基于物理共混的高效白色有机电致发光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光二极管(OLEDs)可分为有机小分子发光二极管(OLED)和聚合物发光二极管(PLED),因为他们在显示、照明、背光等领域的诱人的应用前景,而成为全世界学术界和工业界瞩目的焦点。经过二十年的研究,有机发光材料及器件已经逐渐从实验室走向市场,开始进入应用化阶段。然而,目前所有商业化的产品都是以小分子材料通过真空蒸镀工艺实现的,设备投资大、成品率低、材料浪费严重、不易实现大面积等。而聚合物发光二极管(PLED)可以通过溶液加工工艺(喷墨打印、旋涂、提拉等)恰好可以弥补以上真空蒸镀工艺的不足,受到越来越多学术界和工业界的关注。
     在显示方面, PLED技术分两种,一种是无源矩阵型PLED(PM-PLED),一种是有源矩阵型PLED(AMPLED)。未来全球PLED产业发展的趋势是在发展小尺寸PM-PLED产品的基础之上,向大尺寸AM-PLED产品发展。而薄膜晶体管(TFT)是有源显示中必不可少的组成部分之一。相比无机TFT,有机薄膜晶体管(OTFT)在很多方面都具有一定的优势,如可选择的材料丰富;可用柔软塑料做衬底,实现柔性显示;易于制备大面积薄膜;成本低,易于加工(如旋涂,印刷,蒸发等多种手段);可以在较低温度下制备薄膜等,因此基于有机薄膜晶体管驱动的有机电致发光(OTFT-PLED)即“全有机”显示器件,引起越来越广泛的关注。因此本文前一章从最基本的PLED有源显示原型器件着手,结合聚合物发光二极管的优点,采用丝网印刷技术,探讨了OTFT驱动聚合物发光二极管(OTFT-PLED)的可行性。
     除此之外,照明,背光领域也是未来PLED技术即白光聚合物发光二极管(WPLED)发展的重要应用方向。不过,基于高分子材料的发光器件,其性能尤其是功率效率和流明效率等重要性能参数,与小分子器件相比较,还大大落后,如要获得实际应用发光性能还需要进一步提高。白光PLED的实现及发光性能的提高涉及到新材料的开发、材料体系的匹配选择、器件结构的优化设计、发光光谱的稳定性及电荷的注入等。本文的其他内容就是对这些问题进行系统深入的研究,以期获得高性能的白光聚合物发光器件
     首先,我们通过将3种含铱配合物FIrpic(蓝光发射配合物),Ir(mppy)3(绿光发射配合物)和Ir(piq)(红光发射配合物)掺杂到PVK和OXD-7主体材料中,随着掺杂浓度的不同,实现了高效的聚合物白光器件,其中,三元掺杂器件9.9 lm W-1,相当于20 lm W-1的总功率效率,最大前向电流效率达到了24.3 cd A-1 (相当于总电流功率达到48 cd A-1),最大外量子效率达到了14.4%。接着,我们用基于天蓝色发射磷光配合物FIrpic(~470 nm)与发光峰值在560-570 nm的黄光发射材料组成基于互补色方案的高效白光发光器件,获得的白光器件的前向电流效率达到42.9 cd/A(对应的总电流效率可达80 cd/A),功率效率达到20 lm/W(对应的总功率效率可达40 lm/W)。这些器件最突出的优点是采用简单的单层器件结构并且仅用了溶液加工方式,换句话说,没有通过真空蒸镀方式蒸镀空穴阻挡或者电子传输层,确保了聚合物光电器件的低成本。
     上述基于磷光材料的聚合物白光发光二级管器件取得了较高的效率,但是磷光白光发光二极管的效率随电流增加快速衰减,同时,它们一般包含一个天蓝色磷光染料Firpic,由于蓝光材料颜色不纯,导致白光的颜色质量一般都不是很好。另外,它们一般采用高三线态能级的PVK作为主体,而PVK主体材料本身的材料缺陷,导致器件稳定性差。为了解决上述问题,我们利用新合成的高效、深蓝色、稳定性的聚芴类材料作为主体和蓝光发射材料,调控掺杂浓度获得各种颜色平衡发射,通过不完全能量转移,掺杂绿光P-PPV,红光材料MEH-PPV,制备了器件结构十分简单的单层白光发射器件,器件的电流效率达到14.0 cd A-1,功率效率达到7.6 lm W-1,显色指数达79。发光光谱在很宽的电流强度范围内、长时间点亮以及不同温度处理情况下表现出良好的稳定性。
     最后,白光器件效率的提高,载流子平衡是关键。在阴极修饰方面,我们利用聚合物的不同溶解性,研究了用旋涂方法制备双层高分子白光二极管(WPLED)。通过在阴极界面插入水溶性的聚电介质层修饰,明显改善电子注入,改善发光器件的电子和空穴载流子注入平衡,使白光器件最大电流效率提高到5.0 cd/A,通过阴极修饰,使双层器件效率提高了一倍。在阳极修饰方面,提出对阳极缓冲层材料聚(3,4-二氧乙基噻吩)/聚(对苯乙烯磺酸)(PEDOT:PSS)进行改性,可将电致磷光器件的最大电流效率,功率效率和外量子效率大幅度提高50-90%。基于绿光发射体Ir(mppy)3的电致磷光器件的最大电流效率达到85 cd A-1,功率效率达到50 lm W-1,外量子效率超过22%,处于国际同类器件的先进水平。新型的阳极缓冲层既保持了能够很好地抑制漏电流,获得高效率的特性,还将其较低的电导率提高1-2个数量级。而我们将此结果将进一步应用在白光器件上,相信能得到良好的效果。
Organic light-emitting diodes (OLEDs) include organic small molecule light-emitting diode (OLED) and polymer light-emitting diode (PLED), they have drawn great attentions by academic and industrial sectors because of the attractive prospect of application in the display, lighting, backlighting and other fields. After two decades of research, organic light-emitting materials and devices have come from the laboratory to the market, and begun to enter industrialization. However, all the commercial products are currently based on small molecule material by vacuum deposition process, which requires expensive equipment, and complicated the production of full color displays using traditional masking technologies. PLED base on solution-processes such as spin-coating, ink jet, and screen printing can overcome the disadvantagies and access full color and larger size display sizes at much lower costs, which attract more and more research specialist staff.
     In the area of display, the PLED technology include passive matrix PLED (PM-PLED) and active matrix PLED (AMPLED). In the future, at the PLED industrial development, the global trend is based on development of small-size PM-PLED and then to large-sized AM-PLED product. And the thin-film transistor (TFT) is essential in an active matrix display. Compared with inorganic TFT, organic thin film transistor (OTFT) have certain advantage in many respects, such as the diversity of material, to achieve flexible display on the flexisble substrate, easy to realize large area, and low-cost, simply processing ( such as spin coating, printing, evaporation and other means) and low temperature, so based on organic thin-film transistor driven organic electroluminescent (OTFT-PLED), namely so called "all organic display”, pay more widespread attention. Therefore, in the previous chapter of this article, we proceed from prototype device of active matrix PLED, combined with the advantages of polymer light-emitting diodes and using screen-printing technology, investigated the technology and related physical problems for integrating organic thin-film transistor (OTFT) and polymer light-emitting diode (PLED).
     In addition, the white polymer light-emitting diodes (WPLED) as lighting and backlighting are important applications for PLED technology in the future. However, white emission PLEDs are less efficient with respect to power efficiency (PE) and luminous efficiency(LE), when compared with devices fabricated using vacuumdeposition technologies, and are still far away from practical applications for solid-state lighting. In order to improve the performance of white PLED, which related to the development of new materials, matching options of material systems, optimization of device structure to balance charge injection. The other part content of this article focuses on these issues and in order to obtain high-performance white polymer light-emitting device.
     We report a single emission layer white PLEDs by triple doping of RGB iridium metal complexes or double doping of red and blue Ir complexes with appropriate ratio into poly(N-vinylcarbazole) (PVK) host in presence of electron transport material 1,3-bis[(4-tert-butylphenyl)-1,3,4-oxadiazolyl] phenylene (OXD-7). After proper heat treatment, the triple-doped polymer WOLEDs have a peak PE of 9.53 lm W-1 (Device E) /9.95 lm W-1 (Device F) for forward viewing (corresponding to a total PE of 19/20 lm W-1) at 7.2/6.9 V, and a peak LE of 24.3 cd A-1 for forward viewing (corresponding to a total peak LE of 48 cd A-1), at 20.8 mA cm-2. Then, we use the sky-blue phosphor-based complexes emission FIrpic (~ 470 nm) and the yellow light emitting material with EL peak at 560-570 nm to compose complementary colors to obtain white light-emitting devices, and the current efficiency of the device achieved 42.9 cd / A for forward viewing (corresponding to the total current efficiency up to 80 cd / A), the power efficiency of 20 lm / W (corresponding to the total power efficiency up to 40 lm / W).An outstanding advantage of these polymer WOLEDs lies in very simple single emissive layer structure, only solution-processed technology is involved, that is no additive hole-blocking or electron transport layer was incorporated through extra vacuum-deposited technology, which ensures fully exploiting the potential of low-cost fabrication of polymer optoelectronic device.
     In most of the reported efficient WPLEDs, triplet emitter with sky-blue emission was used as a key component to fabricate phosphor-based device despite their relative poor color quality. Besides, unstable PVK was used as host material in these devices, which would degrade significantly during operation, thus limit their practiacal applications. In order to overcome this problem and obtain efficient WPLEDs with high color quality and long-term stability, an alternative approach is to use efficient deep-blue polymer as both host material and blue emitter to fabricate multiple dopants all-polymer WPLEDs. The polymers used here include, a newly synthesized efficient deep-blue emitting polyfluorene derivative named poly[(9,9-bis(4-(2-ethylhexyloxy)phenyl)fluorene)-co-(3,7-dibenziothiene-S,S-dioxide10)] (PPF-3,7SO10), a green light-emitting poly [2-(4-(3',7'-dimethyloctyloxy) -phenyl) -p- phenylenevinylene] (P-PPV) and an orange-red light-emitting 2-methoxy-5- (2'-ethyl-hexyloxy)-1, 4-phenylenevinylene (MEH-PPV), respectively. Optimized device shows a peak luminous efficiency of 14.0 cd A?1 and a peak power efficiency of 7.6 lm W-1, with a CIE of (0.33, 0.35) at a current density of 10 mA cm-2.
     Finally, the balanced carrier is key to improve the efficiency of white device. For the modification of cathode, white polymer light-emitting diodes (WPLEDs) with bilayer structure were fabricated by spin coating method using different solubility of polymers. By inserting a layer of water-soluble electronic transporting material of PFN approaching to the cathode, the maximal luminance efficiencies of 5.3 cd/A is achieved with CIE coordinates of (0.34, 0.36). By modified the cathode, the LE of WPLED was enhanced by 100 %. And for modification of anode, influence of three types of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS), whose nominal conductivity varied in 5 orders in magnitude (~1 S cm-1, ~ 10?3 S cm-1, and 10?5 S cm-1, respectively), on the device performance of polymer-based phosphorescent organic light emitting diodes (PhOLEDs) were investigated. It was found that PEDOT:PSS (Baytron 8000) with the lowest conductivity resulted in superior device performance, in term of peak luminous efficiency (LE) and peak external quantum efficiency (EQE). When compared to that of devices with the routine PEDOT: PSS (Baytron P 4083) and the one with the highest conductivity (Baytron P), the device performance with PEDOT:PSS (Baytron 8000) as anode buffer layer was enhanced by 59 % and 91 %, respectively, in term of peak LE and peak EQE in PhOLEDs. It was found that improved manipulation of leakage current at small bias region, and more balanced charge carrier are responsible for the enhancement. Furthermore, novel glycerol modified PEDOT 8000 anode buffer layer whose conductivity increase as many as two orders of magnitude was developed to enhance overall device performance. These discoveries can potentially enable further improvement of the present efficiency of polymer light-emitting devices, indicating that polymer light-emitting devices (PLEDs) can achieve comparable device performance with vacuum-deposited small molecular devices.
引文
[1] Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture) [J]. Angew. Chem. Int. Ed., 2001, 40:2591-2611
    [2] Chiang, C. K. et al. Electrical-Conductivity in Doped Polyacetylene[J]. Phys. Rev. Lett. 1977, 39: 1098-1101
    [3] Shirakawa, H., Louis, E. J., Macdiarmid, A. G., Chiang, C. K., Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers - Halogen Derivatives of Polyacetylene, (Ch)X. J. Chem.Soc. Chem.Comm. 1977, 578-580.
    [4] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., Holmes, A.B., Light-emitting diodes based on conjugated polymer [J]. Nature, 1990, 347:539-541
    [5]樊美公等,光化学基本原理与光子学材料科学,科学出版社,北京,1999.
    [6] Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N., Heeger, A. J., Flexible Light-Emitting-Diodes Made from Soluble Conducting Polymers [J]. Nature, 1992, 357:477-479
    [7]牛巧丽,提高聚合物发光二极管和平板显示屏的性能的研究,华南理工大学博士论文,2008
    [8]许运华,高性能白光聚合物电致发光二极管的研究,华南理工大学博士论文,2009
    [9]吴宏滨,基于高功函数金属-醇/水溶性共轭聚合物的新型高效电子注入阴极的研究,华南理工大学博士论文,2006
    [10]熊艳,聚合物电致发光器件的性能改进研究,华南理工大学博士论文,2008
    [11]安定,基于醇(水)溶性共轭聚合物/铝复合阴极的聚合物白光器件的研究,华南理工大学硕士论文,2009
    [12] Dodabalapur, Z.Bao, and A.Makhijia, et al.Organic smart pixels [J]. Appl. Phys.Lett. 1998, 73(2):142-144.
    [13] http://www.zzchn.com/news/20071002/51034.shtml
    [14] T.N.Jackson, Y.Y.Lin, D.J.Gundlach, and H.Klauk.Organic thin-film transistors for organic light-emitting flat-panel display backplanes [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4:100
    [15] Henning Sirringhaus, Nir Tessler and Richard H.Friend. Integrated Optoelectronic Devices Based on Conjugated Polymers[J].Science, 1998, 280:1741-1744
    [16] J.A.Rogers,Z.Bao,A.Dodabalapur,and A.Makhija, IEEE Electron Device Letters, 2000, 21(3):100
    [17] Lisong Zhou, Alfred Wanga and Sheng-Chu Wu, et al. Aactive matrix flexible display[J]. Appl.Phys.Lett., 2006, 88:083502
    [18]王伟,有机薄膜场效应晶体管发光和显示驱动,吉林大学博士论文,2006年
    [19]陈金伙,有机场效应晶体管的研究与试制,兰州大学博士论文,2006年
    [20]刘玉荣,李渊文,刘汉华,聚合物薄膜场效应晶体管研究进展现代显示2006, 65, 60-64
    [21] Kai M, Tokito S, Sakamoto Y, Suzuki T and Taga Y., Appl. Phys. Lett., 2001, 79, 156-158.
    [22] http://www.novaled.com
    [23] Jiang C; Yang W; Peng J; Steven X; Cao Y, Adv. Mater., 2004, 16, 537-541.
    [24] D’Andrade B. W., Holmes R. J., Forrest S. R., Adv. Mater., 2004, 16, 624-628.
    [25] http://www.ge.com/research
    [26] http://www.universaldisplay.com
    [27] http://www.olla-project.org;
    [28] www.netl.doe.gov/ssl/
    [29] http://www.campus-germany.com/chinese/10.4771.1.html
    [30] http://geglobalresearch.com/04_media/news/20040304_oled.shtml
    [31] http://tech.sina.com.cn/h/2008-04-10/0600628328.shtml
    [32] J. Kido, K. Hongawa, K. Okuyama, K. Nagai, White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes [J]. Appl. Phys. Lett., 1994, 64:815
    [33] B. W. D’Andrade, S. R. Forrest, White organic light-emitting devices for solid-state lighting [J]. Adv. Mater., 2004, 16:1585
    [34] Hongbin Wu, Lei Ying, Wei Yang, Yong Cao, Progress and Perspective of Polymer White Light-emitting Devices and Materials [J]. Chemical Society Reviews, 2009, 38: 3391-3400
    [35] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R. Forrest, Management of singlet and triplet excitons for efficient white organic light emitting devices [J]. Nature, 2006, 440:908
    [36] Y. R. Sun, and S. R. Forrest, High-efficiency white organic light emitting devices with three separate phosphorescent emission layers [J]. Appl. Phys. Letts., 2007, 91:263503
    [37] G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, and K. Leo, Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light-Emitting Diodes [J].Adv. Mater., 2007, 19:3672.
    [38] S. Su, E. Gonmori, H. Sasabe, and J. Kido, Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off [J]. Adv. Mater., 2008, 20:4189
    [39] http://www.universaldisplay.com
    [40] Qi Wang, Junqiao Ding, Dongge Ma,Yanxiang Cheng, Lixiang Wang,and Fosong Wang,Manipulating Charges and Excitons within a Single-Host System to Accomplish Efficiency/CRI/Color-Stability Trade-off for High-PerformanceOWLEDs, Adv. Mater. 2009, 21:2397–2401
    [41] Qi Wang, Junqiao Ding, Dongge Ma,Yanxiang Cheng, Lixiang Wang,Xiabin Jing, and Fosong Wang,Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis, Adv. Funct. Mater. 2009, 19:84–95
    [42] Reineke S., Lindner F., Schwartz G., Seidler N., Walzer K., Lussem B., Leo K., White organic light-emitting diodes with fluorescent tube efficiency [J]. NATURE, 2009, 459:234
    [43] Huang F, Shih PI, Shu CF, et al. Adv. Mater. 21, 361 (2009).
    [1] Klauk H, Gundlach D J, Bonse M et al. A reduced complexity process for organic thin film transistors [J]. Appl. Phys. Lett., 2000, 76:1692
    [2] Bonfiglio A, Mameli F, and Sanna O. A completely flexible organic transistor obtained by a one-mask photolithographic process [J].Appl. Phys. Lett., 2003, 82:3550
    [3] Liping Ma and Yang Yang, Unique architecture and concept for high-performance organic transistors Appl. Phys. Lett., 2004, 85:5084
    [4] Patel N. K., CinàS., Burroughes J. H. High-Efficiency Organic Light-Emitting Diodes [J]. IEEE J Sele. Top. Quan. Elect., 2002, 8: 346-361
    [5] Vincett P. S., Barlow W. A., Hann R. A., et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films [J]. Thin Solid Films, 1982, 94: 171-183
    [6] Marks R.N., Bradely D.D.C., Jackson R.W., et al. Charge Injection Transport in Polymer(p-phenylene vinylene) Light-emitting Diodes [J]. Synth. Met., 1993, 57: 4128
    [7] Parker I. D. Carrier tunneling and device characteristics in polymer light-emitting diodes [J]. J. Appl. Phys., 1994, 75(3): 1656-1666
    [8] Vestweber H., Pommerehne J., Sander R., et al. Majority carrier injection from ITO anodes into organic light-emitting diodes based upon polymer blends [J]. Synthetic Met., 1995, 68(3): 263-268
    [9] Eley D. D., Parfitt G. D. Perry M. J., et al., Semiconductivity of Organic Substances I. [J]. Traps. Faraday Soc. 1953, 49: 79-86
    [10] Kemeny G., Rosenberg B. Small polarons in organic and biological semiconductors [J]. J. Chem. Phys., 1970, 53(9): 3549-3551
    [11] Munn R. W., Siebrand W. Theory of the Hall Effect in Aromatic Hydrocarbon Crystals [J]. Phys. Rev. B, 1970, 53: 3343-3357
    [12]高观志,黄维.固体中的电输运[M].北京:科技出版社, 1991, 548
    [13]樊美公,等.光化学基本原理与光子学材料科学[M].北京:科学出版社, 2001, 2
    [14] Sheats J. R., Antoniadis H., Hueschen M., et al. Organic electroluminescent devices.Science, 1996, 273(5277): 884-888
    [15] Scott J. S., Kaminski J. P., Wanke M., et al. Terahertz frequency response of an In0.53Ga0.47As/AlAs resonant-tunneling diode [J]. Appl. Phys. Lett., 1994, 64(15): 1995-1997
    [16] Kim J. S., Ho P. K. H., Murphy C. E., et al. Phase Separation in Polyfluorene-Based Conjugated Polymer Blends: Lateral and Vertical Analysis of Blend Spin-Cast Thin Films [J]. Macromolecules, 2004, 37(8): 2861-2871
    [17] Corcoran N., Arias A. C., Kim J. S., et al. Increased efficiency in vertically segregated thin-film conjugated polymer blends for light-emitting diodes [J]. Appl. Phys. Lett., 2003, 82(2): 299-301
    [18] Xia Y. J., Friend R. H. Controlled Phase Separation of Polyfluorene Blends via Inkjet Printing [J]. Macromolecules, 2005, 38(15): 6466-6471
    [19] Heeger A. J. Primary photoexcitations in conjugated polymers: Molecular Exciton versus semiconductor band model, Sariciftci, N. S., Eds., World Scientific
    [20] Brown A. R., Pichler K., Greenham N. C., et al. Optical spectroscopy of triplet excitons and charged excitations in ppv light emitting diodes [J]. Chem. Phys. Lett., 1993, 210: 61
    [21] Baldo M. A., O’Brien D. F., Thompson S. R., et al. Excitonic singlet-triplet ratio is a semiconducting organic thin film [J]. Phys. Rev. B, 1999, 60: 14422
    [22] Adurodija F. O., Izumi H., Ishihar T. Highly conducting indium tin oxide (ITO) thin films deposited by pulsed laser ablation [J]. Thin Solid Films, 1999, 350: 79-84
    [23] Hou Q., Zhou Q., Zhang Y., et al. Synthesis and Electroluminescent Properties of High-Efficiency Saturated Red Emitter Based on Copolymers from Fluorene and 4,7-Di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole [J]. Macromolecules, 2004, 37:6299-6305
    [24] Hou Q., Niu Y., Huang W., et al. Synthesis and Eletroluminescent Properties of Copolymers Derived from Fluorene and Thiophene Derivatives [J]. Synth. Met., 2003 135:185
    [25] Yang R., Tian R., Hou Q., et al. Synthesis and Optical and Electroluminescent Properties of Novel Conjugated Copolymers Derived from Fluorene and Benzoselenadiazole [J]. acromolecules, 2003, 36:7453-7460
    [26] Huang J., Li G., Wu E., et al. Achieving High-Efficiency Polymer White-Light-Emitting Devices [J]. Adv. Mater., 2006, 18:114
    [27] J. S. Huang, W. J. Hou, J. H. Li, G. Li and Y. Yang, Improving the power efficiency of white light-emitting diode by doping electron transport material [J]. Appl. Phys. Lett.,2006, 89:133509
    [28] K. Y. Peng, C. W. Huang, C. Y. Liu, and S. A. Chen, High brightness stable white and yellow light-emitting diodes from ambipolar Appl. Phys. Lett., 2007, 91:093502
    [29] S. Q. Fan, M. L. Sun, J. Wang, W. Yang and Y. Cao, Efficient white-light-emitting diodes based on polyfluorene doped with fluorescent chromophores [J]. Appl. Phys. Lett. 2007, 91, 213502
    [30] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, Red electrophosphorescence from polymer doped with iridium complex [J].Appl. Phys. Lett. 2002, 81:3711
    [31] Kalinowski J., Mezyk J., Meinardi F., et al., Phosphorescence response to excitonic interactions in Ir organic complex-based electrophosphorescent emitters [J]. J. Appl. Phys., 2005, 98(6): 063532/1-9
    [32] H. A. A. Attar, A. P. Monkman, M. Tavasli, S. Bettington and M. R. Bryce, White polymeric light-emitting diode based on a fluorene polymer/Ir complex blend system [J]. Appl. Phys. Lett. 2005, 86:121101
    [33] X. D. Niu, L. Ma, B. Yao, J. Q. Ding, G. L. Tu, Z. Y. Xie, and L. X. Wang, White polymeric light-emitting diodes with high color rendering index Appl. Phys. Lett. 2006, 89:213508
    [34] Y. H. Xu, J. B. Peng, J. X. Jiang, W. Xu, W. Yang and Y. Cao, Efficient white-light-emitting diodes based on polymer codoped with two phosphorescent dyes [J].Appl. Phys. Lett. 2005, 87:193502
    [35] Chen F. C., He G. F., Yang Y. Triplet exciton confinement in phosphorescent polymer light-emitting diodes [J]. Appl. Phys. Lett., 2003, 82(7): 1006-1008
    [36] Gong X., Robinson M. R., Ostrowski J. C., et al. High-efficiency polymer-based electrophosphorescent devices [J]. Adv. Mater., 2002, 14(8): 581-585
    [37] Vaeth K. M., DiCillo J. High-efficiency phosphorescent-guest-polymeric-host organic light-emitting diodes [J]. Synthetic Met., 2004, 143(1): 75-79
    [38] Noh Y. Y., Lee C. L., Kim J. J., et al. Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes [J]. J. Chem. Phys., 2003, 118(6): 2853-2864
    [39] akamura A., Tada T., Mizukami M., et al. Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode [J]. Appl. Phys. Lett., 2004, 84(1): 130-132
    [40] Kido J., Hongawa K., Okuyama K., Nagai K., White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter llayer doped withthree fluorescent dyes, Appl. Phys. Lett., 1994, 64, 815-817
    [41] Tanaka I., Suzuki M., Tokito S., White Light Emission from Polymer Electrophosphorescent Light-Emitting Devices Doped with Iridium Complexes [J]. Jpn. J. Appl. Phys. Part I, 2003, 42, 2737-2740
    [42] T. H. Kim, H. K. Lee, O O. Park, B. D. Chin, S. H. Lee and J. K. Kim, White-light-emitting diodes based on iridium complexes via efficient energy [J]. Adv. Funct. Mater. 2006, 16:611
    [43] P. I Shih, Y. H. Tseng, F. I. Wu, A. K. Dixit and C. F. Shu, Stable and Efficient White Electroluminescent Devices Based on a Single Emitting Layer of Polymer Blends [J]. Adv. Funct. Mater. 2006, 16:1582-1589
    [44] B. Y. Shien and Y. Chi, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 833.
    [45] Q. L. Niu, Y. H. Xu, J. X. Jiang, J. B. Peng and Y. Cao, J. Lumin. 2007, 126 531.
    [46] S. Tokito, M. Suzuki, F. Sato, M. Kamachi and K. Shirane, High-efficiency phosphorescent polymer light-emitting devices [J]. Org. Electron. 2003, 4, 105-111
    [47] S. Kappaun, S. Eder, S. Sax, R. Saf, K. Mereiter, E. J. W. List and C. Slugovc, J. Mater. Chem. 2006, 16, 4389.
    [48] Xu Y. H., Peng J. B. Mo Y. Q., et al. Efficient polymer white-light-emitting diodes [J]. Appl. Phys. Lett., 2005, 86: 163502/1-163502/3
    [49] Y. Zhou, Q. J. Sun, Z. A. Tan, H. Z. Zhong, C. H. Yang and Y. F. Li, J. Phys. Chem. C, 2007, 111, 6862-68676
    [50] Hamada Y., Sano T., Fujii H., et al. White-Light-Emitting Material for Organic Electroluminescent Devices [J]. Jpn. J. Appl. Phys. Part II, 1996, 35 :1339-1341
    [51] Li J.Y., Liu D., Ma C., et al. White-Light Emission from a Single-Emitting-Component Organic Electroluminescent Device [J]. Adv. Mater., 2004, 16 :1538-1541
    [52] Furuta P.T., Deng L., Garon S., et al. Platinum-Functionalized Random Copolymers for Use in Solution-Processible, Efficient, Near-White Organic Light-Emitting Diodes [J] J. Am. Chem. Soc., 2004, 126:15388-15389
    [53] Mazzeo M., Vitale V., Sala F.D., et al. Bright White Organic Light-Emitting Devices from a Single Active Molecular Material [J]. Adv. Mater., 2005, 17:34-39
    [54] Lee Y.-Z., Chen X., Chen M.-C., et al. White-light electroluminescence from soluble oxadiazole-containing phenylene vinylene ether-linkage copolymer [J]. Appl. Phys. Lett., 2001, 79 :308
    [55] Jiang X., Xu Y., Yang W., et al. High-Efficiency White Light Single Polymer by MixingSinglet and Triplet Light-Emitting [J]. Adv. Mater., 2006, 18:1769-1773
    [56] Xu Y., Guan R., Jiang X., et al. Molecular Design of Efficient White-Light-Emitting Fluorene-Based Copolymers by Mixing Singlet and Triplet Emission [J]. J. Polym. Sci. Part A, 2008, 46:453-463
    [57] Liu J., Zhou Q., Cheng Y., et al. The First Single Polymer with Simultaneous Blue, Green, and Red Emission for White Electroluminescence [J] Adv. Mater., 2005, 17:2974
    [58] Liu J., Xie Z., Cheng Y., et al. Molecular Design on Highly Efficient White Electroluminescence from a Single-Polymer System with Simultaneous Blue, Green, and Red Emission [J]. Adv. Mater., 2007, 19:531
    [59] Liu J., Shao S., Chen L., et al. White Electroluminescence from a Single Polymer System: Improved Performance by Means of Enhanced Efficiency and Red-Shifted Luminescence of the Blue-Light-Emitting Species [J]. Adv. Mater., 2007, 19:1859
    [60] Tu G., Mei C., Zhou Q., et al. Highly Efficient Pure-White-Light-Emitting Diodes from a Single Polymer: Polyfluorene with Naphthalimide Moieties [J]. Adv. Funct. Mater., 2006, 16:101
    [61] Luo J., Li X., Hou Q., et al. High-Efficiency White-Light Emission from a Single Copolymer: Fluorescent Blue, Green, and Red Chromophores on a Conjugated Polymer Backbone [J]. Adv. Mater., 2007, 19:1113
    [62] Gebler D.D., Wang Y.Z., Blatchford J.W., et al. Exciplex emission in bilayer polymer light-emitting devices [J] Appl. Phys. Lett., 1997, 70:1644-1646
    [63] Mazzeo M., Pisignano D., Sala F.D., et al. Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules [J]. Appl. Phys. Lett., 2003, 82:334-336
    [64] Willianms E.L., Haavisto K., Li J., et al. Excimer-Based White Phosphorescent Organic Light Emitting Diodes with Nearly 100% Internal Quantum Efficiency [J] Adv. Mater., 2007, 19:197
    [65] Kalinowski J., Cocchi M., Virgili D., et al. Mixing of Excimer and Exciplex Emission: A NewWay to Improve White Light Emitting Organic Electrophosphorescent Diodes [J]. Adv. Mater., 2007, 19:4000
    [1] Tang C W, Van Slyke S A, Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51:913
    [2] Burroughes J H, Bradleyd D C, Brown A R, Marks R N, Mackay K, Friend R H HolmesA B, Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347:539
    [3]侯林涛、侯琼、彭俊彪、曹镛。三元共聚物饱和红色电致发光研究[J].物理学报,2005,54:5377
    [4]许伟、彭俊彪、许运华。饱和红色聚合物电致发光器件的稳定性[J]。科学通报,2007,52:144
    [5] Bernard G, Philippe R, Christophe P, Organic light-emitting diode (OLED)technology: materials, devices and display technologies [J]. Polym. Int.,2006. 55 :572
    [6]邹建华、陶洪、吴宏滨、彭俊彪。修饰阴极界面提高聚合物白光二极管发光效率[J]。物理学报, 2009, 58 :1224
    [7] Zhang L J, Hua Y L, Wu X M, Wang Y, Yin S G. White organic light-emitting device with both phosphorescent and fluorescent emissive layers [J]. Chin. Phys. B, 2008, 17:3097
    [8] An D, Zou J H, Wu H B, Peng J B, Yang W, Cao Y. White emission polymer light-emitting devices with efficient electron injection from alcohol/water-soluble polymer/Al bilayer cathode [J]. Org. Electron., 2009, 10:299
    [9]刘玉荣、王智欣、徐海红、虞佳乐。高迁移率聚合物薄膜晶体管[J].物理学报,2009 58(12):8566
    [10] Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Song D D, Zhu H N, Li S Y, Huang J Y, Huang H, Xu X R. Characteristics of pentacene organic thin film transistor with top gate and bottom contact [J]. Chin. Phys. B, 2008, 17:1887
    [11] Gundlach D J, Lin Y Y, Jackson T N, Nelson SF, Schlom DG. Pentacene organic thin-film transistors-molecular ordering andmobility [J]. IEEE Electron Device Lett. 1997, 18:87
    [12] Lin Y Y, Gundlach D J, Nelson S F, Jackson T N. Organic thin film transistors for large area electronics [J]. IEEE Electron Device Lett., 1997, 18:606
    [13] Sirringhaus H, Tessler N, Friend R H. Integrated optoelectronic devices based on conjugated polymers [J]. Science, 1998, 280:1741
    [14] Zhou LS, Wanga A, Wu S C, Sun J, Park S, Jackson T N. All-organic active matrix flexible display [J]. Appl. Phys. Lett. 2006, 88: 08350
    [15] Vaidya V, Soggs S, Kim J, Haldi A, Haddock J N, Kippelen B, Wilson D M .Comparison of Pentacene and Amorphous Silicon AMOLED Display Driver Circuits [J]. IEEE transactions on circuits and systems—I: regular papers, 2008 55(5):1177
    [16] Pardo D A, Jabbour G E, Peyghambarian N Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices [J]. Adv. Mater. 2000, 12(17)
    [17] Birnstock J, Bl?ssing J, Hunze A, Scheffel M, St??el M, Heuser K, Wittmann G, W?rle J, Winnacker A. Screen-printed passive matrix displays based on light-emitting polymers [J]. Appl. Phys. Lett., 2001, 78:3905
    [18]彭俊彪、兰林锋、杨开霞、牛巧丽、曹镛。Ta2O5的氢热处理对有机薄膜晶体管性能的影响。华南理工大学学报(自然)2006,34(10):105-109
    [19]袁广才、徐征、赵谡玲、徐叙瑢等对以并五苯和酞菁铜为不同有源层的有机薄膜晶体管特性研究,物理学报2008, 57(9):5911-5917
    [20] Kitamura M, Imada T, Arakawa Y. Organic light-emitting diodes driven by pentacene-based thin-film transistors [J]. Appl. Phys. Lett., 2003, 83(16):3410-3412
    [21] Newman C R, Frisbie C D, da Silva D A, Bredas J L, Ewbank P C, Mann K R Introduction to organic thin film transistors and design of n-Channel organic Semiconductors [J].Chem Mater, 2004, 16: 4436-4451.
    [22] Chu C W, Chen C W, Li S H, Wu E E, Yang Y. integration of organic light-emitting diode and organic transistor via a tandem structure [J]. Appl. Phys. Lett. 2005, 86: 253503
    [1] B. W. D’Andrade, S. R. Forrest, White organic light-emitting devices for solid-state lighting [J]. Adv. Mater., 2004, 16:1585-1595
    [2] A. Misra, P. Kumar, M. N. Kamalasanan, S. Chandra, White organic LEDs and their recent advancements [J]. Semicond. Sci. Technol. 2006, 21:35.
    [3] B. W. D'Andrade, M. E. Thompson, S. R. Forrest, Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices [J].Adv. Mater. 2002, 14:147-150
    [4] B. W. D’Andrade, J. Brooks, V. Adamovich, M. E. Thompson, S. R. Forrest, White Light Emission Using Triplet Excimers in Electrophosphorescent Organic Light-Emitting Devices [J].Adv.Mater. 2002, 14:1032.
    [5] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R. Forrest, Management of ... white organic light-emitting devices [J]. Nature, 2006, 440:908
    [6] J. Kido, M. Kimura, K.Nagai, Multilayer white lightemitting device [J]. Science, 1995, 267:1332
    [7] B. W. D'Andrade, R.J.Holmes, S.R.Forrest, Efficient Organic Electrophosphorescent White-Light-Emitting Device with a Triple Doped Emissive Layer [J]. Adv.Mater. 2004, 16:624-628
    [8] M. Suzuki, T. Hatakeyama, S. Tokito, F. Sato, IEEE J. Sel. Top.Quantum Electron. 2004, 10:115.
    [9] I. Tanaka, M. Suzuki, S. Tokoto, Jpn. J. Appl. Phys. Part 1 2003, 42:737.
    [10] X. Gong, W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, Adv. Mater. 2004, 16, 615.
    [11] X. Gong, S. H. Lim, J. C. Ostrowski, D. Moses, C. J. Bardeen, G. C.Bazan,Phosphorescence from iridium complexes doped into polymer blends [J]. J. Appl. Phys. 2004, 95:948.
    [12] X. Gong, S. Wang, D. Moses, G. C. Bazan, A. J. Heeger, Multilayer polymer light-emitting diodes: White-light emission with high efficiency [J]. Adv. Mater. 2005, 17:2053-2058
    [13] J. H. Jou, M. C. Sun, H. H. Chou, C. H. Li, Efficient pure-white organic light-emitting diodes with a solution-processed, binary-host employing single emission layer [J]. Appl. Phys. Lett., 2006, 88:141101
    [14] P. I. Shih, C. F. Shu, Y. L. Tung, Y. Chi, Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials [J]. Appl. Phys. Lett., 2006, 88:251110
    [15] P. I. Shih, Y. H. Tseng, F. I. Wu, A. K. Dixit, C. F. Shu, Adv. Func. Mater. 2006, 16:1582.
    [16] Y. H. Xu, J. B. Peng, J. X. Jiang, W. Xu, W. Yang, Y. Cao, Appl. Phys. Lett. 2006, 87: 193502.
    [17] V. Adamovich, J. Brooks, A. Tamayo,A. M. Alexander,P .I. Djurovich, B. W. D’Andrade, C. Adachi, S. R. Forrest, M. E. Thompson, High efficiency single dopant white electro- phosphorescent light emitting diodesy [J]. New J.Chem. 2002, 26:1171.
    [18] J.X. Jiang, Y. H. Xu, W. Yang,R. Guan, Z. Q. Liu, H. Y. Zhen, Y. Cao, Adv. Mater. 2006, 18:1769-1773
    [19] G. L. Tu, C. Y. Mei, Q. G. Zhou, Y. X. Cheng, Y. H. Geng, L.X. Wang,D. G. Ma, X. B. Jing, F. S. Wang, Adv. Func. Mater. 2006, 16:101.
    [20] J. Liu, Q. G. Zhou, Y. X. Cheng, Y. H. Geng, L. X. Wang, D. G. Ma, X. B. Jing, F. S. Wang, Adv. Func. Mater. 2006, 16:957.
    [21] J. Luo, X. Z. Li, Q. Hou, J. B. Peng, W. Yang, Y. Cao, Adv. Mater. 2007, 19:1113-1117
    [22] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395:151-154
    [23] Y. Kawamura, S. Yanagida, S. R. Forrest, Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers [J]. J. Appl. Phys. 2002, 92:87
    [24] N. Matsusue, Y. Suzuki, H. Naito, Jpn. J. Appl. Phys. 2005, 44:3691-3694
    [25] C. Adachi, M.A. Baldo, S.R. Forrest, Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host [J]. J. Appl. Phys. 2000, 87:8049.
    [26] P. A. Lane, L. C. Palilis, D. F. O’Brien, C. Giebeler, A. J. Cadby, D. G. Lidzey, A. J.Campbell, W. Blau, D. D. C. Bradley, Origin of electrophosphorescence from a doped polymer light emitting diode [J]. Phys. Rev. B, 2001, 63:235206.
    [27] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, Adv. Mater. 2002, 14:581.
    [28] C. Y. Chang, S. N. Hsieh, T. C. Wen, T. F. Guo, C. H. Cheng, High efficiency red electrophosphorescent polymer light-emitting diode [J]. Chem. Phys. Lett. 2006, 418: 50.
    [29] R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, M. E. Thompson, Efficient, deep-blue organic electrophosphorescence by guest charge trapping [J]. Appl. Phys. Lett. 2003, 83:3818.
    [30] S. J. Konezny, D. L. Smith, M. E. Galvin, L. J. Rothberg, Modeling the influence of charge traps on single-layer organic light-emitting diode efficiency [J]. J. Appl. Phys. 2006, 99: 064509
    [31] I. H. Campbell, B. K. Crone, Characteristics of an organic light-emitting diode utilizing a phosphorescent, shallow hole trap [J]. Appl. Phys. Lett. 2006, 89:172108.
    [32] T. H. Kim, H. K. Lee, O. O. Park, B. D. Chin, S. H. Lee, J. K. Kim, White-light-emitting diodes based on iridium complexes via efficient energy transfer from a conjugated polymer [J]. Adv. Func. Mater. 2006, 16:611.
    [1] B. W. D’Andrade, S. R. Forrest, White organic light-emitting devices for solid-state lighting [J]. Adv. Mater., 2004, 16:1585-1595
    [2] A. Misra, P. Kumar, M. N. Kamalasanan, S. Chandra, White organic LEDs and their recent advancements [J].Semicond. Sci. Technol. 2006, 21, R35-R47.
    [3] B. W. D'Andrade, M. E. Thompson, S. R. Forrest, Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices [J]. Adv. Mater. 2002, 14:147
    [4] B. W. D’Andrade, J. Brooks, V. Adamovich, M. E. Thompson, S. R. Forrest, White Light Emission Using Triplet Excimers in Electrophosphorescent Organic Light-Emitting Devices [J]. Adv. Mater. 2002, 14:1032
    [5] a) X.-M. Yu, H.-S. Kwok, W.-Y. Wong, G.-J. Zhou, Chem. Mater. 2006, 18, 5097. b) C.-L. Ho, W.-Y. Wong, G.-J. Zhou, B. Yao, Z.-Y. Xie, L.-X. Wang, Adv. Funct. Mater. 2007, 17, 2925.
    [6] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R. Forrest, Management of ... white organic light-emitting devices [J]. Nature 2006, 440, 908.
    [7] G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, K. Leo, Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light-Emitting Diodes [J]. Adv. Mater. 2007, 19, 3672-3676
    [8] Y.-S. Park, J.-W. Kang, D. M. Kang, J.-W. Park, Y.-H. Kim, S.-K. Kwon, J.-J. Kim, Efficient, Color Stable White Organic Light-Emitting Diode Based on High Energy Level Yellowish-Green Dopants [J]. Adv. Mater. 2008, 20, 1957-1961
    [9] B. W. D'Andrade, R. J. Holmes, S. R. Forrest, Efficient Organic Electrophosphorescent White-Light-Emitting Device with a Triple Doped Emissive Layer [J]. Adv. Mater. 2004, 16, 624.
    [10]X. Gong, W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses, electrophosphorescence from semiconducting polymers [J]. A. J. Heeger, Adv. Mater. 2004, 16, 615.
    [11]T. H. Kim, H. K. Lee, O. O. Park, B. D. Chin, S. H. Lee, J. K. Kim, White-light-emitting diodes based on iridium complexes via efficient energy transfer from a conjugated polymer [J]. Adv. Funct. Mater. 2006, 16, 611-617
    [12]X. Gong, S. Wang, D. Moses, G. C. Bazan, A. J. Heeger, Multilayer polymer light-emitting diodes: white-light emission with high efficiency [J]. Adv. Mater. 2005, 17, 2053.
    [13]Y. Zhang, F. Huang, A. K. Y. Jen, Y. Chi, High-efficiency and solution processible multilayer white polymer light-emitting diodes using neutral conjugated surfactant as an electron injection layer [J]. Appl. Phys. Lett. 2008, 92, 063303.
    [14]H. Wu, J. Zou, F. Liu, L. Wang, A. Mikhailovsky, G. C. Bazan, W. Yang, Y. Cao, Efficient Single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes [J]. Adv. Mater. 2008, 20:696-702
    [15]J. S. Huang, G. Li, E. Wu, Q. F. Xu, Y. Yang, Achieving high-efficiency polymer white-light-emitting devices [J]. Adv. Mater. 2006, 18:114-117.
    [16]J. X. Jiang, Y. H. Xu, W. Yang, R. Guan, Z. Q. Liu, H. Y. Zhen, Y. Cao, High-Efficiency White-Light-Emitting Devices from a Single Polymer by Mixing Singlet and Triplet Emission [J]. Adv. Mater. 2006, 18:1769-1773
    [17]G. L. Tu, C. Y. Mei, Q. G. Zhou, Y. X. Cheng, Y. H. Geng, L.X. Wang, D. G. Ma, X. B. Jing, F. S. Wang, Highly efficient pure-white-light-emitting diodes from a single polymer: polyfluorene with naphthalimide moieties [J]. Adv. Funct. Mater. 2006, 16:101-106
    [18]J. Liu, Q. G. Zhou, Y. X. Cheng, Y. H. Geng, L. X. Wang, D. G. Ma, X. B. Jing, F. S. Wang, White Electroluminescence from a Single-Polymer System with Simultaneous Two-Color Emission: Polyfluorene as the Blue Host and a 2,1,3-Benzothiadiazole Derivative as the Orange Dopant [J]. Adv. Funct. Mater. 2006, 16:957-965
    [19]S. Su, E. Conmori, H. Sasabe, J. Kido, Adv. Mater. 2008, 20:4189.
    [20]F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, A. K.-Y. Jen, Adv. Mater. 2009, 21, 361.
    [21]M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395:151.
    [22]N. Ohta, A. A. Robertson, Colorimetry: Fundamentals and Applications, John Wiley & Sons Inc., 2006.
    [23]W.-Y. Wong, G.-J. Zhou, X.-M. Yu, H.-S. Kwok, B.-Z. Tang, Amorphous Diphenylaminofluorene-Functionalized Iridium Complexes for High-Efficiency Electrophosphorescent Light-Emitting Diodes [J]. Adv. Funct. Mater. 2006, 16, 838.
    [24]Y. Kawamura, S. Yanagida, S. R. Forrest, Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers [J]. J. Appl. Phys. 2002, 92:87.
    [25]C. Adachi, M. A. Baldo, S. R. Forrest, Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host [J]. J. Appl. Phys. 2000, 87:8049.
    [26]P. A. Lane, L. C. Palilis, D. F. O’Brien, C. Giebeler, A. J. Cadby, D. G. Lidzey, A. J. Campbell, W. Blau, D. D. C. Bradley, Origin of electrophosphorescence from a doped polymer light emitting diode [J]. Phys. Rev. B 2001, 63:235206.
    [1] B. Hu, F. Karasz, Blue, green, red, and white electroluminescence from multichromophore polymer blends [J]. J. Appl. Phys., 2003, 93:1995
    [2] Q. J. Sun, J. H. Hou, C. H. Yang, Y. F. Li. Y. Yang, Enhanced performance of white polymer light-emitting diodes using polymer blends as hole-transporting layers [J]. Appl. Phys. Lett., 2006, 89:153501
    [3] Q. L. Niu, Y. H. Xu, J. B. Peng, J. Lumin., 2007, 12:6531
    [4] Y. H. Xu, J. B. Peng, J. X. Jiang, W. Xu, W. Yang, Y. Cao, Efficient white-light-emitting diodes based on polymer codoped with two phosphorescent dyes [J]. Appl. Phys. Lett., 2005, 87: 193502
    [5] H. B. Wu, J. H. Zou, F. Liu, Alexander Mikhailovsky, Guillermo C. Bazan, W. Yang, Y. Cao, Adv. Mater., 2008,20:696-702
    [6] Y. Zhang, F. Huang, Y. Chi, and A. K.-Y. Jen, Highly efficient white poly- mer light-emittingdiodes based on nanoscale control of the electron injection layer morphology through solvent processing [J]. Adv. Mater., 2008, 20:1565-1570
    [7] F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, A. K.-Y. Jen, Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer [J]. Adv. Mater., 2009, 21:361
    [8] D. An, J.H. Zou, H.B. Wu, J. B. Peng, W. Yang, Y. Cao, Org. Electron., 2009, 10:299
    [9] Y. H. Xu, R. Q. Yang, J. B. Peng, A. Milhailovski, Y. Cao, T.-Q. Nguyen, G. C. Bazan, Adv. Mater., 2009, 21:584-588
    [10] X. Gong, W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, Adv. Mater., 2004, 16:615
    [11] G. Tu, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, White electroluminescence from polyfluorene chemically doped with 1,8-napthalimide moieties [J]. Appl. Phys. Lett., 2004, 85:2172
    [12] M. Mazzeo, D. Pisignano, F. Della Sala, J. Thompson, R. I. R. Blyth, G. Gigli, R. Cingolani, G. Sotgiu, G. Barbarella, Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules [J]. Appl. Phys. Lett., 2003, 82:334
    [13] Q. J. Sun, B. H. Fan, Z. A. Tan, C. H. Yang, Y. F. Li, Y. Yang, White light from polymer light-emitting diodes: Utilization of fluorenone defects and exciplex [J]. Appl. Phys. Lett., 2006, 88:163510
    [14] Y. H. Xu, J. B. Peng, Y. Q. Mo, Q. Hou, Y. Cao, Efficient polymer white-emitting diodes [J]. Appl. Phys. Lett. 2005, 86:163502
    [15] X. Gong, S. Wang, D. Moses, G. C. Bazan, A. J. Heeger, Multilayer polymer light-emitting diodes: White-light emission with high efficiency [J].Adv. Mater., 2005, 17:2053
    [16] J. Liu, Q. G. Zhou, Y. X. Cheng, Y. H. Geng, L. X. Wang, D. G. Ma, X. B. Jing, F. S. Wang, Adv. Mater., 2005, 17:2974
    [17] J. Liu, Z.Y. Xie, Y. X. Cheng, Y. H. Geng, L. X. Wang, X. B. Jing, F. S. Wang, Adv. Mater., 2007, 19:531
    [18] J. Liu, Y. X. Cheng, Z.Y. Xie, Y. H Geng, L.X. Wang, X. B Jing, F. S. Wang, Adv. Mater., 2008, 20, 1357
    [19] "Method of measuring and specifying colour rendering properties of light sources" Publication CIE no 13.2, Bureau Central de la CIE: Paris, 1974.
    [20] J. Liu, J. H. Zou, W. Yang, H. B. Wu, C. Li, B. Zhang, J. B. Peng, Y. Cao, Highly Efficient and Spectrally Stable Blue-Light-Emitting Polyfluorenes Containing a Dibenzothiophene-S,S-dioxide Unit [J]. Chem. Mater., 2008, 20:4499
    [21] B. W. D'Andrade, R. J. Holmes, S. R. Forrest, White organic light-emitting devices for solid-state lighting [J]. Adv. Mater., 2004, 16 : 624
    [22] X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan, A. L. Heeger, Electrophosphorescencefrom a Polymer Guest-Host System with an Iridium Complex as Guest: F?rster Energy Transfer and Charge Trapping [J]. Adv. Funct. Mater., 2003,13 :439
    [1] Tang C W, Van Slyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett. 1987, 51 (12):9132915.
    [2] Burroughesj H, Bradleyd D C, et al. Light-emitting diodes based on conjugated polymer [J]. Nature, 1990, 347:5392541.
    [3] Hou L T, Hou Q, Peng J B et al. Performance of polymer light2emitting diode s with saturated Red-emitting poly (fluorine-co-4, 7-dithien- 2-yl-2, 1, 3- Benzothiadiazole-carbazole or triphenylamine)[J]. Acta. Phys. Sin. 2005,54:5377(in Chinese) [侯林涛、侯琼、彭俊彪等物理学报2005,54,5377]
    [4] Lei Wang, Yong Cao.et al. Utilization of water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of high-efficiency multilayer saturated redphosphorescence polymer light-emitting diodes by solution processing [J]. Appl. Phys. Lett. 2006, 89:151115
    [5] Tian R Y, Yang R Q, Peng J B, Cao Y. Performance improvement of polymer light-emitting diode s based on fluorene copolymer with cesium fluoride/aluminum cathode [J].Acta. Phys. Sin. 2007, 56:2409 (in Chinese) [田仁玉、阳仁强、彭俊彪、曹镛物理学报2007,56:2409]
    [6] Huang W B, Peng J B. Carrier injection process of polymer light-emitting diodes [J]. Acta Phys.Sin. 2007, 56:2974(in Chinese)[黄文波、彭俊彪物理学报2007,56,2974]
    [7] Ransheng Liu, Yong Cao et al. Extremely Color-Stable Blue Light-Emitting Polymers Based on Alternating 2, 7-Fluorene-co-3, 9-carbazole Copolymer [J]. Macromol. Chem. Phys. 2007, 208:1503–1509
    [8] S. Krishnamurthy, T. K. Hatwar et al Advanced materials and formulations for OLED display manufacturing. Organic Light-Emitting Materials and Devices IX, SPIE Vol. 5937, 59370N, (2005)
    [9] Brian D’Andrade and Julie J. Brown White phosphorescent organic light emitting devices for display applications Defense, Security, Cockpit, and Future Displays II SPIE Vol. 6225, 622514, (2006)
    [10] Siemens AG, Screen-printed passive matrix displays based on light-emitting polymers [J]. Appl. Phys. Lett. 2001, 78: 3905-3907
    [11] Kido J, Hongawa K, Okuyyama K et al. White light-emitting organic electroluminescent devices using the poly (N-vinylcarbazole) emitter layer doped with three fluorescent dyes [J]. Appl. Phys. Lett. 1994 , 64 (7) :815-817
    [12] Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device [J]. Science , 1995 , 267 (5202) :1332-1334
    [13]许运华,彭俊彪,曹镛.白光有机电致发光器件进展[J].化学进展, 2006, 18(4):389-398
    [14] Dino A. Pardo, Ghassan E. Jabbour Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices Adv. Mater. 2000, 12:1249-1252
    [15] Yang Yang, Organic/polymeric electroluminescent devices processed by hybrid ink-jet printing [J]. Journal of materials science: materials in electronics 2000, 11:89-96
    [16] Jiaxing Jiang, Yong Cao et al. High-Efficiency White-Light-Emitting Devices from a Single Polymer by Mixing Singlet and Triplet Emission [J]. Adv. Mater. 2006, 18: 1769-1773
    [17] Jie Luo, Junbiao Peng et al High-Efficiency White-Light Emission from a Single Copolymer: Fluorescent Blue, Green, and Red Chromophores on a Conjugated Polymer Backbone [J]. Adv. Mater. 2007, 19:1113-1117
    [18] Yunhua Xu, Junbiao Peng, et al. Efficient white-light-emitting diodes based on polymer co-doped with two phosphorescent dyes [J]. Appl. Phys. Lett. 2005, 87:193502
    [19] Qiaoli Niu, Yunhua Xu, Jiaxing Jiang, Junbiao Peng,and Yong Cao. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend [J]. Journal of Luminescence 2007, 126:531-535
    [20] Yunhua Xu, Junbiao Peng et al Efficient polymer white-light-emitting diodes [J]. Appl. Phys. Lett. 2005, 86:163502
    [21]Yunhua Xu, White polymer light-emitting diodes with bilayer structure Light-Emitting Diode Materials and Devices SPIE Vol. 5632(SPIE, Bellingham, WA, 2005)
    [22]X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, Electro phosphorescence from a Polymer Guest-Host system with an Iridium complex as guest: forster energy transfer and charge trapping [J ]. Adv. Funct. Mate. 2003, 15:439
    [23]Kozlov V G, Bulovic V , Burrows P E , et al. Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films [J ] . Appl. Phys. Lett 1998, 84 (8):409624108.
    [1] C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51: 913-915
    [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K.MacKay, R. H. Friend, P.L. Burn, and A. B. Holmes, Electroluminescence in conjugated polymers [J]. Nature (London), 1990,347:539
    [3] H. Edzer, A. Huitema, G. H. Gelinck, J. Bas, P. H. Van Der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, and D. M. De Leeuw, Active-matrix displays driven by solution processed polymeric transistors [J]. Adv. Mater., 2002,14:1201
    [4] C. W. Tang, Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett.,1986, 48:183-185
    [5] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science, 1995, 270: 1789-1791
    [6] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, F. Science, 1992, 258:1474-1476
    [7] W. R. Salaneck, K. Seki, A. Kahn, J. J. Pireaux (Eds.), Conjugated Polymer and Molecular Interfaces: Science and Technology for Photonic and Optoelectronic Applications, Marcel Dekker, New York, 2001.
    [8] Y. Cao, G. Yu, C. Zhang, R. Menon, A.J. Heeger,Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode [J]. Synt. Met., 1997, 87:171
    [9] L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future [J]. Adv. Mater., 2000,12:481
    [10] S. Kirchmeyer and K. Reuter, Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiphene) [J]. J. Mater. Chem., 2005, 15:2077-2088
    [11] T. M. Brown, J. S. Kim, R. H. Friend, and F. Cacialli, R. Daik and W. J. Feast, Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly.3,4-ethylene dioxythiophene hole injection layer [J]. Appl. Phys. Lett., 1999, 75:1680
    [12] W. Shi, S. Q. Fan, F. Huang, W. Yang, R. S. Liu, Y. Cao, Synthesis of novel triphenylamine-based conjugated polyelectrolytes and their application as hole-transport layers in polymeric light-emitting diodes [J]. J. Mater. Chem., 2006, 16, 2387
    [13] S. Ghosh, J. Rasmusson, O. Ingan?s, Supramolecular Self-Assembly for Enhanced Conductivity in Conjugated Polymer Blends: Ionic Crosslinking in Blends of Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) and Poly(vinylpyrrolidone) [J]. Adv. Mater. 1998, 10:1097
    [14] S.K.M. Jonsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W. Denier van der Gon, W.R. Salaneck, M. Fahlman, The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT-PSS) films [J]. Syn. Met., 2003, 139:1
    [15] J. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, Y. Yang, High-conductivity Poly(3,4-Ethylenedioxythiophene) :Poly(styrenen sulfonate) Film and Its Application in Polymer Optoelectronic Devices [J]. Adv. Func. Mater., 2005, 15:203
    [16] J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, Gang Li, J. Shinar,On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment [J]. Polymer, 2004, 45:8443
    [17] L. A. A. Pettersson, S. Ghosh, O. Inganas, Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate) [J]. Organic Electronics, 2002, 3:143
    [18] F. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Ingan?s, Polymer Photovoltaic Cells with Conducting Polymer Anodes [J]. Adv. Mater., 2002, 14:662
    [19] J. Y. Kim, J. H. Jung, D. E. Lee, J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents [J]. Synt. Met., 2002, 126:311
    [20] A. J. Makinen, I. G. Hill, R. Shashidhar, N. Nikolov, and Z. H. Kafafi, Hole injection barriers at polymer anode/small molecule interfaces [J]. Appl. Phys. Lett., 2001, 79:557
    [21] W. H. Kim,A. J. Ma kinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, Molecular organic light-emitting diodes using highly conducting polymers as anodes [J]. Appl. Phys. Lett., 2002, 80:3844
    [22] T. Granlund,L. A. A. Pettersson, and O. Inganas, Determination of the emission zone in a single-layer polymer light-emitting diode through optical measurements [J]. J. Appl. Phys., 2001, 89: 5897
    [23] M. K. Fung, S. L. Lai, S. W. Tong, M. Y. Chan, C. S. Lee,S. T. Lee,W. W. Wu, M. Inbasekaran, and J. J. O’Brien,Anode modification of polyfluorene-based polymer light-emitting devices [J]. Appl. Phys. Lett., 2002, 81:1497
    [24] X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. Denier Van Der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. DE Schryver, W. R. Salaneck, Conductivity, Morphology, Interfacial Chemistry, and Stability of Poly(3,4-ethylene dioxythiophene)–Poly(styrene sulfonate): A Photoelectron Spectroscopy Study [J]. J. Polymer Science B: Polymer Physics, 2003, 41:2561
    [25] G. Zotti, S. Zecchin, G. Schlavon, F. Louwet, L. Groenendaal, X. Crispin, W. Osikowicz, W. Salaneck, and M. Fahlman, Electrochemical and XPS Studies toward the Role of Monomeric and Polymeric Sulfonate Counterions in the Synthesis, Composition, and Properties of Poly(3,4-ethylenedioxythiophene) [J]. Macromol., 2003, 36:3337-3344
    [26] M. M. de Kok, M. Buechel, S. I. E. Vulto, P. van de Weijer, E. A. Meulenkamp,S. H. P. M. de Winter, A. J. G. Mank, H. J. M. Vorstenbosch, C. H. L. Weijtens and V. van Elsbergen, Modification of PEDOT:PSS as hole injection layer in polymer LEDs [J]. Phys. stat. sol. (a), 2004, 201(6):1342
    [27] S. Gosh, O. Inganas, Nano-structured conducting polymer network based on PEDOT-PSS [J]. Synt. Met., 2002, 121:1321
    [28] J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, D. D. C. Bradley, Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4-ethylenedioxythiophene)/Poly(styrene sulfonate) Films [J]. Adv. Func. Mater. ,2005, 15:290
    [29] S. Timpanaro, M. Kemerink, F.J. Touwslager, M.M. De Kok, S. Schrader,Morphology and conductivity of PEDOT/PSS films studied by scanning–tunneling microscopy [J]. Chem. Phys. Lett., 2004, 394:339
    [30] Henry J. Snaith, Henry Kenrick, Marco Chiesa, Richard H. Friend, Morphological and electronic consequences of modifications to the polymer anode‘PEDOT:PSS’[J]. Polymer, 2005, 46:2573
    [31] X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (PEDOT-PSS) Plastic Electrodes [J]. Chem. Mater., 2006, 18:4354
    [32] A. M. Nardes, R. A. J. Janssen, M. Kemerink, A Morphological Model for the Solvent-Enhanced Conductivity of PEDOT: PSS Thin Films [J]. Adv. Funct. Mater., 2008, 18:865
    [33] H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. W. Park, J. H. Lee, Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: the role of carbon nanotubes in a hole conducting polymer [J]. Synt. Met., 2001,116:369
    [34] Peter A. Levermore, Lichun Chen, Xuhua Wang, Rupa Das, and Donal D. C. Bradley, Highly Conductive Poly(3,4-ethylenedioxythiophene) Films by Vapor Phase Polymerization for Application in Efficient Organic Light-Emitting Diodes [J]. Adv. Mater., 2007, 19:2379
    [35] K. Fehse, K. Walzer, K. Leo, W. L?venich, and A. Elschner, Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High-Efficiency Organic Light-Emitting Diodes [J]. Adv. Mater., 2007, 19:441
    [36] A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, M. M. de Kok, Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films [J]. Adv. Mater., 2007,19:1196
    [37] K. E. Aasmucndtveit, E. J. Samuelsen, L. A. A. Petterson, O. Inganas, T. Johnsson, R. Feidenhans’I, Structure of thin films of poly(3,4-ethylenedioxythiophene) [J]. Synt. Met., 1999, 101:561-564
    [38] C. Ionescu-Zanetti, A. Mechler, S. A. Carter, R. Lal, Semiconductive Polymer Blends: Correlating Structure with Transport Properties at the Nanoscale [J]. Adv. Mater., 2004, 16:385
    [39] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395:151
    [40] Baytron AG website.
    [41] A. J. Campbell,D. D. C. Bradley,H. Antoniadis, Quantifying the efficiency of electrodes for positive carrier injection into poly(9,9-dioctylfluorene)…and representative copolymers [J]. J. Appl. Phys., 2001, 89:3343
    [42] P. Langevin, Recombinaison et mobilites des ions dans les gaz, Ann. Chim. Phys., 1903, 28, 433
    [43] S. J. Konezny, D. L. Smith, M. E. Galvin, L. J. Rothberg, Modeling the influence of charge traps on single-layer organic light-emitting diode efficiency [J]. J. Appl. Phys. 2006, 99:064509
    [44] M. A. Lamper, P. Mark, Current Injection in Solids (Academic, New York, 1970).
    [45] C.L. Donley, J. Zaumseil, J.W. Andreasen, M.M. Nielsen, H. Sirringhaus, R.H.Friend, J.-S. Kim, Effects of Packing Structure on the Optoelectronic and Charge Transport Properties in Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) [J]. J. AM. CHEM. SOC., 2005,127:12890
    [46] G. Greczynski, Th. Kugler, W.R. Salaneck, Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy [J]. Thin Solid films, 1999, 354:129-135
    [47] J. Huang, P.F. Miller, J.C. de Mello, A.J. de Mello, D.D.C. Bradley, Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films [J]. Synt. Met., 2003, 139:569–572

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700