable relative humidity for human being (50 RH %), so as to understand the mechanism of the ageing well and to control it under certain conditions of human body. The degradation mechanism of the GTPS elastomer in simulated body fluid and simulated saliva fluid was firstly investigated. The main results including: high glycerol content is helpful to the formation of the single helix structure, but it is not good for the formation of the double helix structure of B-type. There were no reports focused on the relationship between the single helix structures and ageing before. When the glycerol content was more than 40%, there was only a slight change of the mechanical properties within 54days. The results from all characterizations demonstrated that the high glycerol content can prevent ageing effectively. The degradation process in SBF is typical bulk degradation. The GTPS swelled at first, and then degraded. In SSF, the surface and bulk degradation took place at the same time but the surface degradation played an important role in the first 2 h. The influences of the short-term extractions and the long-term degradation products in SBF were proved to be innocuous, which is very important for GTPS to be applicated in biomedical applications. The quick degradation velocity in SSF made GTPS a promising short-term wound dressing material to deal with the stomatitis in oral.
     (2) In order to prevent ageing and to promote some other properties, a novel citric acid (CA)-glycerol co-plasticized thermoplastic starch (CGTPS) was prepared by melt blending. The structure and properties was investigated. The novel CGTPS has some new characteristics compared with the traditional glycerol plasticized TPS: namely, partial esterification, low molecular weight, and strong interaction between starch and CA. Partial esterification could have some effect on reducing retrogradation, introducing some new groups onto the starch chains for potential modification, and improving the compatibility with some other polyesters. The decrease in the molecular weight can improve the processing properties, adjust the degradation speed, and improve the diffusion of the CGTPS in the polyesters. Furthermore, the CGTPS can easily be prepared by melt blending in a short time. All of these special properties would make CGTPS a good candidate in environment and biomedical applications.
     (3) A series of starch / PVA (SP) films with 0.05-0.1mm thickness were cast by solvent method. The application of SP films in guide tissue regenaration (GTR) technology was firstly proposed. The in vitro degradation and biocompatibility of the SP films were investigated. Generally speaking, the SP films possess high hydrophilic properties, flexible, strong and adjustable mechanical properties, suitable degradation rate, and excellent biocompatibility. Within 30 days, the integrity of the SP films kept well. The mechanical properties didn't change so much from 3 to 30 days, and SP films showed excellent mechanical stability both in SBF and SSF. It is also very important for its potential use as GTR membrane. Furthermore, in order to overcome the high water absorptence and quick swelling velosity, The SP films were modificated by adding CA and molded at 140℃. The esterification happened between CA and starch (or PVA) as the function of CA. The esterification and the multi-carboxyl structure of CA may result in chemical cross-linking in the blending system.The esterification occured more easily between the starch and CA than that between the PVA and CA. The residual free CA acted as the plasticizer of the starch and PVA. Compared to the hydroxyl groups on glycerol, the carboxyi groups on CA can form stronger hydrogen bonds between CA and other components. The crosslinking and strong hydrogen bonding enhanced the thermal stability and decreased the water absorbance. The cell Relative Growth Rates of all samples with different CA concentration exceeded 80% after 7 day's incubation. This result demonstrated that there was no significant toxicity on cell's growth when the CA content was less than 20%.
     (4) The starch/sodium alginate/n-HAP (SSH) rejected hydrogel was prepared by melt blending method. According to the Chinese and international standard, six biological evaluation (cytotoxicity, acute toxicity, haemocompatibility, embed in skin and bone )tests pluse a repairing both sides of rabbit mandibular bone defect were investigated. Results demonstrated that the rate of haemocompatibility is 2.06%, no more different between trail and control in acute toxicity, the grade of cytotoxicity is under 1. In the subcutaneous test, there was only a slight subcutaneous tissue reaction. At the same time, complex with n-HA could lead good repairing result in mandibular bone defect. In the bone implant experiment, no absorptance and destruction phenomenons of bone were observed. The SSH could lead good repairing in mandibular bone defect. The SSH is acceptable biological martial and could be a media in repairing bone defect.
引文
[1]Riboldi S A,Sampaolesi M,Neuenschwander P,et al,Electrospun degradable polyester urethane membranes,Potential scaffolds for skeletal muscle tissue engineering[J],Biomaterials,2005,26(22):4606-4615
    [2]刘洪刚,程国安.生物材料的研究和展望[J].自然杂志,1998,20(6):330-333
    [3]雷明凯,潘巨利.生物医用金属材料的腐蚀[J].生物医学工程学杂志,2001,18(4):624-628
    [4]单军.生物活性高分子材料[J].化工新型材料,1995,(12):5-7
    [5]李浩莹,陈运法,谢裕生.可生物降解医用高分子矫形材料[J].材料科学与工程,2000,18(2):120-124
    [6]曾方,王文广,夏邦富.可生物降解高分子材料的研究进展及应用[J].塑料制造,2006,(8):33-38
    [7]徐兆瑜.前景璀璨的新型生物降解塑料—聚乳酸[J].合成材料老化与应用,2003,(2):39-43
    [8]姚芳莲,刘畅,孟继红,等.降解可控乳酸类聚合物[J].高分子通报,2003,(3):47-56
    [9]陈先红,郑建华.生物降解高分子材料—聚酸酐的研究进展[J].高分子材料科学与工程,2003,19(3):31-34
    [10]陈莉,杜锡光,赵保中,等.聚羟基乙酸及其共聚物[J].高分子通报,2003,(1):18-24
    [11]刘文辉,刘晓亚,陈明清.壳聚糖基生物医用材料及其应用研究进展[J].功能高分子学报,2001,14(4):493-498
    [12]黄勇,李翠伟,汪长安,等.陶瓷强韧化新纪元—仿生结构设计[J].材料导报,2000,14(8):8-10
    [13]Marti A.Inert bioceramics(Al2O3,ZrO2)for medical application.Injury[J],2000,31:S-D33-D36
    [14]Campbell,Allison A.Bioceramics for implant coatings.Materials Today[J],2003,11(6):26-30
    [15]郝建原,邓先模.复合生物材料的研究进展[J].高分子通报,2002,(5):1-8
    [16]葛建华,王迎军,郑裕东.可降解及可吸收性骨科材料研究进展[J].化工新型材料,2003,31(2):34-38
    [17]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000,8
    [18]任杰.可降解与吸收材料[M].北京:化学工业出版社,2003.9
    [19]Amass W,Amass A,Tighe B.A review of biodegradable polymers:uses,current developments in the synthesis and characterization of biodegradable polyesters,blends of biodegradable polymers and recent advances in biodegradation studies[J].Polymer International,1998,47:89-144
    [20]付东伟,闫玉华.生物可降解医用材料的研究进展[J].生物骨科材料与临床研究,2005,4(2):39-42
    [21]Gursel I,Korkusuz F,Hasrci V,et al.In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis[J].Biomaterials,2001,22(1):73-80
    [22]Jiang H L,Zhu K J.Synthesis,characterization and in vitro degradation of a new family of alternate poly(ester-anhydrides)based on aliphatic and aromatic diacids[J].Biomaterials,2001,22:211-218
    [23]Liu J W,Zhao Q,Wan C X.Research progresses on degradation mechanism in vivo and medical applications of polylactic acid[J].Space Med Eng(Beijing),2001,14(4):8-12
    [24]Lucke A,Schnell E,Schmeer G.Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers:structures and surface properties relevant to their use as biomaterials[J].Biomaterials,2000,21:2361-2370.
    [25]Shanbhag A,Jacobs J,Black J.Macrophage particle interactions:effect of size composition and surface area[J].Biomed Mater Res,1994,28:46-51.
    [26]Wake MC,Gerecht PD.Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro[J].Biomaterials,1998(19):1255-1268.
    [27]Williams DF.Mechanisms of biodegradation of omplantable polymers[J].Clin Mater,1992,10(1-2):9-12.
    [28]Soon YL,Park JW,Yoo YT,Soon SI.Hydrolytic degradation behaviour and microstructural changes of poly(ester-co-amide)s[J].Polymer Degradation and Stability.2003,78(1):63-71
    [29]Yoo YT,Lee BJ,Han,Sang-Il;Im,SS,Kim,DK.Physical properties and biodegradation of poly(butylene adipate)ionomers[J].Polymer Degradation and Stability,2003,79(1):257-264.
    [30]Zhang LL,Xiong CD,Deng XM.Biodegradable polyester blends for biomedical application[J].Journal of Applied Polymer Science,1995,56(1):103-114.
    [31]李玉宝.生物医学材料[M].北京:化学工业出版社,2003,294-301
    [32]陈莉,赵保中,杜锡光.聚羟基乙酸及其共聚物的研究进展[J].化工新型材料,2002,30(3):11-15
    [33]Takahashi K,Taniguchi I,Miyamoto M,Kimura Y.Melt/solid polycondensation of glycolic acid to obtain high-molecular-weight poly(glycolic acid)[J].Polymer,2000,41(24):8725-8728.
    [34]于德梅,曹有名.可吸收性聚合物聚乙醇酸[J].化工新型材料,1996,24(1):17-18,29.
    [35]Tormala P.The effects of fiber reinforcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro[J].Biomaterials,1987,8:42-48
    [36]Tormala P.Ultra-high-strength absorbable self-reinforced polyloctide(SR-PGA)composite rods for internal fixation of bone fractures:in vitro and in vivo study[J].Journal of Biomedical Material Research,1991,25(1):1-6
    [37]Xiong Z,Yan YW,Wang SG.Scripta Material.Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition,2002,46(11):771-776.
    [38]林思聪.高分子生物材料分子工程研究进展(下)[J].高分子通报,1997,(2):76-89
    [39]谢德明.药用合成可降解高分子材料研究[J].材料科学与工程学报,2004,22(4):623-626
    [40]Gorna K,Gogolewski S.In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on ε-caprolactone and Pluronics(?)with various hydrophilicities[J].Polymer Degradation Stabilty,2002,75(1):113-122
    [41]郭圣荣.医药用生物降解性高分子材料[M].北京:化学工业出版社,2003,11
    [42]付东伟,闫玉华.生物可降解医用材料的研究进展[J].生物骨科材料与临床研究,2005,4(2):39-42
    [43]Potin P,Jaeger R D.Polyphosphazenes:Synthesis,structures,properties,applications[J].Eur Polym J,1991,415,341-348.
    [44]Allcock H R,Crane C A,Morrissey C T,Nelson J M,Reeves S D,Honeyman C H,and Manners I.Living cationic polymerization of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weights[J].Macromolecules,1996,29,7740-7747.
    [45]Allcock H R,Nelson J M,Reeves S D,Honeyman C H,and Manners I.Ambient-temperature direct synthesis of poly(organophosphazenes)via the living cationic polymerization of organo-substituted phosphoranimines[J].Macromolecules,1997,30,50-53.
    [46]Allcock H R,Kwon S,Riding G H,Fitzpatrick R J,and Bennett J L.Hydrophilic polyphosphazenes as hydrogels:radiation cross-linking and hydrogel characteristics of poly [bis(methoxyethoxyethoxy)phosphazene][J],Biomaterials,1988,9,509.
    [47]Langer R,Vacanti JP.Tissue engineering.Science,1993,260,920-926
    [48]Chapeker MS.Tissue engineering:challenges and opportunities.Journal of Biomedical Material Research,2000,53:617-620
    [49]杨志明.组织工程基础与临床[M].成都:四川科学技术出版社,2000
    [50]Wilkerson WR,Seegert CA,Feinberg AW.Bioadhesion studies on Microtextured Siloxane Elastomer[J],Polymer Preprints,2001,1:147-148
    [51]王佩章,李田华.淀粉的热塑性研究[J].中国塑料.2002,16(4):39-44
    [52]黄明福.环境友好热塑性淀粉/蒙脱石纳米复合材料的研究[D].天津:天津大学应用化学系.2006
    [53]陈涛.热塑性淀粉塑料结构和性能研究[D].四川:四川大学高分子材料与工程学院
    [54]邓宇.淀粉化学品及其应用[M].北京:化学工业出版社,2002,1
    [55]Wursch P,Gumy D.Inhibition of amylopectin retrogradation by partial beta-amylolysis[J],Carbohydrate Research,1994,256:129-137
    [56]Shogren R L.Biodegradable Polymers and Packaging[M]Technomic Publishing Company Inc.:Lancaster,1993,141-150.
    [57]陈坚,堵国成.环境友好材料的生产与应用[M].北京:化学工业出版社,2002.
    [58]Sagar D.Ambuj,Merrit W.Edward.Properties of Fatty acid Esters of Starch[J].Journal of Applied Science.1995,58:1647-1652
    [59]张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001
    [60]彭少贤,池彩云,邹小明.可生物降解淀粉基共混物的研究[J].塑料工业.2006,34(S1):121-125
    [61]杨冬芝,胡平.淀粉基生物可降解塑料的制备和表征[J].塑料.2005,34(3):51-56
    [62]Griffin G J L.Degradation of polyethylene in composit burial[J]..J.Polym.Sci Polym.Symp,1977,57:281-286.
    [63]Salgado A.J,Gomes M E,Chou A,et al.Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds[J].Materials Science and Engineering C.2002,20:27-33
    [64]Gomes M E,Reis R L,Cunha A M.Cytocompatibility and response of osteoblastic-like cells to starch-based polymers:effect of several additives and processing conditions,.Biomaterials,2001,22:1911-1917
    [65]Marques A.P,Reis R L,Hunt J A..The biocompatibility of novel starch-based polymers and composites:in vitro studies[J].Biomaterials,2002,23:1471-1478
    [66]Sandra C.Mendes,R.L.Reis,Yvonne P.Bovell.Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery:a preliminary study[J].Biomaterials 2001,22:2057-2064
    [67]Gomes M E,Godinho J S,Tchalamov D.Alternative tissue engineering scaffolds based on starch:processing methodologies,morphology,degradation and mechanical properties.Materials Science and Engineering C 2002,20:19-26
    [68]Leonor I B,Ito A.,Onuma K..In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomateriais:an in situ study using atomic force microscopy[J].Biomaterials 2003,24:579-585
    [69]倪秀元,胡建华,府寿宽.可生物降解的高分子材料[J],自然杂志,1998,20(6):339-341
    [70]Ramkumar D H S,Bhattacharya M,Zhang D,High shear and transient viscosity of starch and maleated ethylene vinyl acetate copolymer blends[J],Polymer Networks&Blends,1997,7(2):51-59
    [71]Kim C H,Cho K Y,Park J K,Reactive blends of gelatinized starch and polycaprolactone-g-glycidyl methacrylate[J],Journal of Applied Polymer Science,2001,81(6):1507-1516
    [72]Dubois P,Krishnan M,Narayan R,Aliphatic polyester-grafted starch-like polysaccharides by ring-opening polymerization[J],Polymer,1999,40(11):3091-3100
    [73]Delphine R,Duquesne E,Ydens I,et al,Aliphatic polyester-based biodegradable materials:new amphiphilic graft copolymers[J],Polymer Degradation and Stability,2001,73(3):561-566
    [74]Martin O,Averous L.Poly(lactic acid):plasticization and properties of biodegradable multiphase systems[J],Polymer,2001,42(14):6209-6219
    [75]Denise C,Li N,Ramani N,et al.Maleation of polylactide(PLA)by reactive extrusion[J],Journal of Applied Polymer Science,1999,72(4):477-485
    [76]Averous L,Fauconnier N,Moro L,et al.Blends of thermoplastic starch and polyesteramide:processing and properties[J],Journal of Applied Polymer Science,2000,76(7):1117-1128
    [77]Wu Q X,Zhang L N.Structure and properties of casting films blended with starch and waterborne polyurethane,Journal of Applied Polymer Science,2001,79(11):2006-2013
    [78]Lawton J W,Willett J L,The mechanical properties of modified starch filled poly-(hydroxyester ether)composites[J],Polymer Preprints,2001,42(2):44-45
    [79]Herrmann A S,Nickel J,Riedel U,Construction materials based upon biologically renewable resources--from components to finished parts[J],Polymer Degradation and Stability,1998,59(1-3):251-261
    [80]Funke U,Bergthaller W,Lindhauer M G,Processing and characterization of biodegradable products based on starch,Polymer Degradation and Stability,1998,59(1-3):293-296
    [81]Souza Rosa R C R,Andrade C T.Effect of chitin addition on injection-molded thermoplastic corn starch[J],Journal of Applied Polymer Science,2004,92(4):2706-2713
    [82]Arvanitoyannis I,Atsuyoshi N,Sei-ichi A,Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water[J],Carbohydrate Polymers,1998,36(2-3):105-119
    [83]Coffin D R,Fishman M L,Viscoelastic properties of pectin/starch blends[J],Journal of Agricultural and Food Chemistry,1993,41(8):1192-1197
    [84]Coffin D R,Fishman M L,Films fabricated from mixtures of pectin and starch[P],US Patent,5,451,673,1995-09-19
    [85]Fishman M L,Coffin D R,Unruh J J,Pectin/starch/glycerol films:Blends or composites?[J],Journal of Macromolecular Science:Pure and Applied Chemistry,1996,A33(5):639-654
    [86]Coffin D R,Fishman M L.Physical and mechanical properties of highly plasticized pectin/starch films[J],Journal of Applied Polymer Science,1994,54(9):1311-1320
    [87]曾祥成,刘白玲,李坤福.高速搅拌对淀粉/聚乙烯醇共混物溶液成膜性能的影响[J],高分子学报,1999(1):68-73
    [88]Willett J L,Millard M M,Jasberg B K.Extrusion of waxy maize starch:melt rheology and molecular weight degradation of amylopectin[J],Polymer,1997,38(24):5983-5959
    [89]Ameye D,Voorspoels J,Foreman P,et al.Ex vivo bioadhesion and in vivo testosterone bioavailability study of different bioadhesive formulations based on starch-g-poly(acrylic acid) copolymers and starch/poly(acrylic acid)mixturesfJ],Journal of Controlled Release,2002,79(1-3): 173-182
    [90] Lewandowicz G,Jankowski T,Fornal J,Effect of microwave radiation on physico-chemical properties and structure of cereal starches[J],Carbohydrate Polymers,2000,42(2):193-199
    [91] Kiatkamjornwong S,Chomsaksakul W,Sonsuk M,Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide[J],Radiation Physics and Chemistry,2000,59(4):413-427
    [92] Kiatkamjornwong S,Thakeow P,Sonsuk M,Chemical modification of cassava starch for degradable polyethylene sheets[J],Polymer Degradation and Stability,2001,73(2):363-375
    [93] Sagar A D,Merrill E W,Properties of fatty-acid esters of starch[J],Journal of Applied Polymer Science,1995,58(9):1647~1656
    [94] Fringant C,Desbrieres J,Rinaudo M,Physical properties of acetylated starch-based materials:relation with their molecular characteristics[J],Polymer,1996,37(13):2663~2673
    [95] Khalil M I,Farag S,Aly A A,et al,Some studies on starch-urea-acid reaction mechanism [J],Carbohydrate Polymers,2002,48(3):255-261
    [96] Tijsen C J,Kolk H J,Stamhuis E J,et al,An experimental study on the carboxymethylation of granular potato starch in non-aqueous media[J],Carbohydrate Polymers,2001,45(3):219-226
    [97] SiSi F F E,Abdel-Hafiz S A,Saleh A R,et al,Behaviour of starch bearing nitrogen containing moieties towards acid degradation[J],Polymer Degradation and Stability, 1998,62(2):201-210
    [98] Woo K,Seib Paul A,Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate[J],Carbohydrate Polymers,1997,33(4):263-271
    [99] Dubois I,Picton L,Muller G,et al,Structure/rheological properties relations of crosslinked potato starch suspensions[J],Journal of Applied Polymer Science,2001,81,2480-2489
    [100] Shogren R L,Lawton J W,Tiefenbacher K F,et al,Starch-poly(vinyl alcohol)foamed articles prepared by a baking process[J],Journal of Applied Polymer Science,1998,68(13):2129-2140
    [101] Chen L,Imam S H,Gordon S H,et al,Starch-polyvinyl alcohol crosslinked film performance and biodegradation[J],Journal of Environmental Polymer Degradation, 1997,5(2): 111-117
    [102] Nakashima T,Xu C,Bin Y,et al,Morphology and mechanical properties of poly(vinyl alcohol)and starch blends prepared by gelation/crystallization from solutions[J],Colloid and Polymer Science,2001,279(7):646-654
    [103] Delville J,Joly C,Dole P,et al,Solid state photocrosslinked starch based films:a new family of homogeneous modified starches[J],Carbohydrate Polymers,2002,49(1):71-81
    [104] Demirgz D,Elvira C,Mano J F,et al,Chemical modification of starch based biodegradable polymeric blends:effects on water uptake,degradation behaviour and mechanical properties[J],Polymer Degradation and Stability,2000,70(2): 161-170
    [105] Zobel H F. Starch Crystal Transformations and Their Industrial Importance[J]. Starch/Starke 1988,40,44-50
    [106] Lourdin, D.; Biot, H.; Colonna, P. J. " Antiplasticization " in starch-glycerol films? [J],Appllied Polymer Science. 1997,8, 1047-1053
    [107] Myllarinen P, Partanen R,Seppala J; Forssell P. The crystallinity of amylose and amylopectin films[J]. Carbohydrate Polymers, 2002, 50,361
    [108] Lourdin D,Ring S G, Colonna P. Study of plasticizer-oligomer and plasticizer-polymer interactions by dielectric analysis: maltose-glycerol and amylose-glycerol-water systems[J],Carbohydrate Research ,1998, 306, 551-558
    [109] Forssell P M, Mikkila J, Moates G K., Parker, R. Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch,Carbohydrate Polymers, 1997,34, 275-282.
    [110] van Soest J J G, Johannes F G, Vliegenthart. Crystallinity in starch plastics: consequences for material properties[J]. Trends in Biotechnology 1997, 15: 208-213
    [111] Smits A. L. M., Ruhnau F C, Johannes F G, Utrecht, van Soest J J G. Ageing of Starch Based Systems as Observed with FT-IR and Solid State NMR Spectroscopy[J], Starch/Starke. 1998,50,478-483
    [112] Lu T J, Jane J L, Keeling P L. Temperature effect on retrogradation rate and crystalline structure of amylose[J]. Carbohydrate Polymers, 1997,33,19-26
    [113] Gomes M E, Sikavitsas V I, Behravesh E, Reis R L, Mikos A. G Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds[J]. Journal of Biomedical Material Research: Part A ,2003, 67:87-95
    [114] Salgado, A. J.; Coutinho, O. P.; Reis, R. L. Novel Starch-Based Scaffolds for Bone Tissue Engineering:Cytotoxicity, Cell Culture, and Protein Expression. Tissue Engineering. 2004, 10,465-474
    [115] Gomes M E, Ribeiro A S, Malafaya P B, Reis R L,Cunha AM. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour[J]. Biomaterials.2001,22, 883-889
    [116] Otani, Y; Tabata,Y; Ikada, Y. Effect of additives on gelation and tissue adhesion of gelatin-poly(L-glutamic acid) mixture[J]. Biomaterials 1998,19, 2167-2173
    [117] Desevaux, C; Dubreuil, P.; Lenaerts, V. J. Characterization of crosslinked high amylose starch matrix implants.1. In vitro release of ciprofloxacin[J]. Journal of Controlled Release. 2002, 82,83-93
    [118] Desevaux, C; Lenaerts, V; Girard, C; Dubreuil, P. J. haracterization of crosslinked high amylose starch matrix implants[J]. Journal of Controlled Release. 2002, 82,95-103
    [119] Imberty, A.; Perez, S. A revisit to the three-dimensional structure of B-type starch[J].Biopolymers. 1988,27, 1205-1221
    [120] Eisenber F, Schulz W. Monte carlo simulation of the hydration shell of double-helical amylose:A left-handed antiparallel double helix fits best into liquid water structure Biopolymers, 1992,32, 1643-1664
    [121] Wu H-C. H, Sarko A. The double-helical molecular structure of crystalline b-amylose [J].Carbohydrate Research. 1978, 61, 7-25
    [122] Tang H-R, Brun A., Hills B. A proton NMR relaxation study of the gelatinisation and acid hydrolysis of native potato starch. Carbohydrate Polymers. 2001,46, 7-18
    [123] Cheetham N W H, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study[J].Carbohydrate Polymers, 1998, 36,277-284
    [124] Le Bail P, Bizot H, Ollivon M., Seller G, Bourgaux C, Buleon A. Monitoring the crystallization of amylose-lipid complexes during maize starch melting by synchrotron x-ray diffraction[J] Biopolymers 1999,50,99.
    [125] Forssell P M, Hulleman S H D, Myllarinen P J Moates G K, Parker R Ageing of rubbery thermoplastic barley and oat starches[J] . Carbohydrate Polymers, 1999, 39,43-51
    [126]Van Soest,J.J.G.;Hulleman,S.H.D.;de Wit,D.;Vliegenthart,J.F.G.Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity[J].Carbohydrate Polymers.1996,29,225-232
    [127]Hulleman,S.H.D.;Kabisvaart,M.G.;Jabssen,F.H.P.;Feil,H.;Vliegenthart,J.F.G.Origins of B-type crystallinity in glycerol-plasticised,compression-moulded potato starches[J],Carbohydrate Polymers,1999,39,351.
    [128]Van Soest,J.J.G.;de Wit,D.;Vliegenthart,J.F.G.Mechanical properties of thermoplastic waxy maize starch[J].Journal of Applied Polymer Science.1996,61,1927
    [129]Van Soest,J.J.G.;Knooren,N.Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging[J].Journal of Applied Polymer Science 1997,64,1411-1422
    [130]Graaf,R.A.D.;Karman,A.P.;Janssen,L.P.B.M.Material Properties and Glass Transition Temperatures of Different Thermoplastic Starches After Extrusion Processing[J]Starch/Starke 2003,55,80-86
    [131]Kalichevsky,M.T.;Iaroszkiewicz,E.M.;Blanshard,J.M.V.A study of the glass transition of amylopectin—sugar mixtures[J].Polymer.1993,34,346-358
    [132]Chung H.J.,Lim S.T.Physical aging of glassy normal and waxy rice starches:thermal and mechanical characterization[J].Carbohydrate Polymers,2004,57,15-21
    [133]Bogracheva,T.Y.;Wang,Y.L.;Hedley,C.L.The effect of water content on the ordered/disordered structures in starches,Biopolymers,2001,58,247-259
    [134]Fang J M,Fowler P,Tomkinson J,et al.Preparation and characterization of methylated hemicelluloses from wheat staw[J].Carbohydrate Polymers,2002,47:285-293
    [135]钟海庆.红外光谱法入门[M]北京,化学工业出版社,1984:38
    [136]Pawlak A,Mucha M.Thermogravimetric and FTIR studies of chitosan blends[J].Thermochimica Acta,2003,396(1-2):153-166
    [137]马骁飞,于九皋.尿素和甲酰胺塑化热塑性淀粉[J].高分子学报,2004,(4):483-488
    [138]van Soest J J G,Tournois H,de -Wit D,et al.Short-range structure in(partially)crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy[J].Carbohydrate Research,1995,279:201-214
    [139]Aoi K,Takasu A,Okada M,et al.New chitin-based polymer hybrids,3.Miscibility of chitin-graft-poly(2-ethyl-2-oxazoline)with poly(vinyl alcohol)[J].Macromolecular Chemistry and Physics,1998,199(12):2805
    [140]Hubbell JA.Biomaterials in tissue engineering[J].Biotechnology 1995;13:565-576.
    [141]Peppas NA,Langer R.New challenges in biomaterials.Science,1994,263:1715-1720.
    [142]Azevedo HS,Gama FM,Reis RL.In vitro assessment of the enzymatic degradation of.several starch based biomaterials[J].Biomacromolecules 2003;4:1703-12.
    [143]Lamba N M K,Baumgartner J A,Cooper S L.Frontiers in Tissue Engineering[M].Elsevier:New York,1998:121-137.
    [144]Martin O,Averous L.Poly(lactic acid):plasticization and properties of biodegradable multiphase systems[J],Polymer 2001;42:6210,6214
    [145]Singh V,Ali S Z.Acid degradation of starch.The effect of acid and starch type[J]Carbohydrate Polymers,2000;41:191-195.
    [146]Copinet A,Bliard C,Onteniente J P,Couturier Y.Enzymatic degradation and deacetylation of native and acetylated starch-based extruded blends[J].Polymer Degradation and Stability 2001; 71:203-212.
    [147] Boesel L F, Fernandes M H, Reis R L. The behavior of novel hydrophilic composite bone cements in simulated body fIuids[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2004; 70(2):368-377.
    [148] Pavlov M P, Mano J F, Neves N M, Reis R L. Fibers and 3D Mesh Scaffolds from Biodegradable Starch-Based Blends: Production and Characterization[J], Macromolecular Bioscience 2004; 4: 776-784.
    [149] Azevedo H S, Gama F M, Reis R L. In Vitro Assessment of the Enzymatic Degradation of Several Starch Based Biomaterials[J]. Biomacromolecules ,2003,4: 1703-1712
    [150] Kang B G, Yoon S H, Lee S H, Yie J E, Yoon B S, Suh M H. Studies on the physical properties of modified starch-filled HDPE film[J]Journal of Applied Polymer Science 1996; 60: 1977-1984
    [151] Guraya H S, James C, Champagne E T. Effect of Cooling, and Freezing on the Digestibility of Debranched Rice Starch and Physical Properties of the Resulting Material[J]. Starch/Starke,2001,53: 131-139.
    [152] Hanks C T, Wataha J C, Sun Z. In vitro models of biocompatibility: a review[J]. Dental Material 1996, 12:186-193
    [153] Liu X, Ding C, Wang Z. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid[J]. Biomaterials, 2001, 22:2007-2012.
    [154] Amaechi B T, Higham S M. In vitro remineralisation of eroded enamel lesions by saliva[J].Journal of Dentistry, 2001, 29: 372.
    
    [155] 漆明,魏军,李娟,贾伟,等α-淀粉酶与致龋细菌的相关性研究[J].口腔医学杂志.2002,22(2):67-69
    
    [156] Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P.Blends of Poly-(E-caprolactone) and Polysaccharides in Tissue Engineering Applications [J].Biomacromolecules. 2005; 6: 1961-76.
    [157] Yu JG, Wang N, Ma XF. The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol. Starch/Starke 2005, 57: 494 - 504
    [158] Fishman M L, Coffin D R, Konstance R P, Onwulata C I.. Extrusion of pectin/starch blends plasticized with glycerol[J]. Carbohydrate Polymers. 2000,41, 317-325.
    [159] Yu JG, Gao J, Lin T. Biodegradable thermoplastic starch[J]. Journal of Applied Polymer Science, 1996,62, 1491-1494.
    [160] Wang L, Shogren R L, Carriere C.Preparation and properties of thermoplastic starch-polyester laminate sheets by coextrusion[J]. Polymer Engineering and Science, 2000,40; 499-506.
    [161] Ma X F, Yu J G The effects of plasticizers containing amide groups on the properties of thermoplastic starch[J]. Starch/Starke, 2004, 56, 545-551
    [162] Ma X F, Yu J G. Formamide as the plasticizer for thermoplastic starch[J], Journal of Applied Polymer Science, 2004,93, 1769-1773.
    [163] Ma X F, Yu J G, Feng J. Urea and formamide as a mixed plasticizer for thermoplastic starch[J],Polymer International. 2004,.53, 1780-1785.
    [164] Yang J, Webb A ,Ameer G, Novel citric acid-based biodegradable elastomers for tissue engineering[J]. Advanced Materials. 2004,16,511-516.
    [165] Yu J G, Wang N, Ma X F. The Effects of Citric acid on the properties of thermoplastic starch plasticized by glycerol[J]. Starch/Starke, 2005, 57 ,494-504
    [166] Singh J, Kaur L, McCarthy O J. Factors influencing the physico-chemical, morphological,thermal and rheological properties of some chemically modified starches for food applications—Areview[J]. Food Hydrocolloids, 2007,21, 1-22
    [167] Shogren RL. Preparation, thermal properties, and extrusion of high-amylose starch acetates[J].Carbohydrate Polymers, 1996.29;57-62
    [168] Klaushofer H., Berghofer E, Steyrer W. Die Neuentwicklung modifizierter Starken am Beispiel von Citratstarke. Ernahrung/Nutrition, 1978,2, 51-55.
    [169] Wepner B, Berghofer E, Miesenberger E, Wien T K., Korneuburg Ng P N K, Lansing E. Citrate Starch - Application as Resistant Starch in Different Food Systems[J]. Starch/Starke. 1999, 51:354-361
    [170] Xie X J, Liu Q. Development and physicochemical characterization of new resistant citrate starch from different corn starches[J]. Starch/Starke, 2004, 56, 364-370
    [171] Xie X J, Liu Q, Cui S W. Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates[J]. Food Research International, 2006,39 ,332-341
    [172] Carvalho A J F , Zambon M D , Curvelo A A. da S, Gandini A.. Thermoplastic starch modification during melt processing: Hydrolysis catalyzed by carboxylic acids[J].Carbohydrate Polymers, 2005,62, 387-390
    [173] Santayanon R., Wootthirahokkam J. Modification of cassava starch by using propionic anhydride and properties of the starch-blended polyester polyurethane[J]. Carbohydrate Polymers, 2003,51, 17-24
    [174] Huang L Y, Xiao C M, Zheng H J, & Huang H Z.. Preparation and characterization of the monoester of phthalic acid and starch[J]. Journal of Huaqiao University (Natural Science),2004, 25, 37-40
    [175] Xie J X, Chang J B, Wang X M. Infra-red spectrum applications in organic chemistry and medicinal chemistry[M]. Scientific Publication: Beijing,2001:296-297
    [176] Ozmeric N, Bal B, Oygur T, Balos K. The effect of a collagen membrane in regenerative therapy of two-wall intrabony defects in dogs[J]. Periodontal Clinical Investigation,2000,22:22-30
    [177] Piattelli A, Scarano A, Russo P, Matarasso S. Evaluation of guided bone regeneration in rabbit tibia using bioresorbable and nonresorbable membranes[J]. Biomaterials, 1996; 17(8):791—796
    [178] Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers[J]. Biomaterials, 2005, 26 (19):4139-4147
    [179] Piattelli A, Scarano A, Paolantonio M. Bone formation inside the material interstices of e-PTFE membranes: a light microscopical and histochemical study in man[J].Biomaterials,1996;17(17):1725-1731
    [180] Ochi K, Chen G P, Ushida T, Gojo S, Segawa K, Tai H, Ueno K, Ohkawa H, Mori T,Yamaguchi A, Toyama Y, Hata J I, Umezawa A. Use of isolated mature osteoblasts in abundance acts as desired-shaped bone generation in combination with a modified poly DL-lactic-co-glycolic acid (PLGA)-collagen sponge[J]. Journal of Cellular Physiology,2003,194:45-53
    [181] Ishaug S L, Crane G M, Miller M J. Bone formation by three dimensional stromal osteoblast culture in biodegrable polymer scaffolds[J]. Journal of Biomedical Material Research, 1997,37:17-28
    [182] Giusti P, Lazzeri L, Lelli L. Bioartificial polymeric materials: a new method to design biomaterials by using both biological and synthetic polymers[J]. Trends in Polymer Science,1993,1:261
    [183] Giusti P, Lazzeri L, Barbani N, Lelli L, De Petris S, Cascone M G, Collagen-based new bioartificial polymeric materials[J], Biomaterials, 1994, 15(15), 1229-1233.
    [184] Giusti P, Lazzeri L, Cascone M G, Barbani N, Cristallini C. Polymers and other advanced materials:Emerging technologies and business opportunities[M]. Plenum: New York, 1995:563
    [185] Santos M I, Fuchs S, Gomes M E, Unger R E, Reis R L, Kirkpatrick C J. Response of micro-and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering[J].Biomaterials, 2007, 28:240-248
    [186] Nakayama Y, Takatsuka M, Matsuda T. Surface hydrogelation using photolysis of dithiocarbamate or xanthate: hydrogelation, surface fixation, and bioactive substance immobilization[J]. Langmuir, 1999,15: 1667-72.
    [187] Hyon S H, Cha W I, Ikada Y, Kita M, Ogura Y, Honda Y. Poly(vinyl alcohol) hydrogels as soft contact lens material[J], Journal of Biomaterial Science-Polymer Edition, 1994,5(5):397-406.
    [188] Jiang H J, Campbell G, Boughner D, Wan W K, Quantz M. Design and manufacture of polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis[J], Medical Engineering &Physics, 2004,26 (4): 269-277
    [189] Orloff L A, Domb A J, Teomim D, Fishbein I, Golomb G. Biodegradable implant strategies for inhibition of restenosis[J]. Advance Drug Deliver Review, 1997(1); 24:3-9.
    [190] Gu Z Q, Xiao J M, Zhang X H. The development of artificial articular cartilage-PVA-hydrogel[J]. Bio-Medical Material and Engineering, 1998,8:75 -81
    [191] Burczak K, Gamian E, Kochman A. Long-term in vivo performance and biocompatibility of poly(vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas[J]. Biomaterials.1996,17:2351
    [192] Hassan C M, Peppas N A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods[J]. Advances in Polymer Science. 2000, 153:37-65
    [193] Zhao G H, Liu Y, Fang C L, Zhang M, Zhou C Q, Chen Z D. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film.Polymer Degradation and Stability. 2006, 91; 703-711
    [194] Chiellini E, Cinelli P, Chiellini F, Imam S H. Environmentally degradable bio-based polymeric blends and composites. Macromolecular Bioscience. 2004,4; 218-231
    [195] Chiellini E, Corti A, D'Antone S, Solaro R. Biodegradation of poly(vinyl alcohol)based materials. Progress in Polymer Science. 2003,28 ; 963-1014
    [196] Caffesse R G, Smith B A , Castelli W A , Nasjleti C E. New attachment achievement by guided tissue regeneration in beagle dogs[J]. Journal of Periodontol, 1988 , 59(9) :589-594
    [197] Iglhaut J , Aukhil I ,Simpson D M, Johnston M C, Koch G. Progenitor cell kinetic during guided tissue regeneration in experimental periodontal wounds[J]. Journal of Periodontal Research, 1998 , 23(2): 107-117
    [198] Ueyama Y, Ishikawa K,Mano T, Koyama T, Nagatsuka H, Suzuki K, Ryoke K. Usefulness as guided bone regeneration membrane of the alginate membrane[J].Biomaterials,2002,23:2027-2033.
    [199]Shim D,Wechsler D S,Lloyd T R,Beckman R H.Hemolysis following coil embo[ization of a patent ductus arteriosus[J].Catheterization and cardiovascular interventions,1996,39:287-290
    [200]Autian J.Biological model systems for the testing of the toxicity of biomaterials[M].Plenum:New York;1975:181
    [201]Jayasekara R,Harding I,Bowater I.,Christie G B Y,Lonergan G T.Preparation,surface modification and characterisation of solution cast starch PVA blended films[J].Polymer Testing,2004,23:17-27
    [202]Sreedhar B,Sairam M,Chattopadhyay D K,Syamala Rathnam P A,Mohan Rao D V.Thermal,mechanical,and surface characterization of starch-poly(vinyl alcohol)blends and borax-crosslinked films[J].Journal of Applied Polymer Science,2005,96,1313-1322
    [203]Zou G X,Qu J P,Zou X L.Optimization of Water Absorption of Starch/PVA Composites[J].Polymer Composites.2007,28,674-679
    [204]Borredon E,Bikiaris D,Prinos J,Panayiotou,C.Properties of fatty-acid esters of starch and their blends with LDPE[J].Journal of Applied Polymer Science.1997,65,705-721
    [205]Garcia-Cerda L A,EscarenO-Castro M U,Salazar-Zertuche M.Preparation and characterization of polyvinyl alcohol-cobalt ferrite nanocomposites[J].Journal of Non-Crystalline Solids,(2007)353,808-810
    [206]Mikos A G,Sarakinos G,Leite S M,Vacanti J P.Laminated there-dimensional biodegradable foams for use in tissue engineering[J].Biomaterials.1993,14,323-330
    [207]Kim B S,Mooney D J.Development of biocompatible synthetic extracellular matrices for tissue engineering[J].Trend Biotechnol,1998,16:224.
    [208]Winterrnantel E,Mayer J,Blum J,Eckert K L,Luscher P,Mathey M.Tissue engineering scaffolds using superstructures[J],Biomaterials,1996,17:83-91
    [209]孙磊,孟国林,窦榆生,徐建强,刘丹平,胡蕴玉.不同浓度的海藻酸盐与异种骨构建组织工程载体研究[J].中国修复和重建外科,2003,17:140-142
    [210]ISO/TR7405,Biological evaluation of dental materials(S).1984
    [211]BS 5736(United Kingdom),Evaluation of medical devices for biological harrerds(S),1989.
    [212]中国标准出版社第一编辑室.医疗器械标准汇编(口腔材料卷)[M].北京:中国标准出版社,2002.
    [213]刘月辉;文三立;肖尊文.复合活性羟基磷灰石陶瓷的研制及其生物相容性研究[J].中国生物医学工程学报.2000,19(1):53-59
    [214]孙皎.生物材料和医疗器械的生物学评价[J].中国医疗器械,2003,27:1-3,8.
    [215]刘煜,王艺,潘可风.人工骨种植材料在口腔种植中的研究与应用[J].口腔颌面外科杂志.2004,14(4):373-375
    [216]Hu J,Russell J,Vago R,et al.Production and analysis of hydroxyapatite from australian corals via hydrothermal process[J].Dental Clinics of North America,1998,49:53-55
    [217]Aoki H,Kato K,Shiba M.Synthesis of hydroxyapatite under hydrothermal conditions.J Dent Appar and Mater,1972,13:170-176
    [218]Ratanasathiens,Wataha J C,Hanks C T,et al.Cytotoxic interactive effect of dentin bonding components on mouse fibroblasts.J Dent Res.1995,74(1):1602-1606.
    [219]ISO 10993-4:,Biological evaluation of medical devices-Part 4:Selection of tests for interactions with blood(S).2002
    [220]翟建才,赵南明,张其清.生物材料与血液界面作用机制及相容性评价的研究技术[J].国外医学生物医学工程分册,1995,18:620.
    [221]ISO/TR 7405-1984(E):Hemolysis test(in vitro test directly on materials)(S),1984
    [222]ISO 10993-5 Biological evaluation of medical devices-Part 5:Tests for cytotoxicity:in vitro methods(S).1992.
    [223]GB/T 16175-1996 Biological evaluation methods for medical silicone material(s).1996
    [224]Drury J L,Mooney D J.Hydrogels for tissue engineering variables and applications[J].Biomaterials,2003,24(24):4337-4351.
    [225]赵克,王嫚,程祥荣,肖群,李志安,程汉亭.新型高分子合成树脂类Comfort_DA义齿黏附剂的生物安全性评价[J].生物医学工程学,2003,20(3):415-417.
    [226]姜华,贾文英,祝君梅.C-C创面覆盖物生物学评价研究[J].生物医学工程学杂志,2006,23(2):357-361.
    [227]刘梦冬,邓婧,钟德钰.新型根管充填剂(D).青岛:青岛大学;2006
    [228]童昕,胡勤刚,寿卫东,沈健.KhBmp-2与D、L乳酸复合物修复兔下颌骨缺损的实验研究[J].口腔颌面外科学,2005,15(2):141-144.
    [229]刘星纲,翁文剑,邓旭亮.纳米β-磷酸三钙/胶原复合体修复兔颌骨缺损的研究[J].口腔医学,2005,25(4):196-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700