基于氧化石墨烯/聚合物光伏特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前有机聚合物太阳能电池的光电转换效率较低,国际科研人员的科研重点集中在如何通过聚合物与无机材料复合来提高器件的光伏性能。石墨烯具有最高的载流子迁移率和最大的比表面积,能够很好的和聚合物材料形成接触。MEH-PPV和P3HT是聚合物光伏材料中非常成熟的两种,本文重点研究氧化石墨烯与这两种聚合物材料复合器件的光伏机理和性质,主要研究内容如下:
     1.以Hummers法为基础制备了氧化石墨烯,用异氰酸本质对氧化石墨烯进行还原处理,得到还原后的氧化石墨烯。通过XRD、FTIR、SEM、TEM和Raman光谱等表征手段对产物进行了表征,通过四探针测量仪对产物进行了测试。制备出了达到实验要求的氧化石墨烯,经过还原处理的氧化石墨烯的电导率有了很大的提高,呈现出由氧化石墨向石墨的变化。
     2.我们采用在聚合物中掺杂经过还原的氧化石墨烯,制备了结构为ITO/聚合物-氧化石墨烯/Al的光伏器件,研究了不同氧化石墨烯浓度与开路电压、短路电流和填充因子的关系。通过光致发光和器件的I-V曲线,得出结论氧化石墨烯起到了电子受体的作用,防止了自由电子空穴的耦合,氧化石墨烯的量子隧穿效应可以提高器件的载流子迁移率,增大短路电流和填充因子。
     3.我们提出了结构为ITO/聚合物-氧化石墨烯-多壁碳纳米管/Al的器件,研究了不同氧化石墨烯浓度和不同多壁碳纳米管浓度对器件短路电流和填充因子的影响。我们认为氧化石墨烯作为电子受体可以改善电子传导,多壁碳纳米管可以起到传导空穴的作用。在相同氧化石墨烯浓度的情况下,P3HT为主体材料的器件光电转换效率比以MEH-PPV为主体材料的器件光电转换效率更高,P3HT的最高效率也要比MEH-PPV的最高效率高。
     4.我们提出了结构为ITO/P3HT:PCBM氧化石墨烯/Al的器件,进一步研究了不同氧化石墨烯浓度与器件短路电流和填充因子的关系。表明氧化石墨烯可以起到链接小分子PCBM的作用,形成电子的三维空间传输网络,提高载流子迁移率的作用。
ABSTRACT: Recently, the power conversion efficiency (PCE) of organic photovoltaic is very low; the research has concentrate on the composite of organic material and inorganic material. The graphene oxide has the highest carrier mobility and big specific surface area, has very good of interfacial face at the graphene oxide and polymer. The MEH-PPV and P3HT is mature for the rearch. The rearch content is the photovoltaic character of composite polymer and graphene oxide. This the main contents of my paper:
     1. We produced the graphene oxide by Hummers way and deoxidize the graphene oxide by isopropyl isocyanate. To token the graphene oxide by XRD、FTIR、SEM、TEM and Raman spectrum, to test the character of graphene oxide by Four-point probe. We has produced the graphene oxide, the conductivity of graphene oxide has very big improved.
     2. We produced the ITO/polymer-graphene oxide/Al devices by introduces graphene oxide into the polymers. We have rearched the open circuit voltage, short-circuit current and fill factor of different graphene oxide content. By the photoluminescence andⅠ-Ⅴ, we have found that the graphene oxide has acted as the electron acceptor, avoid the coupling of electron and hole. And then, the quantum tunneling of graphene oxide has enhance the carrier mobility of composite films, augment the short-circuit current and PCE.
     3. We has produced the ITO/polymers-graphene oxide-MWCNTs/Al devices, and reached the effect of open circuit voltage, short-circuit current and fill factor for different graphene oxide content and MWCNTs content. We discover that the graphene oxide acted as the electron acceptor has improved the electron transported, the MWCNTs has improved the hole transported. For the same graphene oxide content, the PCE of P3HT is good compared with the PCE of MEH-PPV. For the biggest PCE, the PCE of P3HT has higher compared with PCE of MEH-PPV.
     4. We has produced the ITO/P3HT:PCBM-graphene oxide/Al devices. We has rearch the relation of short-circuit current and fill factor for the different graphene oxide content. The experiment has show that the graphene oxide has the effect of link PCBM, form the transported network of electron, enhance the carrier mobility of composite films.
引文
[1]K. Yoshino, K. Tada, A. Fujii, E.M.Conwell, An organic in frarede electroluminescent diode utilizing a phthalocyanine film. IEEE.T. Electron. Dev,1997.8:1204-1206.
    [2]Y.Y. Liang, Z. Xu, J.B. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L.P. Yu, For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Mater, 2010.22:1-4.
    [3]S. Uchida, J. G. Xue, B. P. Rand, and S. R. Forrest, Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine:C-60 active layer, Appl. Phys. Lett.,2004.84: 4218-4220.
    [4]P. Schilinsky, C. Waldauf, and C. J. Brabec, Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors, Appl. Phys. Lett.,2002,81:3885-3887.
    [5]G. M. Wang, J. Swensen, D. Moses, and A. J. Heeger, Increased mobility from regioregular
    poly(3-hexylthiophene) field-effect transistors, J. Appl. Phys.,2003,93:6137-6141.
    [6]Q. M. Shi, Y. B. Hou, J. Lu, H. Jin, Y. B. Li, Y. Li, and X. Sun, J. Liu, Enhancement of carrier mobility in MEH-PPV film prepared under presence of electric field, Chem. Phys. Lett.,2006, 425:353-355.
    [7]Angelopoulos, Marie; Liao, Yun-Hsin; Furman, Bruce; Graham Teresita, Solvent and Salt
    Effects on the Morphological Structure of Polyaniline, Synth. Met,1999,98:201-209.
    [8]S. Bekir, T. Muzaffer, Electrochemical copolymerization of pyrrole and aniline, Synth. Met, 1998,94:221-227.
    [9]S. Srinivasan, P. Pramanik, Ultraviolet-visible-near infrared spectral analysis of a chemically prepared WO3-polyaniline composite, J.Mater. Sci. Lett.,1994,13:365-368.
    [10]W.S. Huang, A.G.MacDiarmid, Optical properties of polyaniline, Polymer,1993,34: 1833-1845.
    [11]D. Gupta, S. Mukhopadhyay, K.S. Narayan, Fill factor in organic solar cells, Solar Energy Materials & Solar Cells,2010,94:1309-1313.
    [12]A.E. Becquerel, Compt. Rend. Acad. Sci.,1839,9:145.
    [13]A.E. Becquerel, Compt. Rend. Acad. Sci.,1839,9:561.
    [14]W.G. Adams, R.E. Day, Proc. R. Soc. London,1876,25:113.
    [15]D. M. Chapin, C. S. Fuller, and G. L. Pearson, A new silicon p-n junction photoclell for converting solar radiation into electrical power, J. Appl. Phys.,1954,25:676-677.
    [16]张正华,李陵岚,叶楚瓶,杨平华,有机太阳电池与塑料太阳能电池,化学工业出版社2006年出版.,85.
    [17]R. A. J. Janssen, J. C. Hummelen and N. S. Saritiftci, Polymer-fullerene bulk heterojunction solar cells, MRS Bull.,2005,30,33-36.
    [18]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cells based on dye-sensitized colloidal TiO2 film, Nature,1991,335:737-739.
    [19]M. Gratzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C:Photochem. R.,2003,4: 145-153.
    [20]U. Bach, D. Lupo, P. Comte, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies, Nature,1998,395:583-586.
    [21]C. F. Liang, J. D. White, Y. F. Huang, W. Fann, Solvent mediated enhanced mobility of PPV Films cast under the presence of a static electric field, Chem. Phys. Lett.,2007,450,61-64.
    [22]M. J. Cohen, J. S. Harris, (SN)x-GaAs Polymer Semicondutor Solar Cell, Appl. Phys. Lett., 1978,33:812-814.
    [23]B. R. Weinberger, S. C. Gau, Z. Kiss, A polyacetylene:aluminum photodiode, Appl. Phys. Lett.,1981,38:555-557.
    [24]R.C. Hiorns, R.D. Bettignies, J. Leroy, S. Bailly, M. Firon, C. Sentein, A. Khoukh, H. Preudhomme and C.D. Lartigau, High molecular weights, polydispersities, and annealing temperatures in the optimization of bulk-heterojunction photovoltaic cells based on poly(3-hexylthiophene) or poly(3-butylthiophene), Adv. Funct. Mater.,2006,16,2263-2273.
    [25]C.W.Tang, Two-layer organic photovoltaic cells, Appl. Phys. Lett.,1986,48:183-185.
    [26]D.Wohrle and D.Meissner, Organic Solar Cells, Adv. Mater.,1991,3:129-138.
    [27]N.S. Sariciftci, D.Braun, C.Zhang, V. I. Srdanov, A.J. Heeger, G. Stucky, and F. Wudl. Semiconducting polymerbuckminsterfullerene heterojunctions:Diodes, photo-diodes, and photovoltaic cells. Appl.Phys.Let.1993,62:585-58
    [28]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science,1995,270: 1981-1983.
    [29]J.J. M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature,1995, 376:498-500.
    [30]M.Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend, Laminated fabrication of polymeric photovoltaic diodes, Nature,1998,395:257-260.
    [31]J. M. Warman, M. P. de Haas, T. D. Anthopoulos and D. M. de Leeuw, The negative effect of high-temperature annealing on charge-carrier lifetimes in microcrystalline PCBM, Adv. Mater., 2006,18,2294.
    [32]P.Peumans,V.Bulovic,and S.R.Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes., Appl. Phys. Lett.,2000,76: 2650-2652
    [33]S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen,2.5% Efficient organic plastic solar cells, Appl. Phys. Lett.,2001,78:841-843.
    [34]C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett.,2002,80:1288-1290;
    [35]J.G. Xue, S. Uchida, B.P. Rand, and S.R. Forrest, Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions, Appl. Phys. Lett.,2004, 85:5757-5759.
    [36]G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y.Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Adv. Funct. Mater,2005,4:864-868.
    [37]J. Y. Kim(Ed), New Architeure for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater.,2006,18:572-576.
    [38]J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. D., and A.J. Heeger, Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science,2007,317: 222-225.
    [39]於黄忠,彭俊彪,MEH-PPV和PCBM共混体系光电池中电荷传输及性能与光强的关系,高等学校化学学报,2007,12:2359-2363.
    [40]S. Sikorski, T. Piotrowski, Photovoltaic phenomena in inhomogeneous semiconductors, Prog. Quantum Electron.2003,27:295-365.
    [41]G. G. Wallace, P. C. Dastoor, D. L. Officer, C. O. Too, Conjugated polymers:new materials for photovoltaic, Chem. Innov.,2000,1:15-22.
    [42]P. Vanlaeke, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. Manca, P. Heremans, J. Poortmans, Polythiophene based bulk heterojunction solar cells:Morphology and its implications, Thin Solid Films,2006,26:511-512.
    [43]Y. Zhao, Z. Xie, Y. Qu, Y. Geng and L. Wang, Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells, Appl. Phys. Lett.,2007,90,043504.
    [44]K. Kawata, V.M. Burlakov, M.J. Careya, H.E. Assender, G.A.D. Briggs, A. Ruseckas, I.D.W. Samuel, Description of exciton transport in a TiO2/MEH-PPV heterojunction photovoltaic material, Solar Energy Materials & Solar Cells,2005,87:715-724.
    [45]L. Yan, H. Y. Bing, J. Hui, S. Q. Min, W. Yan, F. Z. Hui, Photovoltaic properties of MEH-PPV/TiO2 nanocomposites, Chinese. Sci. Bull.,2008,53:2743-2747.
    [46]T. Hu,F.J. Zhang, Z. Xu, S.L. Zhao, X. Yue, G.C. Yuan, Effect of UV-ozone treatment on ITO and post-annealing on the performance of organic solar cells, Synthetic Metals,2009, 159:754-756.
    [47]H. E. Katz, Organic molecular solids as thin film transistor semiconductors, J. Mater. Chem., 1997,7:369-376.
    [48]M. Grandstrom, K. Petritsch, A.C. Arias et al, Laminated fabrication of polymeric photovoltaic diodes.Nature.1998,395:257-260.
    [49]A. Ruseckas, E.B. Namdas, T.Ganguly et al, Intra-and Interchain Luminescence in Amorphous and Semicrystalline Films of Phenyl-Substituted Polythiophene.J.Phys.Chem.B,2001,105: 7624-7631.
    [50]L. Yan, H. Y. Bing, J. Hui, S. Q. Min, W. Yan, F. Z. Hui, Photovoltaic properties of MEH-PPV/TiO2 nanocomposites, Chinese. Sci. Bull.,2008,53:2743-2747.
    [51]J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. D., and A. J. Heeger, Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science,2007,317: 222-225.
    [52]Y. Cao, G. Yu, C. Zhang, R. Menon and A. J. Heeger, Polymer light-emitting diodes with polyethylene dioxythicphene-polystyrene sulfonate as the transparent anode, Synth. Met.1997, 87:171-174
    [53]C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett.,2002,80:1288-1290.
    [54]C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device, J. Appl. Phys.,2001,90,5048-5051.
    [55]Y.Y. Liang, Z. Xu, J.B. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L.P. Yu, For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Mater.,2010,22:1-4.
    [56]Tang C W, Albrecht A C. Photovoltaic affects of metal-chlorphylla-metal sandwich cells. J Chem Phys,1975,62:2139-2149
    [57]密保秀,高志强,邓先宇,黄维,基于有机薄膜的太阳能电池材料与器件研究进展,中国科学B辑:化学,2008,38:957-975
    [58]S. Alem, R.D. Bettignies, J.M. Nunzi, Efficient polymer-based interpenetrated network photovoltaic cells, Appl. Phys. Lett.,2004,84:2178-2180.
    [59]N. K. Patel, S. Cina, J. H. Burrows, High Efficient Organic Light Emitting diodes, IEEE. J. Sel. Top. Quantum Electron,2002,8:346-361.
    [60]Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys,2003,93:3693-3723
    [61]C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Bredas, P. C. Ewbank, and K. R. Mann, Introduction to organic thin film transistors, and design of n-channel organic semiconductors. Chem. Mater.,2004,16:4436-4451.
    [62]S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, 2.5% efficient organic plastic solar cells, Appl. Phys. Lett.,2001,78:841-843.
    [63]Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nature Mater,2005,4:37-41
    [64]B.O. Ragan, M.Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-740.
    [65]Kim J Y, Lee K, Coates N E, Moses D, Nguyen T-Q, Dante M, Heeger A J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007,317:222-225
    [66]G. Horowitz, Organic field-effect transistors, Adv. Mater,1998,10,365-377.
    [67]B.A.Gregg, Excitonic solar cells, J. Phys. Chem, B 2003,1077,4688-4698.
    [68]J. Nelson, Organic photovoltaic films, Current Opinion in Solid State & Mateirals Science, 2002,6:87-95.
    [69]J.Y. Kim, M. Kim, J.H. Choi, Characterization of light emitting devices based on a single-walled carbon nanotube-polymer composite, Synthetic Metals 139 (2003) 565-568
    [70]J.Y. Kim, M. Kim, H.M. Kim, J.Joo, J.H. Choi, Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites, Optical Materials,2002,21: 147-151
    [71]Z. D. Popovic, A. M. Hor, R. O. Loutfy, A Study of Carrier Generation Mechanism in Benzimidazole Perylene 3,4,9,10-Tetracarboxylic Acid-Tetraphenyldiamine Thin Film Structures, Chem. Phs.1988,127,451-457.
    [72]S. Berson, R.D. Bettignies, S. Bailly, S. Guillerez, B. Jousselme, Elaboration of P3HT/CNT/PCBM Composites for Organic Photovoltaic Cells, Adv. Funct. Mater.2007,17, 3363-3370.
    [73]Z.Y. Liu, D.W. He, Y.S. Wang, H.P. Wu, J.G. Wang, Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells, Solar Energy Materials & Solar Cells 94 (2010) 1196-1200.
    [74]P.M. Sirimanne, E.V.A. Premalal, P.K.D.D.P. Pitigala, K. Tennakone, Utilization of MEH-PPV as a sensitizer in titana-based photovoltaic cells, Solar Energy Materials & Solar Cells,2006,90: 1673-1679.
    [75]B. Zhang, Y.B. Hou, F. Teng, Z.D. Lou, X.J. Liu, Y.S. Wang, Electric field-modulated amplified spontaneous emission in waveguides based on poly [2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylene vinylene], Appl. Phys. Lett.,2010,96:103303-103305.
    [76]Z.H. Xu, Y. Wu, B. Hua, I.N. Ivanov and D.B. Geohegan, Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers, Appl. Phys. Lett., 2005,87:263118-263120.
    [77]H. Jin, Y. B. Hou, and A. W. Tang, Photoconductive properties of MEH-PPV/CuS-nanoparticle composites. Chin. Phys. Lett.,2006,23:693-696.
    [78]L.L.Han, D.H.Qin, X.Jiang, Y.S. Liu, L. Wang, J.W Chen and Y. Cao, Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells, Nanotechnology, 2006,17:4736-4742.
    [79]J. X. Cheng, S. H. Wang, and X. Y. Li, Fast interfacial charge separation in chemically hybridized CdS-PVK nanocomposites studied by photoluminescence and photoconductivity measurements. Chem. Phys. Lett.,2001,333:375-380.
    [80]K. Kaneto, D. Tanimura and W. Takashima, Electrical properties of nanointerface at poly(3-hexylthiophehe) and metal junctions probed directly with potential tip, Curr.Appl.Phys., 2005,4:320-322.
    [81]Zhang D,Li Y,Zhang G et al.Lithium cobalt oxide as electron injection material for high performance organic light-emitting diodes.Appl Phys Lett,2008,92:073301-073303.
    [82]Yang X H,Mo Y Q,Yang W et al.Efficient polymer light emitting diodes with metal fluoride/Al cathodes.Appl Phys Lett,2001,79:563-565.
    [83]Lai S L,Chan M Y,Lee C S et al.Investigation of calcium as high performance cathode in small-molecule based organic light-emitting devices.J Appl Phys,2003,94:7297-7299.
    [84]R. Ulbricht, S.B. Lee, X. Jiang, K. Inoue, M. Zhang, S.L. Fang, R.H. Baughman, A.A. Zakhidov, Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells, Solar Energy Materials & Solar Cells.2007,91:416-419.
    [85]K.S. Novoselov, A.K. Geim, S.V. Morozov, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306:666-669.
    [86]E.H. Hwang, S. Adam, and S.D. Sarma, Carrier Transport in Two-Dimensional Graphene Layers, Phys. Rev. Lett.,2007,98:186806-186809
    [87]E.G. Mishchenko, Effect of Electron-Electron Interactions on the Conductivity of Clean Graphene, Phys. Rev. Lett.,2007,98:216801-216804.
    [88]C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam,A.Govindaraj.Graphene:The new two-dimensionalnanomaterial.Angew.Chem.Int.Ed.[J],2009,48:7752-7777.
    [89]Wang Y, Shi Z Q, Huang Y, MaYF, Mang C Y, Chen M M, SuPereapacitor deviees based on graphen ematerials.J.Phys.Chem.C[J],2009,113:13103-13107.
    [90]Lin Y M, Avouris P. Strong suppression of eleetrieal noise in bilayer graphene nanodeviees. NanoLett.,2008,8:2119-2125.
    [91]M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An and R.S. Ruoff, Graphene based uitracaPaeitors. Nano.Lett. [J],2008,8:3498-3502.
    [92]黄桂荣,陈建.化学分散法制备石墨烯及结构表征[J].碳素技术,2009,1:35-39.
    [93]H.B. Heersche, P.J. Herrero, J.B. Oostinga, L.M.K. Vandersypen, A.F. Morpurgo, Bipolar Supercurrent in graphene, Nature,2007,446:56-59.
    [94]A.N. Andriotis, E. Richter, M. Menon, Strong dependence of transport properties of Metal-semiconductor-metal graphene ribbons on their geometrical features, Appl. Phys. Lett., 2007,91:152105-152107.
    [95]J.C. Meyer, A.K. Geim, K.S. Novoselov, T.J. Booth, and S. Roth, The structure of suspended graphene sheets, Nature,2007,446:60-63.
    [96]R.R. Nair, P. Blake, A.N. Grigorenko, et al. Fine Structure Constant Defines Visual Transparency of Graphene. Science,2008,320:1308-1308.
    [97]Inagaki.M., Radovie, L.R.Nanoearbons. Carbon,2002,40:2279-2282.
    [98]Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer and D.N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics,2008,4:532-535.
    [99]Y.B. Zhang, Y.W. Tang, H.L. Stormer, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature,2005,438:201-204.
    [100]L. Cao, X. Wang, M.J. Meziani, F. Lu, H.F. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L. Monica Veca, D. Murray, S.Yuan Xie and Y.Ping Sun, Carbon dots for multiphoton bioimaging, J.Am.Chem.Soe.,2007,129:11318-11319
    [101]P. Avouris, C.Z, Perebeinos, Carbon-based electronics. Nature Nanotechnology,2007,2: 605-615.
    [102]A.K. Geim, K.S. Novoselov, The rise of graphene. Nature Materials,2007,6:183-191.
    [103]Y. Pan, D.X. Shi, H.J. Gao, Formation of graphene on Ru(0001) surface., Chinese Physics, 2007,16:3151-3153.
    [104]C. Berger, Z.M. Song, X.B. Li, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. Journal Physical Chemistry B,2004,108: 1191-1196.
    [105]D.V. Kosynkin, A.L. Higginbotham, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature,2009,458:872-872.
    [106]W.S. Hummers, R.E. Offeman, Preparation of graphitic oxid, J. Am. Chem. Soc.,1958, 80:1339.
    [107]张大友,张东.还原氧化石墨烯横向尺寸分布影响因素初探,功能材料2009,10:1695-1698.
    [108]S. Stankovich, R.D. Piner, S.T.Nguyen, R.S. Ruo, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon 2006,44:3342-3347.
    [109]Z.F. Liu, Q. Liu, Y. Huang, Y.F. Ma, S.G. Yin, X.Y. Zhang, W. Sun, YS. Chen, Organic Photovoltaic Devices Based on a Novel Acceptor Material:Graphene, Adv. Mater. 2008,20,3924-3930
    [110]Q. Liu, Z.F. Liu, X.Y. Zhang, L.Y. Yang, N. Zhang, G.L. Pan, S.G. Yin, Y.S. Chen, J. Wei, Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT, Adv. Funct. Mater.2009,19,894-904.
    [111]C.M. Hill, Y. Zhu, S.L Pan, Fluorescence and Electroluminescence Quenching Evidence of Interfacial Charge Transfer in Poly (3-hexyithiophene):Graphene Oxide Bulk Heterojunction Photovoltaic Devices, ACS nano,2010,5:942-951.
    [112]D.S. Yu, Y. Yang, M. Durstock, J.B. Baek, L.M. Dai, Soluble P3HT-Grafted Graphene for Efficient Bilayer-Heterojunction Photovoltaic Devices, ACS nano,2010,4:5633-5640.
    [113]N. von Malm, J. Steiger, R. Schmechel, and H. von Seggern, Trap Engineering in Organic Hole Transport Materials, J. Appl. Phys.,2001,89,5559-5563.
    [114]E. Kymakis, I. Alexandrou, G.A.J. Amaratunga, High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites, J. Appl. Phys.2003,93,1764-1769.
    [115]S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruo, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 2007,45:1558-1565.
    [116]傅玲,刘洪波,等Hummers法制备氧化石墨时影响氧化程度的工艺因素研究.炭素,2005,4:10-14.
    [117]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 2006,438:197-200.
    [118]Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature,2006,438:201-204.
    [119]M.I. Katsnelson, Graphene:carbon in two dimensions,2007,10:20-27.
    [120]A. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett.2006,97:187401-187405.
    [121]Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, Philip Kim, Tuning the Graphene Work Function by Electric Field Effect, NANO Lett,2009.9:3430-3434.
    [122]D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper, Nature, 2007,448:457-460
    [123]A.K. Geim, Graphene:Status and Prospects, Science,2009.324:1530-1534.
    [124]Q. Liu, Z.F. Liu, X.Y. Zhang, L.Y. Yang, N. Zhang, G.L. Pan, S.G. Yin, Y.S. Chen, J. Wei, Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT, Adv. Funct. Mater.2009,19,894-904.
    [125]J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature London,1998.391:59-62.
    [126]Aziz H,Popovic Z D,Hu N X et al.Degradation mechanism of small molecule-based organic light-emitting devices, Science,1999,283:1900-1902.
    [127]刘倩,有机电致发光器件电子注入材料及相关机理研究,清华大学,2009年,5
    [128]Adachi C,Tokito S,Tsutsui T et al.Electroluminescence in organic films with three-layer structure.Jpn J Appl Phys,1988,27:269-274.
    [129]K.W. Lee, S.P. Lee, H. Choi, K.H. Mo, J.W Jang, H. Kweon, C.E. Lee, Enhanced electroluminescence in polymer-nanotube composites, Appl. Phys. Lett.2007,91: 023110-023112.
    [130]K.S. Novoselove, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsove, Electric field effect in atomically thin carbon films, Science, 2004,306:666-668.
    [131]U. Wolf, H. Bassler, P. M. Borsenberger, W. T. Grunbaum, Hole trapping in molecularly doped polymers, Chem. Phys.,1997,222,259-267.
    [132]J. G. Laquindanum, H. E. Katz, A. Dodabalapur and A. J. Lovinger, n-Channel organic transistor materials based on naphthalene frameworks, J. Am. Chem. Soc., 1996,118:11331-11332.
    [133]Uddin A,Lee C B,Hu X et al.Interface injection-limited carrier-transport properties of Alq3, Appl Phys A:Mater Sci Process,2004,78:401-405.
    [134]Lee C J,Pode R B,Han J I et al.Green top-emitting organic light emitting device with transparent Ba/Ag bilayer cathode, Appl Phys Lett,2006,89:123501-123503.
    [135]Choi H W,Kim S Y,Kim W K et al.Effect of magnesium oxide buffer layer on performance of inverted top-emitting organic light-emitting diodes.J Appl Phys,2006,100:064106-064111.
    [136]Nakamura A,Tada T,Mizukami M et al.Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode, Appl Phys Lett,2004,84:130-132.
    [137]T.F. Guo, G. L. Pakhomov, T.C. Wen, Effect of TiO2 nanoparticles on polymer-based bulk heterojunction solar cells, J. Appl. Phys,2006,45:1314-1316.
    [138]Li,G.;Shrotriya, V.;Huang, J.S.Yao, Y.Moriarty, T.Emery, K.Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials 2005,4,864-868.
    [139]P.M. Borsenberger, D.S. Weiss, Organic Photoreceptors for Xerography. Dekker, New York, 1998,279-282.
    [140]C. Rothe, S. M. King, and A. P. Monkman, Electric-field-induced singlet and triplet exciton quenching in films of the conjugated polymer polyspirobifluorene, Phys. Rev. B,2005,72, 085220-085227.
    [141]G. Yu, & A. J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor-acceptor heteroj unctions. J. Appl. Phys.,1995,78:4510-4515.
    [142]H. Tian and K. C. Chen, Diffusion behaior of charge carriers in thin films of phthalocyanines, Dyes Pigm.,1995,27,191-125.
    [143]A. Petrella, M. Tamborra, M. L. Curri, P. Cosma, M. Striccoli, P. D. Cozzoli, and A. Agostiano, "Colloidal TiO2 nanocrystals/MEH-PPV:nanocomposites:(Photo) electrochemical study, J. Phys. Chem. B,2005,109,1554-1562.
    [144]K. M. Coakley and M. D. McGehee, Conjugated. Polymer Photovoltaic cells, Chem. Mater., 2004,16,4533-4542.
    [145]C.J. Brabec, A. Cravino, D.Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater.2001,11,374-379.
    [146]W. U. Huynh, J. J. Dittmer and A.P. Alivisatos, Hybrid Nanorod-Polymer Solar Cells, Science 2002,295:2425-2427.
    [147]Y.G. Gao, J. Hummelen,J.C. Wudl, F. Heeger, A.J, Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions.Science, 1995,270:1789-1791.
    [148]Z.F. Liu, Q. Liu, Y. Huang, Y.F. Ma, S.G. Yin, X.Y. Zhang, W. Sun, Y.S. Chen, Organic Photovoltaic Devices Based on a Novel Acceptor Material:Graphene, Adv. Mater.2008,20, 3924-3930.
    [149]G. Kalita, S. Adhikari, H.R. Aryal, M. Umeno, R. Afre, T. Soga, M. Sharon, Fullerene (C60) decoration in oxygen plasma treated multiwalled carbon nanotubes for photovoltaic application, Appl. Phys. Lett.,2008,92:063508-063510.
    [150]Xue. L, Liu. L, Gao, Q, Wen. S, He. J, Tian.W, Planar-diffused photovoltaic device based on the MEH-PPV/PCBM system prepared by solution process.Solar Energy Materials&Solar Cells 2009,93:501-507.
    [151]H. Jin, Y. B. Hou, and A. W. Tang, Photoconductive properties of MEH-PPV/CuS-nanoparticle composites. Chin. Phys. Lett.,2006,23:693-696.
    [152]A. Nollau, M. Hoffmann, T. Fritz and K. Leo, Dissociation of Excitons in Organic Dye Layers of Perylene Derivatives, Thin Solid Films,2000,368,130-137.
    [153]B. Schweitzer, H. Bassler, Excitons in conjugated polymers, Synth. Met,2000,109:1-6.
    [154]M.G.Harrison and J.Gruner, Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes, Phys. Rev. B,1997,55:7831-7844.
    [155]C. Li, Y.H. Chen, Y.B. Wang, Z. Iqbal, M. Chhowall, S. Mitra, A fullerene-single wall carbon nanotube complex for polymer bulk heteroj unction photovoltaic cells, J. Mater. Chem.,2007, 17,2406-2411.
    [156]L. Y. Ting, Z. T. Wei, L. W. Zong, C. C. Wei, L. Y. Yue, C. Y. Sheng and S. W. Fang, Efficient photoinduced charge transfer in TiO2 nanorod/conjugated polymer hybrid material, Nanotechnology,2006,17:5781-5785.
    [157]E. Kymakis, N. Kornilios, E. Koudoumas, Carbon nanotube doping of P3HT:PCBM photovoltaic devices, J. Phys. D:Appl. Phys.2008,41:165110-165114.
    [158]於黄忠,彭俊彪,MEH-PPV和PCBM共混体系光电池中电荷传输及性能与光强的关系,高等学校化学学报,2007.28:2359-2363.
    [159]L.L. Xue, L.J. Liu, Q. Gao, S.P. Wen, J.T. He, W.J. Tian, Planar-diffused photovoltaic device based on the MEH-PPV/PCBM system prepared by solution process, Solar Energy Materials & Solar Cells,2009,93:501-507.
    [160]M.O. Reese, A.J. Morfa, M. S. White, Nikos Kopidakis, S.E. Shaheen, G. Rumbles, D.S. Ginley, Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices, Solar Energy Materials & Solar Cells,2008.92:746-752.
    [161]W. U. Huynh, X. G. Peng, and A. P. Alivisatos, CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices, Adv. Mater.,1999,11:923-927.
    [162]Z. Bao, A. Dodabalapur, A.L. Lovinger, Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility, Appl. Phys. Lett.1996,69:4108-4110.
    [163]P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel J. D'Haen, P. Heremans, J. Poortmans and J.V. Manca, P3HT/PCBM bulk heterojunction solar cells:Relation between morphology and electro-optical characteristics, Sol. Energy Mater. Sol. Cells,2006,90:2150-2158
    [164]S.W. Tong, C.F. Zhang, C.Y. Jiang, Q.D. Ling, E.T. Kang, D.S.H. Chan, C.X. Zhu, The use of thermal initiator to make organic bulk heterojunction solar cells with a good percolation path, Appl. Phys. Lett.,2008.93:043304-043306.
    [165]Y.C. Huang, Y.C. Liao, S.S. Li, M.C. Wu,C.W. Chen, W.F. Su, Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy, Solar Energy Materials & Solar Cells,2009.93:888-892.
    [166]S. Alem, R.D. Bettignies, J.M. Nunzi, Efficient polymer-based interpenetrated network photovoltaic cells, Appl. Phys. Lett.,2004.84:2178-2180.
    [167]B. Pradhan, S.K. Batabyal, A.J. Pal, Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices, Appl. Phys. Lett.,2006.88:093106-093108.
    [168]M.C. Wu, Y.Y. Lin, S. Chen, H.C. Liao, Y.J. Wu, C.W. Chen, Y.F. Chen, W.F. Su, Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes, Chemical Physics Letters,2009.468:64-68.
    [169]Y.S. Eo, H.W. Rhee, B.D. Chin, J.W. Yua, Influence of metal cathode for organic photovoltaic device performance, Synthetic Metals 2009.159:1910-1913.
    [170]M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. L. Brabec, Design Rules for Donors in Bulk-Heteroj unction Solar Cells-Towards 10% Energy-Conversion Efficiency, Adv. Mater.2006,18:789-795.
    [171]C. J. Brabec, A. Cravino, D.Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater.2001,11:374-379.
    [172]H.Z. Yu, J.B. Peng, Performance and lifetime improvement of polymer/fullerene blend photovoltaic cells with a C60 interlayer, Organic Electronics,2008.9:1022-1025
    [173]H.W. Zhu, J.Q. Wei, K. Wang, D.H Wu, Applications of carbon materials in photovoltaic solar cells, Solar Energy Materials & Solar Cells 2009.93:1461-1470.
    [174]Q. Liu, Z.F. Liu, X.Y. Zhang, L.Y. Yang, N. Zhang, G.L. Pan, S.G. Yin, Y.S. Chen, J. Wei, Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT, Adv. Funct. Mater.2009,19,894-904.
    [175]W.J. Belcher, K.I. Wagner, P.C. Dastoor, The effect of porphyrin inclusion on the spectral response of ternary P3HT:porphyrin:PCBM bulk heteroj unction solar cells, Solar Energy Materials & Solar Cells,2007.91:447-452.
    [176]Ran G Z, Zhao W.Q, Dai L et al, Highly transparent cathodes comprised of rare earth and Au stacked layers for top-emission organic light emitting diodes.J Appl Phys,2006,100:113107-113111.
    [177]I. Khatri, S. Adhikari, H.R. Aryal, T. Soga, T. Jimbo, M. Umeno, Improving photovoltaic properties by incorporating both single walled carbon nanotubes and functionalized multiwalled carbon nanotubes, Appl. Phys. Lett.,2009.94:093509-093511.
    [178]B.K. Kuila, K. Park, L.M. Dai, Soluble P3HT-Grafted Carbon Nanotubes:Synthesis and Photovoltaic Application, Macromolecules,2010,43:6699-6705
    [179]R.A. Hatton, N.P. Blanchard, L.W. Tan, G. Latini, F. Cacialli, S. R.P. Silv, Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells, Organic Electronics,2009.10:388-395.
    [180]E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, Effect of coumarin on blue light-emitting diodes based on carbazol polymers, J. Appl. Phys.,1998,83: 4236-4241.
    [181]S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, 2.5% efficient organic plastic solar cells, Appl. Phys. Lett.,2001,78:841-843.
    [182]W.J. Belcher, K.I. Wagner, P.C. Dastoor, The effect of porphyrin inclusion on the spectral response of ternary P3HT:porphyrin:PCBM bulk heterojunction solar cells, Solar Energy Materials & Solar Cells,2007.91:447-452.
    [183]C. Tracy, J. Gao, Polymer bulk homojunction light-emitting electrochemical cells, J. Appl. Phys.,2006.100:104503-104508.
    [184]T. Schuettfort, A. Nish, R.J. Nicholas, Observation of a Type Ⅱ Heterojunction in a Highly Ordered Polymer-Carbon Nanotube Nanohybrid Structure, Nano Lett.,2009,9:3871-3876.
    [185]D.Y. Khang, J.A. Rogers, H.H. Lee, Mechanical Buckling:Mechanics, Metrology, and Stretchable Electronics, Adv. Funct. Mater.2009.19:1526-1536.
    [186]J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature,1995,376:498-500.
    [187]K. Yoshino, K. Tada, K. Yoshimoto, M. Yoshida, T. Kawai, H. Araki, M. Hanaguchi, and A. Zakhidov, Electrical and optical properties of molecularly doped conducting polymers, Synth. Metal.,1996,78:301-312.
    [188]C. H. Lee, G. Yu, D. Moses, K. Pakbaz, C. Zhang, N. S. Sariciftci, A. J. Heeger, and F. Wudl, Sensitization of the photoconductivity of conducting polymers by C-60-photoinduced elecctron-transfer, Phys. Rev. B,1993,48:15425-15433.
    [189]V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, and M. T. Rispens, Electron transport in a methanofullerene, Adv. Funct. Mater.,2003,13:43-46.
    [190]F.C. Krebs, J.E. Carle, N.C. Bagger, M. Andersen, M.R. Lilliedal, M.A. Hammond, S. Hvidt, Lifetimes of organic photovoltaics:photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminium devices, Sol. Energ. Mat. Sol. C.,2005,86:499-516.
    [191]H. Bassler, Charge transport in disordered organic photoconductors a Monte Carlo simulation study, Phys. Status Solidi B,1993,175:15-56.
    [192]S. A. Choulis, J. Nelson, Y. Kim, D. Poplavskyy, T. Kreouzis, J. R. Durrant, and D. D. C. Bradley, Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements, Appl. Phys. Lett.,2003,83:3812-3814.
    [193]G. M. Wang, J. Swensen, D. Moses, and A. J. Heeger, Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors, J. Appl. Phys.,2003,93:6137-6141.
    [194]Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene, Appl. Phys. Lett.,2005.86:063502-063504.
    [195]A. Hirao, H. Nishizawa, H. Sugiuchi, Diffusion and. drift of charge carriers in moleculary doped polymers, Phys. Rev. Lett.,1995,75,1787-1790.
    [196]S. Pissadakis, S. Mailis, L. Reekie, J. S. Wilkinson, R. W. Eason, N. A. Vainos, K. Moschovis, G. Kiriakdikis, Permanent holographic recording in indium oxide thin films using 193 nm excimer laser radiation, Appl. Phys. A,1999,69:333-336.
    [197]S. H. Chen, A. C. Su, Y. F. Huang, C. H. Su, G. Y. Peng, and S. A. Chen, Supramolecular aggregation in bulk poly(2-methoxy-5-(2'-ethylhexylox)-1,4-phenylenevinylene), Macromolecules,2002,35:4229-4232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700